1 |
DAI A G, ZHAO T B. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes[J]. Climatic Change, 2017, 144(3): 519-533.
|
2 |
ANDERSON M C, HAIN C, WARDLOW B, et al. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States[J]. Journal of Climate, 2011, 24(8): 2 025-2 044.
|
3 |
HUANG Ronghui, DU Zhencai. Evolution characteristics and trend of droughts and floods in China under the background of global warming[J]. Chinese Journal of Nature, 2010, 32(4): 187-195, 184.
|
|
黄荣辉, 杜振彩. 全球变暖背景下中国旱涝气候灾害的演变特征及趋势[J]. 自然杂志, 2010, 32(4): 187-195, 184.
|
4 |
SU B D, HUANG J L, FISCHER T, et al. Drought losses in China might double between the 1.5 ℃ and 2.0 ℃ warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42): 10 600-10 605.
|
5 |
DENG Wei, ZHAO Wei, LIU Bintao, et al. Water security and the countermeasures in south Asia based on the “Belt and Road” initiative[J]. Advances in Earth Science, 2018, 33(7): 687-701.
|
|
邓伟, 赵伟, 刘斌涛, 等. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.
|
6 |
YAO T D, XIE Z C, WU X L, et al. Climatic change since little ice age recorded by the Dunde ice cap[J]. Science in China (Series B), 1991, 34(6): 760-767.
|
7 |
FENG Song, TANG Maocang, WANG Dongmei. The new evidence of Tibetan Plateau as the climate change initiation area for China[J]. Chinese Science Bulletin,1998,43(6): 633-636.
|
|
冯松, 汤懋仓, 王冬梅.青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998,43(6): 633-636.
|
8 |
WU Guoxiong, LIU Yimin, LIU Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(1): 47-56, 167.
|
|
吴国雄, 刘屹岷, 刘新, 等. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 2005, 29(1): 47-56, 167.
|
9 |
WU Guoxiong, DUAN Anmin, ZHANG Xueqin, et al. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 167-171.
|
|
吴国雄, 段安民, 张雪芹, 等. 青藏高原极端天气气候变化及其环境效应[J]. 自然杂志, 2013, 35(3): 167-171.
|
10 |
WANG Tongmei, WU Guoxiong, WAN Rijin. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area[J]. Plateau Meteorology, 2008, 27(1): 1-9.
|
|
王同美, 吴国雄, 万日金. 青藏高原的热力和动力作用对亚洲季风区环流的影响[J]. 高原气象, 2008, 27(1): 1-9.
|
11 |
LIU X D, CHENG Z G, YAN L B, et al. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J]. Global and Planetary Change, 2009, 68(3): 164-174.
|
12 |
YOU Q L, MIN J Z, KANG S C. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J]. International Journal of Climatology, 2016, 36(6): 2 660-2 670.
|
13 |
WANG Xin. China meteorological disaster classics: Qinghai volume [M]. Beijing: China Meteorological Press, 2007:22-42.
|
|
王莘.中国气象灾害大典:青海卷[M]. 北京: 气象出版社, 2007: 22-42.
|
14 |
LIU Guangxuan. China meteorological disaster classics: Tibet volume[M]. Beijing: China Meteorological Press, 2008:157-229.
|
|
刘光轩.中国气象灾害大典:西藏卷[M]. 北京:气象出版社, 2008:157-229.
|
15 |
CUI Peng, SU Fenghuan, ZOU Qiang, et al. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3 067-3 077.
|
|
崔鹏, 苏凤环, 邹强, 等. 青藏高原山地灾害和气象灾害风险评估与减灾对策[J]. 科学通报, 2015, 60(32): 3 067-3 077.
|
16 |
XIONG Junnan, LIU Zhiqi, FAN Chunkun, et al. Temporal and spatial distribution characteristics and changing trend of meteorologic disaster in Tibet Autonomous Region from 1983 through 2013[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1 221-1 231.
|
|
熊俊楠, 刘志奇, 范春捆, 等. 1983—2013年西藏自治区气象灾害时空分布特征与变化趋势[J]. 冰川冻土, 2017, 39(6): 1 221-1 231.
