地球科学进展 ›› 2022, Vol. 37 ›› Issue (1): 1 -13. doi: 10.11867/j.issn.1001-8166.2021.098

“青促会成立10周年之地球科学领域”专刊    下一篇

末次冰盛期和中全新世气候模拟分析进展
姜大膀( ), 田芝平, 王娜, 张冉   
  1. 中国科学院大气物理研究所,北京 100029
  • 收稿日期:2021-07-07 修回日期:2021-10-09 出版日期:2022-01-10
  • 基金资助:
    国家自然科学基金重点项目“全新世金钉子型气候突变事件:我国季风区湖泊记录”(41931181);国家重点研发计划项目“季风变异和干旱演变的驱动机制”(2017YFA0603404)

Progress of Last Glacial Maximum and Mid-Holocene Climate Modeling Analyses

Dabang JIANG( ), Zhiping TIAN, Na WANG, Ran ZHANG   

  1. Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
  • Received:2021-07-07 Revised:2021-10-09 Online:2022-01-10 Published:2022-01-29
  • About author:JIANG Dabang (1974-), male, Siping City, Jilin Province, Professor. Research area is climate change. E-mail: jiangdb@mail.iap.ac.cn
  • Supported by:
    the National Natural Science Foundation of China Key Project "Holocene GSSP-typical, abrupt climate events: records from lakes in the monsoon region of China"(41931181);The National Key R&D Program of China "Driving mechanisms for monsoon variabilities and drought evolutions"(2017YFA0603404)

回顾了课题组近年来有关末次冰盛期和中全新世气候模拟分析的研究进展,包括中国气候、东亚和全球季风以及相关的主要大气环流系统等变化。多模式试验数据的分析表明,末次冰盛期中国降温和年均有效降水变化与重建记录定性一致,但模拟幅度偏弱;中国冻土区扩张、永冻土区活动层变薄,中国西部冰川物质平衡线高度降低;东亚季风变化在不同模式间差异较大,中国季风区范围和季风降水减小,北半球陆地季风区南移、全球季风区缩小和降水强度减弱共同引起全球季风降水减少;全球降水和潜在蒸散发共同减小使得全球干湿变化总体很小;北半球西风带在高层北移、低层南移,热带宽度变化依赖于指标的选取,厄尔尼诺—南方涛动气候影响、热带太平洋沃克环流均减弱并东移。在中全新世,多模式模拟的中国年和冬季偏冷仍然与大部分重建记录显示的偏暖不同;东亚冬季风增强,东亚夏季降水变化存在空间不一致性;中国和全球尺度的季风区范围和季风降水均增加;东北多年冻土退化、青藏高原多年冻土向低海拔扩张,北半球永冻土区减小、季节性冻土扩张、冻土区北退、永冻土区活动层变厚;全球干旱区面积总体变化很小;夏季东亚西风急流显著减弱并北移,厄尔尼诺—南方涛动减弱,热带太平洋沃克环流加强并西移。上述变化主要是对末次冰盛期大范围冰盖和较低温室气体浓度或中全新世轨道强迫的响应,海洋反馈起一定调制作用,植被反馈作用具有不确定性;模式与记录不一致的原因仍待深入探究。

