地球科学进展 ›› 2022, Vol. 37 ›› Issue (1): 14 -25. doi: 10.11867/j.issn.1001-8166.2021.125

“青促会成立10周年之地球科学领域”专刊 上一篇    下一篇

表土磁学特征揭示的青藏高原及其周边地区的气候边界
昝金波 1 , 2( ), 宁文晓 1 , 2, 杨胜利 3, 方小敏 1 , 2, 康健 1 , 2, 罗元龙 3   
  1. 1.中国科学院青藏高原研究所,青藏高原地球系统与资源环境国家重点实验室,北京 100101
    2.中国科学院大学,北京 100049
    3.兰州大学资源环境学院,西部环境教育部 重点实验室,甘肃 兰州 730000
  • 收稿日期:2021-09-23 修回日期:2021-11-18 出版日期:2022-01-10
  • 基金资助:
    第二次青藏高原综合科学考察研究项目“粉尘气溶胶及其气候环境效应”(2019QZKK0602);中国科学院青促会优秀会员项目(Y202023)

Magnetic Variations in Surface Soils from the Tibetan Plateau and Its Adjacent Regions: Implications for Delineating the Climatic Boundary

Jinbo ZAN 1 , 2( ), Wenxiao NING 1 , 2, Shengli YANG 3, Xiaomin FANG 1 , 2, Jian KANG 1 , 2, Yuanlong LUO 3   

  1. 1.State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Key Laboratory of Western China's Environmental System (Ministry of Education),College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China
  • Received:2021-09-23 Revised:2021-11-18 Online:2022-01-10 Published:2022-01-06
  • About author:ZAN Jinbo (1982-), male, Linyi City, Shandong Province, Professor. Research areas include eolian deposits and environmental changes. E-mail: zanjb@itpcas.ac.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) "Dust aerosols and their climatic and environmental effects"(2019QZKK0602);The 2020 Outstanding Members of Youth Innovation Promotion Association, Chinese Academy of Sciences, China(Y202023)

青藏高原及其周边位于东亚季风、印度季风与西风环流系统的交汇地带,是气候变化的敏感区和影响显著区。刻画青藏高原及其邻区降水的空间分布以及干湿气候区边界位置,不仅对深入认识该地区大气环流分布形势具有重要意义,同时还可以进一步加深对欧亚大陆大气环流动力学过程的理解。通过对青藏高原及其周边现代地表沉积岩石磁学参数空间分布特征的综合集成研究,结合300多个气象站点近70年气温和降水数据的详细对比分析,发现降水量是控制青藏高原及其邻区地表土壤磁学性质变化的主要因素,表土磁学性质可以用于揭示高原及其邻区降水的空间分布。已发表及新获取的700余块表土样品成壤相关的磁学参数呈现出显著的空间梯度变化,揭示出北祁连山—横断山以及帕米尔高原—北天山是青藏高原及其周边地区2条重要的成壤强度分界线,其大致分别对应半湿润—半干旱区(400 mm)以及干旱和半干旱区(200 mm)的干湿气候区降水界线。此外,高原北部及其周边多个末次冰期—间冰期以来的风尘沉积剖面磁学参数的空间对比结果,还进一步揭示第四纪冰期时,随着全球变冷,干旱化加剧导致高原北部气候梯度差异显著减小,全球冰量变化可能是控制高原北部气候格局演化的主要因素。

The Tibetan Plateau (TP) and its adjacent areas are located in the intersection zone of the East Asian and Indian summer monsoons, and the westerly circulation. Characterizing and interpreting the spatial distribution of precipitation and the climatic boundary across the TP are important for understanding the dynamics of atmospheric circulation in this tectonically and climatically sensitive region. Rock magnetic investigations of surface soils have been successfully used to identify the spatial pattern of climatic gradients in the Eurasian continent and North Africa, especially where meteorological stations are sparse. Here we conducted detailed investigations of the magnetic properties of a large set of surface soil samples, combined with the analysis of some 70 years meteorological dataset to characterize the spatial distribution of precipitation in the TP and its adjacent areas. The results demonstrate that pedogenic intensity decreases significantly as moist air flows across the TP towards the interior, which directly demonstrates the effect of the precipitation gradient on pedogenesis. This finding confirms that rock magnetic investigations of surface soils in the TP and its adjacent areas are an effective method for characterizing the precipitation boundary in this vast area. Based on a synthesis of the rock magnetic and meteorological data, we have clearly defined the presence of two distinct boundaries in pedogenic intensity in the northwestern and southeastern TP, i.e.the Pamir Plateau-the Tianshan Mountains and the Qilian Mountains-the Hengduan Mountains, which correspond to the critical precipitation boundary between sub-humid to semi-arid and arid regions in the TP and its adjacent areas. Moreover, a comparison of several last glacial-interglacial loess sequences in the northeastern TP demonstrates that during the warm and humid interglacial periods, a steepened rainfall gradient occurred, which can be attributed to the ice sheet recession and increasing temperature and moisture cycles. These findings will provide foundation and boundary conditions for future paleoclimatic reconstructions and climate simulations in the Eurasian continent.