|
17 |
LI H, LIU L, SHAN B Y, XU Z C, et al. Spatiotemporal variation of drought and associated multi-scale response to climate change over the Yarlung Zangbo River Basin of Qinghai-Tibet Plateau, China [J]. Remote Sensing, 2019,11(13):1 596.
|
18 |
WILHITE D A, GLANTZ M H. Understanding: the drought phenomenon: the role of definitions[J]. Water International, 1985, 10(3): 111-120.
|
19 |
WANG Jinsong, LI Yaohui, WANG Runyuan, et al. Preliminary analysis on the demand and review of progress in the field of meteorological drought research[J]. Journal of Arid Meteorology, 2012, 30(4): 497-508.
|
|
王劲松, 李耀辉, 王润元, 等. 我国气象干旱研究进展评述[J]. 干旱气象, 2012, 30(4): 497-508.
|
20 |
ZHANG Qiang, HAN Lanying, ZHANG Liyang, et al. Analysis on the character and management strategy of drought disaster and risk under the climatic warming[J]. Advances in Earth Science, 2014, 29(1): 80-91.
|
|
张强, 韩兰英, 张立阳, 等. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
|
21 |
XIE H, YE J S, LIU X M, et al. Warming and drying trends on the Tibetan Plateau (1971-2005)[J]. Theoretical and Applied Climatology, 2010, 101(3/4): 241-253.
|
22 |
WU J J, HE B, LÜ A F, et al. Quantitative assessment and spatial characteristics analysis of agricultural drought vulnerability in China[J]. Natural Hazards, 2011, 56(3): 785-801.
|
23 |
GAO Maofang, QIU Jianjun. Characteristics and distribution law of major natural disasters in Tibetan Plateau[J]. Journal of Arid Land Resources and Environment, 2011, 25(8):101-106.
|
|
高懋芳, 邱建军.青藏高原主要自然灾害特点及分布规律研究[J]. 干旱区资源与环境, 2011,25(8):101-106.
|
24 |
WEI Wei. The interannual shift of the south Asian high and its relation with the Asian summer monsoon[D]. Beijing: Chinese Academy of Meteorological Sciences, 2015.
|
|
魏维.南亚高压位置的年际变异特征及其与亚洲夏季风的联系[D].北京:中国气象科学研究院,2015.
|
25 |
SHAO D G, CHEN S, TAN X Z, et al. Drought characteristics over China during 1980-2015[J]. International Journal of Climatology, 2018, 38(9): 3 532-3 545.
|
26 |
SUN Yi, GONG Yuanfa. Characteristics of abnormal changes of precipitation over the Tibetan Plateau and atmospheric circulation under the influence of Indian summer monsoon [J]. Journal of Chengdu University of Information Technology, 2019, 34(4):411-419.
|
|
孙亦,巩远发. 印度夏季风影响下的青藏高原降水及环流异常变化特征[J]. 成都信息工程大学学报,2019, 34(4): 411-419.
|
27 |
LI X, ZHANG L, LUO T X. Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau[J]. Scientific Reports, 2020, 10(1): 18797.
|
28 |
ZOU L W, ZHOU T J. Near future (2016-40) summer precipitation changes over China as projected by a Regional Climate Model (RCM) under the RCP8.5 emissions scenario: comparison between RCM downscaling and the driving GCM[J]. Advances in Atmospheric Sciences, 2013, 30(3): 806-818.
|
29 |
FAN Keke, ZHANG Qiang, SUN Peng, et al. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau[J]. Acta Geographica Sinica, 2019, 74(3): 520-533.
|
|
范科科, 张强, 孙鹏, 等. 青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报, 2019, 74(3): 520-533.
|
30 |
WU Fangying, YOU Qinglong, XIE Wenxin, et al. Temperature change on the Tibetan Plateau under the global warming of 1.5 ℃ and 2 ℃[J]. Climate Change Research, 2019, 15(2): 130-139.
|
|
吴芳营, 游庆龙, 谢文欣, 等.全球变暖1.5 ℃和2 ℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2): 130-139.
