地球科学进展 ›› 2021, Vol. 36 ›› Issue (12): 1301 -1312. doi: 10.11867/j.issn.1001-8166.2022.004

全球变化研究 上一篇    下一篇

中全新世背景下中国区域气候对植被变化响应的降尺度模拟研究
况雪源 1( ), 韩跃超 2   
  1. 1.南京大学大气科学学院,江苏 南京 210023
    2.中国人民解放军32021部队,北京 100094
  • 收稿日期:2021-05-13 修回日期:2021-09-26 出版日期:2021-12-10
  • 基金资助:
    国家重大研发计划项目“古气候参数的数值模拟重建及气候变化归因分析”(2016YFA0600504);国家自然科学基金项目”北半球高空急流型态变化影响冬季极端低温过程区域差异的机理研究”(41775073)

Response of China Climate to Vegetation Change Under Mid-Holocene Background Based on Dynamic Downscaling Simulation

Xueyuan KUANG 1( ), Yuechao HAN 2   

  1. 1.School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
    2.Unit No. 32021 of PLA, Beijing 100094, China
  • Received:2021-05-13 Revised:2021-09-26 Online:2021-12-10 Published:2022-01-20
  • About author:KUANG Xueyuan (1971-), female, Hezhang County, Guizhou Province, Associate professor. Research areas include climate change and numerical modelling. E-mail: xykuang@nju.edu.cn
  • Supported by:
    the National Key Research and Development Program of China "Numerical simulation reconstruction of paleoclimate parameters and attribution analysis of climate change"(2016YFA0600504);The National Natural Science Foundation of China "Study on the mechanism of regionality of winter extreme low temperature affected by upper-tropospheric jet pattern in the Northern Hemisphere"(41775073)

使用区域气候模式RegCM4.1嵌套全球耦合气候模式CCSM3全变量强迫瞬变试验(TraCE-21ka)模拟结果,通过动力降尺度方法再现了中全新世中国区域气候精细分布。与现代相比,中全新世中国区域气温夏高冬低,年振幅大;降水北多南少,夏季风强,雨带偏北。基于敏感性试验结果探讨地表植被、海温和温室气体变化对中全新世中国区域气候的影响,结果表明地表植被的作用高于海温及温室气体,是影响中国夏季气候的关键因子。以现代植被替代中全新世植被的试验表明植被改变会引起地表反照率的显著变化,从而引起地表对太阳辐射吸收差异并导致大气温压结构改变,南亚高压强度减弱伴随对流层大气经向温度梯度改变并使得东亚副热带西风急流南移,急流南侧的垂直运动得到加强而北侧减弱,最终致使季风雨带出现经向位移。此外,植被的改变亦会引起地表蒸发及水汽输送的差异,是降水对植被变化响应的另一种途径。

The mid-Holocene is the latest warm period on orbital scale with topography and coastline distribution similar to modern times. Therefore, it is of significance for climate prediction in the future to explore the causes of climate change in this period. In this study, the dynamic downscaling modeling on the climate of China in mid-Holocene were carried out by using the monthly mean atmospheric circulation data of the fully-forced transient experiment results (TraCE-21ka) as lateral boundary nested into the regional climate model (RegCM4). The dynamic downscaling results could more precisely capture the regional differences of climate in China than the TraCE-21ka simulation.Based on the dynamic downscaling simulation, the summer in the mid-Holocene was warmer while the winter was colder in most areas relative to modern times. Meanwhile, the precipitation difference distribution of "positive in north and negative in south" between mid-Holocene and modern era reveals that the East Asian summer monsoon in mid-Holocene was stronger and the rain belt was far northward than the modern times. To further differentiate contributions of the vegetation, sea surface temperature and greenhouse gases on summer precipitation of China in mid-Holocene, we designed three sensible experiments by replacing the relevant variables of mid-Holocene with modern situation. The results reveal that the vegetation is the most crucial one exerting significant influence on the summer precipitation. The vegetation change from mid-Holocene to modern era could cause significant response of the surface albedo, then absorbed solar radiation and atmospheric structure is differently distributed. Consequently, the meridional temperature gradient of the troposphere is altered accompanied with southward shift of the East Asian subtropical westerly jet, so the vertical flow south to the 35°N is strengthened while the north is weakened, comprehensively leading to the longitudinal displacement of the monsoon precipitation belt. Additionally, the evaporation and water vapor transport are also influenced by the vegetation distribution to large extent, which also contribute to the precipitation response to the vegetation change.

