地球科学进展 ›› 2021, Vol. 36 ›› Issue (12): 1291 -1300. doi: 10.11867/j.issn.1001-8166.2022.002

研究论文 上一篇    下一篇

基于宇宙成因核素剖面法测年的川西龙日坝冰水扇研究
杨玮琳( ), 韩业松, 刘擎, 刘耕年( )   
  1. 北京大学城市与环境学院,北京 100871
  • 收稿日期:2021-01-22 修回日期:2021-10-14 出版日期:2021-12-10
  • 通讯作者: 刘耕年 E-mail:yangwl@pku.edu.cn;liugn@pku.edu.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究子专题“雅江流域冰—河—湖演化历史事件与耦合过程”(2019QZKK0205);国家自然科学基金项目“西藏阿里第四纪冰川地貌河流地貌特征的演化过程与驱动机制研究”(41771005)

Study on Outwash of Longriba in West Sichuan Province Based on Cosmogenic Nuclide Profiles

Weilin YANG( ), Yesong HAN, Qing LIU, Gengnian LIU( )   

  1. College of Urban and Environmental Sciences,Peking University,Beijing 100871,China
  • Received:2021-01-22 Revised:2021-10-14 Online:2021-12-10 Published:2022-01-20
  • Contact: Gengnian LIU E-mail:yangwl@pku.edu.cn;liugn@pku.edu.cn
  • About author:YANG Weilin (1995-), female, Guang'an City, Sichuan Province, Ph. D student. Research areas include quaternary glacier and environment, as well as glacier modelling. E-mail: yangwl@pku.edu.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research "Ice-river-lake evolution history and their interactions"(2019QZKK0205);The National Natural Science Foundation of China "Quaternary glacial-fluvial evolution and the driving mechanisms in Ali, Tibet"(41771005)

冰水扇等快速堆积的混杂沉积,多由粗大砾石组成,成层性差,少砂层夹层,缺有机质,用释光和14C等方法测年难度很大。因此,探讨对这类沉积进行定年的方法,并进一步分析其古环境及区域对比意义的工作显得迫切而现实。选取青藏高原东部四川红原龙日坝一个冰水沉积剖面,尝试利用2种宇宙成因核素剖面法:Monte Carlo法和指数拟合法,对冰水扇的形成年代进行定年和分析。研究结果表明,龙日坝冰水扇堆积的结束年代为(36.7±4.6) ka或(35.2±3.7) ka,核素继承量为11.3+4.0/-4.0×104 atmos/g,表面侵蚀速率为0.5+0.3/-0.5 cm/ka。剖面密度分析和Monte Carlo控制实验结果显示,核素继承高估了暴露年龄,而不完全暴露则低估了暴露年龄。与冰碛垄宇宙核素测年相比,核素继承是冰水扇定年的主要误差来源。龙日坝冰水扇形成在冰阶(MIS 3b)—间冰阶(MIS 3a)过渡阶段,反映降水和冰川融水增加导致河流搬运能力增强,沉积物通量增加,冰水扇沉积的环境特征。宇宙成因核素剖面法有利于详细分析测年的误差来源,可以作为混杂沉积精确定年的有效手段。

It remains a big challenge in dating the outwash and other rapid accumulated mixed depositions using conventional methods, such as Optically Stimulated Luminescence and 14C, because these depositions are mainly composed of coarse gravels with poor stratification, lacking sand interlayers and organic matters. Therefore, it is urgent and meaningful to develop a method to date such kinds of deposits so that we can analyze their paleoenvironment and compare regional differences. In this paper, we selected an outwash deposition profile at Longriba, located in Hongyuan county, Sichuan Province, eastern Tibetan Plateau and tried to date and analyze it by two Cosmogenic Nuclide Profile dating methods: the Monte Carlo calculator and the expansional regression. Results showed that the age of the outwash was (36.7±4.6) ka or (35.2±3.7) ka, the nuclide inheritance was 11.3+4.0/-4.0 ×104 atmos/g, and the post erosion rate at the surface of the outwash was 0.5+0.3/-0.5 cm/ka. We also analyzed the experimental error using density analysis method and Monte Carlo control experimentations, revealing that the exposure prior to deposition yields exposure ages that are too old and incomplete exposure due to post-depositional shielding yields exposure ages that are too young. In contrast with the ages of boulders by cosmogenic nuclide dating, our results point out that the experimental error is dominated by nuclide inheritance for the outwash. The comparisons of regional climate data indicate that the higher precipitation and glacial melt water resulted in higher transport capacity of the river, increased high sediment flux of the river during the glacial (MIS 3b) to interglacial (MIS 3a) transition, so that the outwash aggradation occurred. The Cosmogenic Nuclide Profile dating method is better to deeply analysis the error source of dating, so that it can be used as an effectively method for accurately dating the rapid accumulated mixed depositions.