|
31 |
ZHANG Dongfeng, GAO Xuejie. Climate change of the 21st century over China from the ensemble of RegCM4 simulations [J]. Chinese Science Bulletin, 2020, 65(23): 2 516-2 526.
|
|
张冬峰, 高学杰.中国21世纪气候变化的RegCM4多模拟集合预估[J].科学通报, 2020, 65(23): 2 516-2 526.
|
32 |
ZHANG Jiayi, Yurui LUN, LIU Liu, et al. CMIP6 evaluation and projection of climate change in Tibetan Plateau[J]. Journal of Beijing Normal University (Natural Science), 2022, 58(1): 77-89.
|
|
张佳怡, 伦玉蕊, 刘浏, 等. CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 77-89.
|
33 |
ZHANG Gengxi, SU Xiaoling, LIU Wenfei. Future drought trend in China considering CO2 concentration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 84-91.
|
|
张更喜, 粟晓玲, 刘文斐. 考虑CO2浓度影响的中国未来干旱趋势变化[J]. 农业工程学报, 2021, 37(1): 84-91.
|
34 |
LIU X F, WANG S X, ZHOU Y, et al. Spatial analysis of meteorological drought return periods in China using Copulas[J]. Natural Hazards, 2016, 80(1): 367-388.
|
35 |
AYANTOBO O O, LI Y, SONG S B. Copula-based trivariate drought frequency analysis approach in seven climatic sub-regions of mainland China over 1961-2013[J]. Theoretical and Applied Climatology, 2019, 137(3/4): 2 217-2 237.
|
36 |
ZUO Y, WANG Q F, ZHENG H, et al. Seasonal variations of the water budget in typical grassland ecosystems in China[J]. Acta Ecologica Sinica, 2016, 36(4): 301-310.
|
37 |
DING J Z, YANG T, ZHAO Y T, et al. Increasingly important role of atmospheric aridity on Tibetan alpine grasslands[J]. Geophysical Research Letters, 2018, 45(6): 2 852-2 859.
|
38 |
LI Q. Solar forcing of desert vegetation and drought frequency during the last 2700 years in the interior Qaidam Basin, northeastern Tibetan Plateau[J]. Science China Earth Sciences, 2020, 63(4): 561-574.
|
39 |
ZHANG Jiawu, JIN Ming, CHEN Fahu, et al. Precipitation changes in the northeast of Qinghai Plateau recorded by sedimentary cores of Qinghai Lake in the past 800 years[J]. Chinese Science Bulletin, 2004, 49(1): 10-14.
|
|
张家武, 金明, 陈发虎, 等. 青海湖沉积岩芯记录的青藏高原东北部过去800年以来的降水变化[J]. 科学通报, 2004, 49(1): 10-14.
|
40 |
SHEPPARD P R, TARASOV P E, GRAUMLICH L J, et al. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China[J]. Climate Dynamics, 2004, 23(7/8): 869-881.
|
41 |
HUANG Xiaomei, XIAO Dingmu, QIN Ningsheng. Drought reconstruction based on tree-ring width in headwaters of the Lancang River[J]. Arid Zone Research, 2019,36(2): 280-289.
|
|
黄小梅, 肖丁木, 秦宁生.基于树轮宽度的澜沧江源区干旱重建[J]. 干旱区研究, 2019, 36(2): 280-289.
|
42 |
CHENG Xuehan, Lixin LÜ. Extreme drought events since 1560 A.D. recorded by tree rings on the southeast Qinghai-Tibetan plateau[J]. Quaternary Sciences, 2015, 35(5):1 093-1 101.
|
|
程雪寒, 吕利新. 藏东南树木年轮记载的公元1560年以来的极端干旱事件[J]. 第四纪研究,2015, 35(5):1 093-1 101.
|
43 |
GOU Xiaohua, YANG Tao, GAO Linlin, et al. A 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2013, 58(11):978-985.
|
|
勾晓华, 杨涛, 高琳琳, 等.树轮记录的青藏高原东南部过去457年降水变化历史[J]. 科学通报, 2013, 58(11): 978-985.