中图分类号: 

图1 区域模式中的动力降尺度模拟嵌套区域
Fig. 1 The nested area of the dynamic downscaling research in the RegCM4.1
表1 中国区域动力降尺度控制试验及敏感性试验参数
Table 1 Parameters in control and sensible experiments of downscaling simulation in China
表2 中全新世和现代的日地轨道参数及温室气体对比
Table 2 The orbit parameters and GHG concentration in mid-Holocene and modern times
图2 中全新世与现代大气顶太阳辐射差异(等值线为偏差,单位:W/m2
Fig. 2 The difference distribution of insolation at the top of atmosphere between mid-Holocene and modern timesthe contour is for the difference with units in W/m2
图3 花粉反演的中全新世(a)和现代(b)地表植被分布图
Fig. 3 The vegetation distribution of China during mid-Holoceneaand modern timesb
图4 TraCE-21kaRegCM4.1中全新世地表温度(ac)和降水(bd)的模拟对比
Fig. 4 The distributions of annual surface temperatureacand precipitationbdin mid-Holocene respectively in the TraCE-21ka and RegCM4.1 results
图5 动力降尺度模拟的中全新世与现代中国区域气候差异
Fig. 5 The differences of temperature and precipitation in China between the mid-Holocene and Modern times
图6 敏感性试验与控制试验的夏季气温(a~c)和降水(d~f)差异
加点区域通过0.05信度检验
Fig. 6 The difference distributions of summer temperaturea~cand precipitationd~fbetween sensible experiments and the control
The dotted areas exceed 95% significance level
图7 植被变化试验与控制试验夏季地表要素差异
填色区域通过0.05信度检验
Fig. 7 The difference distributions of summer surface variables between Exp_V and the control experiment
The shading exceed 95% significance level
图8 夏季植被变化试验与控制试验地表大气环流差异
(a) 500 hPa温度场(阴影;单位:℃);(b) 200 hPa纬向风(阴影)及110°E纬向风速(粗实线,黑色为控制试验,绿色为植被变化试验),单位:m/s; (c) 200 hPa 风场;(d) 850 hPa 风场(矢量图)及110°E经向风速(粗实线),单位:m/s;(e) 沿110°E垂直风场;(f) 沿35°N垂直风场;橙色风矢量及填色区域均通过0.05的信度检验
Fig. 8 The differences of meteorological variables at pressure levels between EXP_V and the control
(a) Temperature (shading with units in ℃) at 500 hPa level;(b) Zonal wind (shading with units in m/s) and zonal speed along 110°E (green curve in Exp_V and black in control) at 200 hPa level; (c) Wind at 200 hPa level; (d) Wind at 850 hPa level and zonal speed along 110°E (green curve in Exp_V and black in control), units in (b)~(d) are m/s; (e) Vertical flow along 110°E; (f) Vertical flow along 35°N. Shading and orange wind exceed 95% significance level
13 TIAN Z P, JIANG D B. Revisiting mid-Holocene temperature over China using PMIP3 simulations[J]. Atmospheric and Oceanic Science Letters, 2015, 8(6): 358-364.
14 SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. Basic feature of climate and environment during the Holocene Megathermal in China [J]. Science in China Series B: Chemistry, 1993, 23(8): 865-873.
施雅风,孔昭宸,王苏民,等. 中国全新世大暖期鼎盛阶段的气候与环境[J]. 中国科学B辑:化学,1993,23(8):865-873.
15 HOU Guangliang, FANG Xiuqi. Characteristics of Holocene temperature change in China[J]. Progress in Geography,2011,30(9): 1 075-1 080.
侯光良,方修琦. 中国全新世气温变化特征[J]. 地理科学进展, 2011, 30(9): 1 075-1 080.
16 YU E T, WANG T, GAO Y Q, et al. Precipitation pattern of the mid-Holocene simulated by a high-resolution regional climate model[J]. Advances in Atmospheric Sciences, 2014, 31(4): 962-971.