中图分类号: 

图1 青藏高原及其周边DEM图和地表样品的磁学参数空间分布特征
(a)磁化率( χ);(b)频率磁化率( χ fd);(c)频率磁化率百分比( χ fd%);(d)非磁滞剩磁磁化率( χ ARM)。其中青藏高原西部、雅江流域以及黄土高原西部表土磁学数据为本研究获取,其余地区表土数据引自参考文献[ 11 - 12 14 - 21
Fig. 1 Physical geography major patterns of atmospheric circulation in Asia and spatial variation of the magnetic parameters of surface soil samples from the Tibetan Plateau and the adjacent regions
(a) χ; (b) χ fd; (c) χ fd%; (d) χ ARM . The surface soil samples from the western Tibetan Plateau, the Yarlung Zangbo River Valley and the western Chinese Loess Plateau are collected in this study, and the magnetic data for surface samples in other regions are from references [11-12, 14-21]
图2 青藏高原及其周边代表性区域地表样品高温(a)和低温(b)磁化率随温度变化曲线图
青藏高原西部以及雅江流域表土样品数据为本研究获取,其余地区数据引自参考文献[ 17 - 19
Fig. 2 Results of high-temperature a and low-temperature b magnetic measurements of representative surface soil samples from the Tibetan Plateau and the adjacent regions
The surface soil samples from the western Tibetan Plateau and the Yarlung Zangbo River Valley are reported in this study, and the other samples are studied previously in references [17-19]
图3 青藏高原及其周边代表性区域地表样品一阶反转曲线(FORC)图对比
青藏高原西部以及雅江流域表土样品数据为本研究获取,其余地区数据引自参考文献[ 18 - 19
Fig. 3 FORC diagrams of representative surface soil samples from the Tibetan Plateau and the adjacent regions
The surface soil samples from the western Tibetan Plateau and the Yarlung Zangbo River Valley are reported in this study, and the other samples are from references [18-19]
图4 气象站点观测数据(19512017年)揭示的年降水量(MAP)和年均温(MAT)在青藏高原及其周边地区的空间分布特征及其与表土磁学参数结果的对比(据参考文献[ 19 ]修改)
虚线为半湿润区—半干旱区(400 mm)以及干旱—半干旱区(200 mm)的降水界线,气温和降水的空间插值数据时间跨度为2000—2018年 31
Fig. 4 Spatial variations in Mean Annual Precipitation MAP and Mean Annual Temperature MAT across the TP and the adjacent regions and their comparison with the magnetic parameter of χfd of surface soils from 1951 to 2017 modified after reference 19 ])
The dashed lines in the northwestern and southeastern TP represent the precipitation boundaries of 200 and 400 mm, respectively. The interpolated temperature and precipitation dataset span from 2000 to 2018 31
图5 横断山脉地区年降水量、年均温以及表土频率磁化率随海拔的垂直变化 19
Fig. 5 Altitudinal variations of Mean Annual Precipitation MAP and Mean Annual Temperature MAT in the Hengduan Mountain area and their comparison with the magnetic parameter of χfd of surface soils 19
图6 青藏高原北缘及其邻区季风区(a)和西风区(b)典型末次冰期—间冰期黄土剖面磁学参数对比揭示的降水空间梯度变化 17 (数据引自参考文献[ 27 34 - 39 ])
季风区黄土剖面近似西—东向排列
Fig. 6 Comparison of χ and χfd records of representative loess-paleosol sequences during the last glacial-interglacial cycle in the East Asian summer monsoon-controlled a and westerlies-influenced areas b 17 the data are from references 27 34-39])
Note that the loess profiles in the monsoon regions are approximately west-east aligned
1 YE Duzheng, GAO Youxi. Qinghai-Xizang Plateau meteorology[M]. Beijing: Science Press, 1979.
叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979.
2 AN Z, COLMAN S M, ZHOU W, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2: 619.
3 YAO T, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51: 525-548.
4 CHEN F, CHEN J, HUANG W, et al. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
5 MAHER B A, ALEKSEEV A, ALEKSEEVA T. Variation of soil magnetism across the Russia Steppe: its significance for use of soil magnetism as a paleorainfall proxy[J]. Quaternary Science Reviews, 2002, 21(14/15): 1 571-1 576.
6 MAHER B A, ALEKSEEV A, ALEKSEEVA T. Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 201(3/4): 321-341.
7 GEISS C E, EGLI R, ZANNER C W. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils[J]. Journal of Geophysical Research, 2008, 113: B11102.