中图分类号: 

图1 研究区位置及冰川地貌概况(据参考文献[ 12 ]重绘了gLGM冰碛垄和gLGM冰川范围)
gLGM:末次冰盛期
Fig. 1 The location of study area and glacial landformsthe moraines and the paleoglaciers' extent during gLGM were reproduce according to reference 12 ])
gLGM: global Last Glacal Maximum
图2 龙日坝冰水扇测年结果
(a)冰水扇的野外采样照片,采样点(星形)与图2(b)和图2(c)中的 10Be浓度相对应;(b)由测量的 10Be浓度及误差依据公式(3)所得指数拟合曲线;(c)浓度—深度图展示了对公式(1)的最优拟合结果以及2“ σ”范围内的解;(d)年代、核素继承、侵蚀速率在2“ σ”置信度范围内的频数分布图;黑色实线代表了最小的卡方值;在本研究中,卡方截断值设置为50
Fig. 2 The dating results of the Longriba outwash
(a) Field photo of the outwash profile and the sample points (star) were related to the 10Be concentration in Fig. 2(b) and Fig. 2(c); (b) The exponential curves are derived from fitting equation (3) to the measured 10Be concentrations and uncertainties; (c) Concentration versus depth plots illustrating best Bayesian fits to equation (1) and the 2" σ" profile solution spaces; (d) The frequency distribution plots for deposition ages, inheritance, and erosion rate 2" σ" solution spaces; Solid black lines indicate the lowest chi‐square value. The chi‐square cutoff was set to be 50 in this study
表1 龙日坝冰水扇的采样信息
Table 1 The sample information of the Longriba outwash
表2 Monte Carlo和指数拟合结果
Table 2 The results applying the Monte Carlo and exponential regression
图3 冰水扇堆积年代与其他古气候记录对比图
(a)依据指数拟合和Monte Carlo拟合得到的龙日坝冰水扇年代数据;(b)葫芦洞石笋 δ 18O记录 30 ;(c)古里雅冰芯 δ 18O记录 31 ;(d)北半球30°N太阳辐射曲线 32
Fig. 3 Comparison of outwash build age and other paleoclimatic records
(a) The age of the outwash in Longriba by exponential fit and Monte Carlo fit;(b) The speleothem δ 18O record from Hulu Cave 30 ;(c) The δ 18O records from the Guliya Ice Core 31 ;(d) The Northern Hemisphere summer insolation at 30°N 32
1 BLISNIUK K, OSKIN M, FLETCHER K, et al. Assessing the reliability of U-series and 10Be dating techniques on alluvial fans in the Anza Borrego Desert, California [J]. Quaternary Geochronology, 2012, 13: 26-41.
2 DEY S, THIEDE R C, SCHILDGEN T F, et al. Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India [J]. Earth and Planetary Science Letters, 2016, 449:321-331.
3 LAI Zhongping, YANG Anna, CONG Lu, et al. Dating techniques for mountain hazardous sediments [J]. Earth Science Frontiers, 2021, 28(2): 1-18.
赖忠平, 杨安娜, 丛禄,等. 山地灾害沉积物的测年综述[J]. 地学前缘, 2021, 28(2): 1-18.
4 HEYMAN J, STROEVEN A P, HARBOR J M, et al. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages [J]. Earth and Planetary Science Letters, 2011, 302: 71-80.
5 FU P, STROEVEN A P, HARBOR J M, et al. Paleoglaciation of Shaluli Shan, southeastern Tibetan Plateau [J]. Quaternary Science Reviews, 2013, 64: 121-135.
6 LIU Yu, WANG Shijie, LIU Xiuming. New advance of cosmogenic nuclides dating in geochronology research [J]. Advances in Earth Science, 2012, 27(4): 386-397.
刘彧, 王世杰, 刘秀明. 宇宙成因核素在地质年代学研究中的新进展[J]. 地球科学进展, 2012, 27(4): 386-397.
7 HIDY A J, GOSSE J C, PEDERSON J L, et al. A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: an example from Lees Ferry, Arizona [J]. Geochemistry Geophysics Geosystems, 2010, 11: 1-18.
8 CHEN Gan, ZHENG Wenjun, XIONG Jianguo, et al. Late Quaternary fluvial landform evolution and controlling factors along the Yulin River on the Northern Tibetan Plateau [J]. Geomorphology, 2020, 363: 107213.
9 YANG Ye, LIU Congqiang, WOERD J VAN DER, et al. New constraints on the late Quaternary landscape evolution of the eastern Tibetan Plateau from 10Be and 26Al in-situ cosmogenic nuclides [J]. Quaternary Science Reviews, 2019, 220: 244-262.
10 CHEVALIER M L, LELOUP P H, REPLUMAZ A, et al. Temporally constant slip rate along the Ganzi fault, NW Xian shuihe fault system, eastern Tibet [J]. Geological Society of America Bulletin, 2018, 130(3/4): 396-410.