|
44 |
FAN Z X, BRÄUNING A, CAO K F. Tree-ring based drought reconstruction in the central Hengduan Mountains region (China) since A.D. 1655[J]. International Journal of Climatology, 2008, 28(14): 1 879-1 887.
|
45 |
COOK E R, ANCHUKAITIS K J, BUCKLEY B M, et al. Asian monsoon failure and megadrought during the last millennium[J]. Science, 2010, 328(5 977): 486-489.
|
46 |
FANG K Y, GOU X H, CHEN F H, et al. Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability[J]. Climate Dynamics, 2010, 35(4): 577-585.
|
47 |
DUAN Keqin, YAO Tandong, WANG Ninglian, et al. The difference in precipitation variability between the north and south Tibetan Plateaus[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 726-732.
|
|
段克勤, 姚檀栋, 王宁练, 等. 青藏高原南北降水变化差异研究[J]. 冰川冻土, 2008, 30(5): 726-732.
|
48 |
WANG Jingai, SUN Heng, XU Wei, et al. Spatio temporal change of drought disaster in China in recent fifty years[J]. Journal of Natural Disasters, 2002, 11(2): 1-6.
|
|
王静爱, 孙恒, 徐伟, 等. 近50年中国旱灾的时空变化[J]. 自然灾害学报, 2002, 11(2): 1-6.
|
49 |
LIANG L, ZHAO S H, QIN Z H, et al. Drought change trend using MODIS TVDI and its relationship with climate factors in China from 2001 to 2010[J]. Journal of Integrative Agriculture, 2014, 13(7): 1 501-1 508.
|
50 |
HE B, LÜ A, WU J J, et al. Drought hazard assessment and spatial characteristics analysis in China[J]. Journal of Geographical Sciences, 2011, 21(2): 235-249.
|
51 |
REN Yulong, SHI Yanjun, WANG Jinsong, et al. Spatial and temporal variation characteristics of drought in northwest China during 1961-2009 with standardized precipitation index[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 938-948.
|
|
任余龙, 石彦军, 王劲松, 等. 1961—2009年西北地区基于SPI指数的干旱时空变化特征[J]. 冰川冻土, 2013, 35(4): 938-948.
|
52 |
LIANG E Y, SHAO X M, XU Y. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau[J]. Theoretical and Applied Climatology, 2009, 98(1/2): 9-18.
|
53 |
ZHANG C, TANG Q H, CHEN D L, et al. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J]. Journal of Hydrometeorology, 2019, 20(2): 217-229.
|
54 |
XU Xingkui, CHEN Hong, LEVY Jason K. Temporal and spatial changes of vegetation cover characteristics in the Tibetan Plateau under the background of climate warming and its causes[J]. Chinese Science Bulletin, 2008, 53(4): 456-462.
|
|
徐兴奎, 陈红, LEVY Jason K.气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析[J]. 科学通报, 2008, 53(4): 456-462.
|
55 |
ZHAO Zhilong, ZHANG Yili, LIU Fenggui, et al. Drought disaster risk analysis of Tibetan Plateau[J]. Journal of Mountain Science, 2013,31(6):672-684.
|
|
赵志龙, 张镱锂, 刘峰贵, 等.青藏高原农牧区干旱灾害风险分析[J]. 山地学报, 2013, 31(6):672-684.
|
56 |
HE B, WU J J, LÜ A, et al. Quantitative assessment and spatial characteristic analysis of agricultural drought risk in China[J]. Natural Hazards, 2013, 66(2): 155-166.
|
57 |
ZHOU Wei, ZHONG Xianghao, ZENG Yunying. Ecological risk assessment and management in farming-pastoral area in Tibet Plateau—case study in Zhanang County Lhoka Prefecture[J]. Agricultural Research in the Arid Areas, 2006, 24(3): 164-169, 193.
|
|
周伟, 钟祥浩, 曾云英. 西藏高原农牧区生态风险评估与管理策略: 以山南地区扎囊县为例[J]. 干旱地区农业研究, 2006, 24(3): 164-169, 193.