Climate modeling analyses for the Last Glacial Maximum (LGM) and mid-Holocene undertaken by the authors in recent years were systematically reviewed, including changes in climate over China, East Asian and global monsoons, as well as the associated major atmospheric circulation systems. Based on multi-model simulation data, the recent results showed that during the LGM, the simulated cooling and annual net precipitation change over China were qualitatively consistent with geological records, with a weaker magnitude for the simulation. The LGM permafrost area expanded and the active layer thickness was thinner in China, while the glacier equilibrium line altitude in western China were lower than the preindustrial levels. Although the LGM changes in the East Asian monsoon intensity differed among the models, the monsoon area and monsoon precipitation over China were consistently decreased; the land monsoon region moved southward in the Northern Hemisphere, and both decreases in global monsoon area and monsoon precipitation intensity led to deficient global monsoon precipitation. The magnitude of global mean terrestrial moisture change was overall small due to both decreases in global mean precipitation and potential evapotranspiration. The LGM northern westerlies shifted poleward in the upper level but equatorward in the lower level, the tropical belt width changes were dependent on the selection of metrics, and the El Ni?o-Southern Oscillation (ENSO) impacts and the tropical Pacific Walker circulation were revealed to weaken and shift eastward. During the mid-Holocene, the simulated annual and winter cooling over China was still opposite to the warming reconstructed by most geological records. The East Asian winter monsoon was consistently strengthened, while there were spatially inhomogeneous changes in the East Asian summer monsoon precipitation; the monsoon area and monsoon precipitation increased both over China and over the globe. The mid-Holocene permafrost area reduced in northeastern China but expanded to low-altitude regions in the Tibetan Plateau; in the Northern Hemisphere, the permafrost extent contracted, seasonally frozen ground expanded, frozen ground retreated northward, and the active layer thickness became larger. There was overall little change in the total area of global drylands. The summer East Asian westerly jet significantly weakened and shifted northward, the ENSO weakened, and the associated tropical Pacific Walker circulation strengthened and shifted westward during the mid-Holocene. The above changes were mainly responses to the LGM large presence of ice sheets and lower atmospheric greenhouse gas concentrations or the mid-Holocene orbital forcing, with the ocean feedback playing a certain modulation role and the vegetation feedback effect showing a level of uncertainty. The causes of model-data mismatch deserve to be further investigated.

中图分类号: 