11 LI Yong, CAO Shuyou, ZHOU Rongjun, et al. Late Cenozoic Minjiang incision rate and its constraint on the uplift of the eastern margin of the Tibetan Plateau [J]. Acta Geologica Sinica, 2005, 79(1): 28-37.
李勇, 曹叔尤, 周荣军,等. 晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J]. 地质学报, 2005, 79(1): 28-37.
12 YANG Weilin, HAN Yesong, PENG Xu, et al. Paleoglacial and paleoclimate reconstructions during the global Last Glacial Maximum in the Longriba area, eastern Tibetan Plateau [J]. Journal of Mountain Science, 2020, 18(2): 307-322.
13 CAO Jun, GUO Jianqiang. Quaternary ice age division and paleoclimate and paleoenvrionment in the Huanglong Nature Reserve, Songpan [J]. Acta Geologica Sichuan, 2001, 21(3): 141-146.
曹俊, 郭建强. 松潘黄龙自然保护区第四纪冰期划分与古气候环境分析研究[J]. 四川地质学报, 2001, 21(3): 141-146.
14 HEYMAN J, STROEVEN A P, CAFFEE M W, et al. Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: exposure ages reveal a missing LGM expansion [J]. Quaternary Science Reviews, 2011, 30: 1 988-2 001.
15 CUI Zhijiu. Discussion on the discrimination principle and symbol of origin on the diamicton and diamictite [J]. Geological Review, 1988, 34(4): 369-376.
崔之久. 论混杂堆积和混杂岩的成因判别原则与标志[J]. 地质论评, 1988, 34(4): 369-376.
16 KOHL C P, NISHIIZUMI K. Chemical isolation of quartz for measurement of insitu-produced cosmogenic nuclides [J]. Geochimca et Cosmochimica Acta, 1992, 56(9): 3 583-3 587.
17 NISHIIZUMI K, IMAMURA M, CAFFEE M W, et al. Absolute calibration of 10Be AMS standards [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials Atoms, 2007, 258(2): 403-413.
18 LI Yingkui. Determining topographic shielding from digital elevation models for cosmogenic nuclide analysis: a GIS model for discrete sample sites [J]. Journal of Mountain Science, 2018, 15(5): 939-947.
19 GOSSE J C, PHILLIPS F M. Terrestrial in situ cosmogenic nuclides: theory and application [J]. Quaternary Science Reviews, 2001, 20(14): 1 475-1 560.
20 KARAMPAGLIDIS T, BENITO-CALVO A, RODÉS A, et al. Pliocene endorheic-exhoreic drainage transition of the Cenozoic Madrid Basin (Central Spain) [J]. Global and Planetary Change, 2020, 194: 103295.
21 RUSZKICZAY-RÜDIGER Z, CSILLAG G, FODOR L, et al. Integration of new and revised chronological data to constrain the terrace evolution of the Danube River (Gerecse Hills, Pannonian Basin) [J]. Quaternary Geochronology, 2018, 48: 148-170.
22 KNUDSEN M F, EGHOLM D L, JACOBSEN B H, et al. A multi-nuclide approach to constrain landscape evolution and past erosion rates in previously glaciated terrains [J]. Quaternary Geochronology, 2015, 30: 100-113.
23 Yanwu LÜ, LIANG Oubo, HUANG Feipeng. Application of calculating model to in-situ cosmogenic nuclides age [J]. Geological Review, 2019, 65(4): 1 021-1 030.
吕延武, 梁欧博, 黄飞鹏. 就地生成宇宙成因核素年龄计算模式应用[J]. 地质评论, 2019, 65(4): 1 021-1 030.
24 BALCO G, STONE J O, LIFTON N A, et al. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements [J]. Quaternary Geochronology, 2008, 3(3): 174-195.
25 LAL D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models [J]. Earth and Planetary Science Letters, 1991, 104(2/4): 424-439.
26 STONE J O. Air pressure and cosmogenic isotope production [J]. Journal of Geophysics Research, 2000, 105(B10): 23 753-23 759.
27 LIFTON N, SATO T, DUNAI T J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes [J]. Earth and Planetary Science Letters, 2014, 386: 149-160.
28 HUANG Weiliang, YANG Xiaoping, JOBE J A T, et al. Alluvial plains formation in response to 100-ka glacial-interglacial cycles since the Middle Pleistocene in the southern Tian Shan, NW China [J]. Geomorphology, 2019, 341: 86-101.