17 YU Ge, WANG Sumin. Studies of the climatic dynamics for the mid-Holocene vegetational changes in China[J]. Acta Micropalaeontologica Sinica, 2000, 17(2): 147-154.
于革,王苏民. 中国中全新世植被带迁移的气候动力学机制探讨[J]. 微体古生物学报,2000,17(2):147-154.
18 LIU Jian, YU Ge, CHEN Xing, et al. Simulations of East Asian climate in mid-Holocene and LGM[J]. Progress in Natural Sciences, 2002,12(7):713-720.
刘健,于革,陈星,等. 中全新世和末次盛冰期东亚古气候的模拟[J]. 自然科学进展, 2002,12(7):713-720.
19 Haibo LÜ. A study on mid-Holocene climate and its different impact on some regions in China[J]. Journal of Weinan Teachers University, 2010,25(2):42-45.
吕海波.中全新世气候及对中国区域差异性影响研究[J]. 渭南师范学院学报,2010,25(2):42-45.
20 MAYEWSKI P A, BENDER M. The GISP2 ice core record—paleoclimate highlights[J]. Reviews of Geophysics, 1995, 33: 1 287-1 296.
21 ALLEY R B, CLARK P U. The deglaciation of the northern hemisphere: a global perspective[J]. Annual Review of Earth and Planetary Sciences, 1999, 27: 149-182.
22 CLARK P U, SHAKUN J D, BAKER P A, et al. Global climate evolution during the last Deglaciation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(19): E1134-E1142.
23 CHEN F, XU Q, CHEN J, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports,2015, 5: 1-11.
24 RENSSEN H, MAIRESSE A, GOOSSE H, et al. Multiple causes of the Younger Dryas cold period[J]. Nature Geoscience, 2015, 8:946-949.
25 YU Fei, JIN Liya, ZHANG Xiaojian, et al. Central and east Asian climate variability in response to vegetation change at 6 ka BP[J]. Journal of Lanzhou University (Natural Sciences), 2011,47(2):24-31.
俞飞,靳立亚,张肖剑,等. 6 ka BP中东亚气候对植被变化的响应[J]. 兰州大学学报:自然科学版,2011,47(2):24-31.
26 ZHENG Yiqun, YU Ge, XUE Bin, et al. Simulations of East Asian climate at 6 ka B.P.[J]. Quaternary Sciences, 2004,24(1):29-38.
郑益群,于革,薛滨,等. 6 ka B.P.东亚区域气候模拟及其变化机制探讨[J].第四纪研究,2004,24(1):29-38.
27 LIU W, HE J H, LI W L, et al. MM5 simulations of the China regional climate during the mid-Holocene[J]. Acta Meteorologica Sinica, 2010, 24(4): 468-483.
1 HUANG Chunju, TIAN Xiaoli. Discussion on the driving mechanism of solar activity to interannual suborbital-scale climate change[J]. Quaternary Sciences, 2018, 38(5):1 255-1 267.
黄春菊,田晓丽. 太阳活动对年代际—亚轨道尺度气候变化的驱动机制探讨[J]. 第四纪研究, 2018,38(5): 1 255-1 267.
2 WANG Zhiyuan, WANG Jianglin, ZHANG Shijia, et al. Impact of different timescales on the characteristics and mechanisms of the Northern Hemisphere Summer Monsoon: based on the CESM results[J]. Quaternary Sciences, 2018, 38(6):1 494-1 506.
王志远, 王江林,张诗茄, 等. 不同时间尺度影响下的北半球夏季风空间特征及其可能影响机制[J].第四纪研究,2018,38(6):1 494-1 506.
3 BRACONNOTT P, OTTO-BLIESNER B, HARRISON S, et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget[J]. Climate of the Past, 2007, 3: 279-296.
4 WANNER H, Solomina O, GROSJEAN M, et al. Structure and origin of Holocene cold events[J]. Quaternary Science Reviews, 2011, 30: 1-15.