1 JOUSSAUME S, TAYLOR K. Status of the Paleoclimate Modeling Intercomparison Project (PMIP)[M] // GATES W L. Proceedings of the First International AMIP Scientific Conference. Geneva: World Meteorological Organization, WCRP-92, WMO/TD-732, 1995.
2 MASSON-DELMOTTE V, SCHULZ M, ABE-OUCHI A, et al. Information from paleoclimate archives[M] // STOCKER T F, QIN D, PLATTNER G K, et al. Climate change2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 383-464.
3 BARTLEIN P J, HARRISON S P, BREWER S, et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis[J]. Climate Dynamics, 2011, 37(3/4): 775-802.
4 BRACONNOT P, OTTO-BLIESNER B, HARRISON S, et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum-part 1: experiments and large-scale features[J]. Climate of the Past, 2007, 3(2): 261-277.
5 TAYLOR K E, STOUFFER R J, MEEHL G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498.
6 KAGEYAMA M, BRACONNOT P, HARRISON S P, et al. The PMIP4 contribution to CMIP6-Part 1: overview and over-arching analysis plan[J]. Geoscientific Model Development, 2018, 11(3): 1 033-1 057.
7 JOUSSAUME S, TAYLOR K E, BRACONNOT P, et al. Monsoon changes for 6 000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP)[J]. Geophysical Research Letters, 1999, 26(7): 859-862.
8 BRACONNOT P, JOUSSAUME S, de NOBLET N, et al. Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project[J]. Global and Planetary Change, 2000, 26(1/3): 51-66.
9 ZHENG W, BRACONNOT P, GUILYARDI E, et al. ENSO at 6ka and 21ka from ocean-atmosphere coupled model simulations[J]. Climate Dynamics, 2008, 30(7/8): 745-762.
10 ZHANG Xiaojian, JIN Liya, YU Fei, et al. Mid-Holocene NAO: based on PMIP2 model simulations[J]. Acta Oceanologica Sinica, 2010, 32(4): 41-50.
张肖剑, 靳立亚, 俞飞, 等. 基于PMIP2气候模式模拟的中全新世北大西洋涛动[J]. 海洋学报, 2010, 32(4): 41-50.
11 ZHOU B, ZHAO P. Modeling variations of summer upper tropospheric temperature and associated climate over the Asian Pacific region during the mid-Holocene[J]. Journal of Geophysical Research, 2010, 115: D20109.
12 DINEZIO P N, CLEMENT A, VECCHI G A, et al. The response of the Walker circulation to Last Glacial Maximum forcing: implications for detection in proxies[J]. Paleoceanography, 2011, 26: PA3217.
51 LIU S, JIANG D, LANG X. A multi-model analysis of moisture changes during the Last Glacial Maximum[J]. Quaternary Science Reviews, 2018, 191: 363-377.
52 JIANG D, SUI Y, LANG X, et al. Last glacial maximum and mid-Holocene thermal growing season simulations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(20): 11 466-11 478.
53 LIU Y, JIANG D. Last Glacial Maximum permafrost in China from CMIP5 simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 447: 12-21.
54 JIANG Dabang, LIU Yeyi, LANG Xianmei. A multi-model analysis of glacier equilibrium line altitudes in western China during the Last Glacial Maximum[J]. Science China: Earth Sciences, 2019, 62(8): 1 241-1 255.
姜大膀, 刘叶一, 郎咸梅. 末次冰盛期中国西部冰川物质平衡线高度的模拟研究[J]. 中国科学: 地球科学, 2019, 49(8): 1 231-1 245.
55 HE F. Simulating transient climate evolution of the Last Deglaciation with CCSM3[D]. Wisconsin: University of Wisconsin-Madison, 2011.
56 LIU Shanshan, JIANG Dabang. A transient simulation analysis of terrestrial moisture changes over China during the past 21 000 years[J]. Quaternary Sciences, 2020, 40(6): 1 550- 1 561.
刘珊珊, 姜大膀. 过去21 ka中国干湿变化的瞬变模拟分析[J]. 第四纪研究, 2020, 40(6): 1 550-1 561.
57 LIU S, LANG X, JIANG D. Time-varying responses of dryland aridity to external forcings over the last 21 ka[J]. Quaternary Science Reviews, 2021, 262: 106989.
58 YU G, HARRISON S P, XUE B. Lake status records from China: data base documentation[M]. Jona:Max-Planck-Institute for Biogeochemistry, 2001.
13 ZHAO Y, HARRISON S P. Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks[J]. Climate Dynamics, 2012, 39(6): 1 457-1 487.
14 ZHOU B, ZHAO P. Simulating changes of spring Asian-Pacific oscillation and associated atmospheric circulation in the mid-Holocene[J]. International Journal of Climatology, 2013, 33(3): 529-538.
15 AN S I, CHOI J. Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3[J]. Climate Dynamics, 2014, 43(3/4): 957-970.
16 BRIERLEY C M, ZHAO A, HARRISON S P, et al. Large-scale features and evaluation of the PMIP4-CMIP6 mid-Holocene simulations[J]. Climate of the Past, 2020, 16(5): 1 847-1 872.
17 BROWN J R, BRIERLEY C M, AN S I, et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models[J]. Climate of the Past, 2020, 16(5): 1 777-1 805.
18 GĂINUŞĂ-BOGDAN A, SWINGEDOUW D, YIOU P, et al. AMOC and summer sea ice as key drivers of the spread in mid-Holocene winter temperature patterns over Europe in PMIP3 models[J]. Global and Planetary Change, 2020, 184: 103055.
19 WANG Huijun, ZENG Qingcun. Numerical simulation of the climate9 000 years ago[J]. Chinese Journal of Atmospheric Sciences, 1992, 16(3): 313-321.
王会军, 曾庆存. 9 000年前古气候的数值模拟研究[J]. 大气科学, 1992, 16(3): 313-321.
20 WANG Huijun, ZENG Qingcun. The numerical simulation of the ice age climate[J]. Acta Meteorologica Sinica, 1992, 50(3): 279-289.
王会军, 曾庆存. 冰期气候的数值模拟[J]. 气象学报, 1992, 50(3): 279-289.
21 QIAN Yun, QIAN Yongfu, ZHANG Yaocun. Study on scenarios and mechanism of the regional climate change of East Asia in the Last Ice-age[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(3): 283-293.
钱云, 钱永甫, 张耀存. 末次冰期东亚区域气候变化的情景和机制研究[J]. 大气科学, 1998, 22(3): 282-293.
[1] 魏思华, 田军. 晚中新世低大气 pCO2 背景下暖室气候的成因机制[J]. 地球科学进展, 2022, 37(4): 417-428.
[2] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[3] 况雪源, 韩跃超. 中全新世背景下中国区域气候对植被变化响应的降尺度模拟研究[J]. 地球科学进展, 2021, 36(12): 1301-1312.
[4] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[5] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[6] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[7] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[8] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[9] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[10] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[11] 邓辉,李果营,杨海风,温宏雷,张参. 走滑应变椭圆模型的改进及应用举例[J]. 地球科学进展, 2019, 34(8): 868-878.
[12] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[13] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[14] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[15] 马成龙,陈晓东,江利明,孙和平,徐建桥,董景龙,李德伟. 月基 InSAR观测地球大尺度形变能力的初步研究[J]. 地球科学进展, 2019, 34(2): 164-174.
阅读次数
全文


摘要