29 SHI Yafeng, YAO Tandong. MIS 3b (54~44 ka BP) clod period and glacial advance in middle and low latitudes[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 1-9.
施雅风, 姚檀栋. 中低纬度MIS 3b (54~44 ka BP)冷期与冰川前进[J]. 冰川冻土, 2002, 24(1): 1-9.
30 BERGER A, LOUTRE M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317.
31 THOMPSON L G, YAO T, DAVIS M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core [J]. Science, 1997, 276(5 320): 1 821-1 825.
32 WANG Y J, CHENG H, EDWARDS R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5 550): 2 345-2 348.
33 SHI Yafeng, LIU Xiaodong, LI Bingyuan, et al. A very strong summer monsoon event during 30-40 ka BP in the Qinghai-Xizang (Tibet) Plateau and its relation to precessional cycle [J]. Chinese Science Bulletin, 1999, 44(20): 1 851-1 858.
34 SHI Yafeng, YU Ge, LIU Xiaodong, et al. Reconstruction of the 30-40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169: 69-83.
35 YANG Jianqiang, CUI Zhijiu, YI Chaolu, et al. "Tali Glaciation" on Massif Diancang [J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1 685-1 692.
36 WANG Jie, KASSAB C, HARBOR J M, et al. Cosmogenic nuclide constraints on late Quaternary glacial chronology on the Dalijia Shan, northeastern TP [J]. Quaternary Research, 2013, 79(3): 439-451.
37 KONG Ping, NA Chunguang, FINK D, et al. Moraine dam related to late Quaternary glaciation in the Yulong Mountains, southwest China, and impacts on the Jinsha River [J]. Quaternary Science Reviews, 2009, 28(27/28): 3 224-3 235.
38 VIGNON V, MUGNIER J L, VASSALLO R, et al. Sedimentation close to the active Medlicott Wadia Thrust (Western Himalaya): how to estimate climatic base level changes and tectonics [J]. Geomorphology, 2017, 284: 175-190.
39 ABRAHAMI R, HUYGHE P, BEEK P VAN DER, et al. Late Pleistocene-Holocene development of the Tista megafan (West Bengal, India): 10Be cosmogenic and IRSL age constraints [J]. Quaternary Science Reviews, 2018, 185: 69-90.
40 MALATESTA L C, J-P AVOUAC, BROWN N D, et al. Lag and mixing during sediment transfer across the Tian Shan piedmont caused by climate-driven aggradation-incision cycles [J]. Basin Research, 2018, 30(4): 613-635.
41 ZHANG Yueqiao, LI Hailong, LI Jian. Impact of the 30-40 kaB.P. warm-humid climate in Tibet on the geo-environment of the deep-incised river valleys in west Sichuan [J]. Acta Geoscientica Sinica, 2016, 37(4): 481-492.
张岳桥, 李海龙, 李建. 青藏高原30-40 ka B.P.暖湿气候事件对川西河谷地质环境的影响[J]. 地球学报, 2016, 37(4): 481-492.
[1] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[2] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[3] 董治宝, 李超, 吕萍, 胡光印. 侵蚀型沙丘:来自火星的启示[J]. 地球科学进展, 2021, 36(2): 125-138.
[4] 许海超,张建辉,戴佳栋,王勇. 耕作侵蚀研究回顾和展望[J]. 地球科学进展, 2019, 34(12): 1288-1300.
[5] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[6] 徐永福. 高放废物地质处置库中膨润土的侵蚀机理和模型研究综述[J]. 地球科学进展, 2017, 32(10): 1050-1061.
[7] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[8] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[9] 胡凯, 方小敏, 赵志军. 宇宙成因核素 10Be揭示的北祁连山侵蚀速率特征 *[J]. 地球科学进展, 2015, 30(2): 268-275.
[10] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
[11] 戴海伦, 代加兵, 舒安平, 张科利. 河岸侵蚀研究进展综述[J]. 地球科学进展, 2013, 28(9): 988-996.
[12] 刘希林,张大林,贾瑶瑶. 崩岗地貌发育的土体物理性质及其土壤侵蚀意义——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2013, 28(7): 802-811.
[13] 牛富俊,董晟,林战举,鲁嘉濠,罗京. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.
[14] 王兴山,张捷,秦中. 岩石侵蚀速率测算方法研究综述及展望[J]. 地球科学进展, 2013, 28(4): 447-454.
[15] 罗时龙, 蔡锋, 王厚杰. 海岸侵蚀及其管理研究的若干进展[J]. 地球科学进展, 2013, 28(11): 1239-1247.
阅读次数
全文


摘要