8 LYONS R, OLDFIELD F, WILLIAMS E. Mineral magnetic properties of surface soils and sands across four North African transects and links to climatic gradients[J]. Geochemistry, Geophysics, Geosystems, 2010, 11: Q08023.
9 Houyuan LÜ, HAN Jiamao, WU Naiqin, et al. Analysis of the susceptibility and its paleoclimate significance of modern soil in China[J]. Science in China Series B:Chemistry, 1994, 24(12): 1 290-1 297.
吕厚远, 韩家懋, 吴乃琴, 等. 中国现代土壤磁化率分析及其古气候意义[J]. 中国科学B辑:化学, 1994, 24(12): 1 290-1 297.
10 SONG Yang, HAO Qingzhen, GE Junyi, et al. Quantitative relationships between modern soil magnetic susceptibility and climatic variables of the Chinese Loess Plateau[J]. Quaternary Sciences, 2012, 32(4): 679-689.
宋扬, 郝青振, 葛俊逸, 等. 黄土高原表土磁化率与气候要素的定量关系研究[J]. 第四纪研究, 2012, 32(4): 679-689.
11 LIU Z, LIU Q, TORRENT J, et al. Testing the magnetic proxy χFD/ HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China[J]. Global and Planetary Change, 2013, 110: 368-378.
12 NIE J, STEVENS T, SONG Y, et al. Pacific freshening drives Pliocene cooling and Asian monsoon intensification[J]. Scientific Reports, 2014, 4: 5474.
13 GAO X, HAO Q, WANG L, et al. The different climatic response of pedogenic hematite and ferrimagnetic minerals: evidence from particle-sized modern soils over the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2018, 179: 69-86.
14 ZAN J, FANG X, NIE J, et al. Magnetic properties of surface soils across the southern Tarim Basin and their relationship with climate and source materials[J]. Chinese Science Bulletin, 2011, 56: 153-160.
15 ZAN J, FANG X, APPEL E, et al. New insights into the magnetic variations of aeolian sands in the Tarim Basin and its paleoclimatic implications[J]. Physics of the Earth and Planetary Interiors, 2014, 229: 82-87.
16 ZAN J, FANG X, YAN M, et al. Magnetic variations in surface soils in the NE Tibetan Plateau indicating the climatic boundary between the westerly and East Asian summer monsoon regimes in NW China[J]. Global and Planetary Change, 2015, 130: 1-6.
17 ZAN J, FANG X, KANG J, et al. Spatial and altitudinal variations in the magnetic properties of eolian deposits in the northern Tibetan Plateau and its adjacent regions: implications for delineating the climatic boundary[J]. Earth-Science Reviews, 2020, 208: 103271.
18 KANG J, ZAN J, BAI Y, et al. Critical altitudinal shift from detrital to pedogenic origin of the magnetic properties of surface soils in the western Pamir Plateau, Tajikistan[J]. Geochemistry, Geophysics, Geosystems, 2020, 21: e2019GC008752.
19 NING W, ZAN J, YANG S, et al. A combined rock magnetic and meteorological investigation of the precipitation boundary across the Tibetan Plateau[J]. Geophysical Research Letters, 2021, 48: e2021GL094808.
20 JIA J, XIA D, WANG B, et al. The investigation of magnetic susceptibility variation mechanism of Tien Mountains modern loess: pedogenic or wind intensity model?[J]. Quaternary International, 2013, 296: 141-148.
21 ZENG M, SONG Y, LI Y, et al. The relationship between environmental factors and magnetic susceptibility in the Ili Loess, Tianshan Mountains, Central Asia[J]. Geological Journal, 2018, 54(4): 1-13.
22 Chinese Academy of Sciences Qinghai-Xizang Plateau Comprehensive Scientific Expedition Team. The series of the scientific expedition to the Qinghai-Xizang Plateau: soils of Xizang (Tibet) [M]. Beijing: Science Press, 1985.
中国科学院青藏高原综合科学考察队. 西藏土壤[M]. 北京: 科学出版社, 1985.
23 Chinese Academy of Sciences Qinghai-Xizang Plateau Comprehensive Scientific Expedition Team. The series of the scientific expedition to the Qinghai-Xizang Plateau: vegetations of Xizang (Tibet) [M]. Beijing: Science Press, 1988.
中国科学院青藏高原综合科学考察队. 西藏植被[M]. 北京: 科学出版社, 1988.
24 THOMPSON R, OLDFIELD F. Environmental magnetism[M]. Winchester MA: Allen and Unwin, 1986.
25 EVANS M, HELLER F. Environmental magnetism: principles and applications of enviromagnetics[M]. Amsterdam: Academic Press, 2003.