5 MCGEE D, DONOHOE A, MARSHALL J, et al. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene[J]. Earth and Planetary Science Letters, 2014, 390: 69-79.
6 MASSON V, CHEDDADI R, BRACONNOT P, et al. Mid-Holocene climate in Europe: what can we infer from PMIP model-data comparisons?[J]. Climate Dynamics, 1999, 15(3): 163-182.
7 WANG Y, CHENG H, EDWARDS R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308: 854-857.
8 MAHER B A. Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment[J]. The Holocene, 2008, 18(6): 861-866.
9 CHEN F, Yu Z, YANG M, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3/4): 351-364.
10 HU C, HENDERSON G M, HUANG J, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 221-232.
11 JIANG D B, TIAN Z P, LANG X M. Mid-Holocene net precipitation changes over China: model-data comparison[J]. Quaternary Science Reviews, 2013, 82: 104-120.
28 ZHOU B T, ZHAO P. Modeling variations of summer upper tropospheric temperature and associated climate over the Asian Pacific region during the mid-Holocene[J]. Journal of Geophysical Research Atmospheres, 2010,115: D20109.
29 KUANG Xueyuan, HAN Yuechao, WANG Zhiyuan. Dynamic downscaling simulation of millennial climate in China since the Last Glacial Maximum—climate comparison of three typical periods [J]. Quaternary Sciences,2021,41(3):842-855.
况雪源,韩跃超,王志远.末次冰盛期以来中国千年尺度气候的动力降尺度模拟——3个特征时期气候对比[J].第四纪研究,2021,41(3):842-855.
30 HE F. Simulating transient climate evolution of the last deglaciation with CCSM3[D]. Madison: University of Wisconsin, 2011.
31 HE F, SHAKUN J D, Clark P U, et al. Northern Hemisphere forcing of Southern Hemisphere climate during the last Deglaciation[J]. Nature, 2013, 494: 81-85.
32 GIORGI F, MARINUCCI M R, BATES G T. Development of a second-generation regional climate model (RegCM2).Part I: boundary-layer and radiative transfer processes[J]. Monthly Weather Review, 1993, 121(10): 2 794-2 813.
33 GIORGI F, MARINUCCI M R, BATES G T. Development of a second-generation regional climate model (RegCM2). part II: convective processes and assimilation of lateral boundary conditions[J]. Monthly Weather Review, 1993, 121(10): 2 814-2 832.
34 GIORGI F, COPPOLA F, SOLMON E, et al. RegCM4: model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 2012, 52: 7-29.
35 BROOK E J, SOWERS T, ORCHARDO J. Rapid variations in atmospheric methane concentration during the past 110,000 years[J]. Science, 1996, 273:1 087-1 091.
36 LI Q, WU H, YU Y, et al. Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum[J]. Quaternary International, 2019, 500:108-119.
12 JIANG D B, TIAN Z P, LANG X M. Mid-Holocene global monsoon area and precipitation from PMIP simulations[J]. Climate Dynamics, 2015, 44(9/10): 2 493-2 512.
[1] 姜大膀, 田芝平, 王娜, 张冉. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13.
[2] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[3] 陈星,雷鸣,汤剑平. 地表植被改变对气候变化影响的模拟研究[J]. 地球科学进展, 2006, 21(10): 1075-1082.
[4] 于 革. 花粉植被化与全球古植被计划研究[J]. 地球科学进展, 1999, 14(3): 306-311.
阅读次数
全文


摘要