26 DENG C, VIDIC N, VEROSUB K, et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long‐term climatic variability[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B03103.
27 ZAN J, FANG X, LI X, et al. Long-term variations in the lithogenic susceptibility of Chinese eolian deposits since the late Pliocene[J]. Geophysical Research Letters, 2019, 46: 726-735.
28 ZHOU L, OLDFIELD F, WINTLE A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6 286): 737-739.
29 LIU Q, DENG C, TORRENT J, et al. Review of recent development in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3/4): 368-385.
30 BLUNDELL A, DEARING J, BOYLE J, et al. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales[J]. Earth-Science Reviews, 2009, 95(3/4):158-188.
31 WANG Junbang, WANG Juwu, YE Hui, et al. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000-2012) [DB/OL]. China Scientific Data, 2020. [2021-10-12]. DOI: 10.11922/sciencedb.319.
王军邦,王居午,叶辉,等. 2000—2012年全国气温和降水1 km网格空间插值数据集[DB/OL]. 国家生态科学数据中心, 2020. [2021-10-12]. DOI: 10.11922/sciencedb.319.
32 LI Yanying, ZHANG Qiang, XU Xia, et al. Relationship between precipitation and terrain over the Qilian Mountains and their ambient areas[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 52-61.
李岩瑛, 张强, 许霞, 等. 祁连山及周边地区降水与地形的关系[J]. 冰川冻土, 2010, 32(1): 52-61.
33 WANG Jinye, CHANG Xuexiang, GE Shuanglan, et al. Vertical distribution of the vegetation and water and heat conditions of Qilian Mountain (northern slope)[J]. Journal of Northwest Forestry University, 2001, 16(): 1-3.
王金叶, 常学向, 葛双兰, 等. 祁连山(北坡)水热状况与植被垂直分布[J]. 西北林学院学报, 2001, 16(): 1-3.
34 BLOEMENDAL J, LIU X. Rock magnetism and geochemistry of two Plio-Pleistocene Chinese loess-palaeosol sequences-Implications for quantitative palaeoprecipitation reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(1/2): 149-166.
35 SONG Y, SHI Z, FANG X, et al. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau[J]. Science China: Earth Sciences, 2010, 53: 419-431.
36 JIA J, XIA D, WANG Y, et al. East Asian monsoon evolution during the Eemian, as recorded in the western Chinese Loess Plateau[J]. Quaternary International, 2016, 399: 156-164.
37 JIA J, LU H, WANG Y, et al. Variations in the iron mineralogy of a loess section in Tajikistan during the mid-Pleistocene and late Pleistocene: implications for the climatic evolution in Central Asia[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1 244-1 258.
38 ZAN J, FANG X, YANG S, et al. A rock magnetic study of loess from the west Kunlun Mountains[J]. Journal of Geophysical Research: Solid Earth, 2010, 115: B10101.
39 ZAN J, FANG X, NIE J, et al. Rock magnetism in loess from the middle Tian Shan: implications for paleoenvironmental interpretations of magnetic properties of loess deposits in Central Asia[J]. Geochemistry, Geophysics, Geosystems, 2012, 13: Q10Z50.
[1] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[2] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[3] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[4] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[5] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[6] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[7] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[8] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[9] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[10] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[11] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[12] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[13] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[14] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[15] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
阅读次数
全文


摘要