|
58 |
CHEN Q, LIU F G, CHEN R J, et al. Trends and risk evolution of drought disasters in Tibet region, China[J]. Journal of Geographical Sciences, 2019, 29(11): 1 859-1 875.
|
59 |
DU Jun, XIANG Yuyi. Research on climatic character and defensive measures against summer drought in Tibet[J]. Agricultural Reseach in the Arid Areas, 2000, 18(1): 101-107.
|
|
杜军, 向毓意. 西藏地区夏季旱灾的防御对策研究[J]. 干旱地区农业研究, 2000, 18(1): 101-107.
|
60 |
LI S S, YAO Z J, LIU Z F, et al. The spatio-temporal characteristics of drought across Tibet, China: derived from meteorological and agricultural drought indexes[J]. Theoretical and Applied Climatology, 2019, 137(3/4): 2 409-2 424.
|
61 |
WANG Hui, ZHANG Lu, SHI Xingdong, et al. Some new changes of the regional climate on the Tibetan Plateau since 2000[J]. Advances in Earth Science, 2021, 36(8): 785-796.
|
|
王慧, 张璐, 石兴东, 等. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
|
62 |
TANG Min, ZHANG Bo, ZHANG Yaozong, et al. Assessment of spring and summer meteorological droughts based on SPEI and SPI in eastern agricultural region of Qinghai Province[J]. Journal of Natural Resources, 2017,32(6): 1 029-1 042.
|
|
唐敏, 张勃, 张耀宗, 等. 基于SPEI和SPI指数的青海省东部农业区春夏气象干旱特征的评估[J]. 自然资源学报,2017, 32(6):1 029-1 042.
|
63 |
YAO Yao, ZHANG Xin, MA Quan, et al. Application research on different drought indices in crop growing period at east agricultural region of Qinghai Province[J]. Journal of Natural Disasters, 2014, 23(4):177-184.
|
|
姚瑶, 张鑫, 马全, 等. 青海省东部农业区作物生长期不同气象干旱指标应用研究[J]. 自然灾害学报, 2014, 23(4):177-184.
|
64 |
Puzeng DUO. Analysis adaptability of three drought index of agricultural region in eastern Qinghai Province[D]. Yangling: Northwest A & F University, 2017.
|
|
多普增. 三种气象干旱指数在青海省东部农业区的适用性分析[D]. 杨凌: 西北农林科技大学, 2017.
|
65 |
SHI Jinmei, TANG Hongyu, XU Weijun, et al. Dryness/wetness changes in Qinghai Province during 1959-2003[J]. Advances in Climate Change Research, 2007, 3(6): 356-361.
|
|
史津梅, 唐红玉, 许维俊, 等. 1959—2003年青海省干湿变化分析[J]. 气候变化研究进展, 2007, 3(6): 356-361.
|
66 |
TAO Ran, ZHANG Ke. PDSI-based analysis of characteristics and spatiotemporal changes of meteorological drought in China from 1982 to 2015[J]. Water Resources Protection, 2020, 36(5): 50-56.
|
|
陶然, 张珂. 基于PDSI的1982—2015年我国气象干旱特征及时空变化分析[J]. 水资源保护, 2020, 36(5): 50-56.
|
67 |
ZHAO Xinlai, LI Wenlong, XULIN Guo, et al. The responses of Pa, SPI, and SPEI to dry climate in alpine meadows of eastern Qinghai-Tibet Plateau[J]. Pratacultural Science, 2017, 34(2): 273-282.
|
|
赵新来, 李文龙, XULIN Guo, 等. Pa、SPI和SPEI干旱指数对青藏高原东部高寒草地干旱的响应比较[J]. 草业科学, 2017, 34(2): 273-282.
|
68 |
LI Pengfei, SUN Xiaoming, ZHAO Xinyi. Analysis of precipitation and potential evapotranspiration in arid and semi arid area of China in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2012, 26(7): 57-63.
|
|
李鹏飞, 孙小明, 赵昕奕. 近50年中国干旱半干旱地区降水量与潜在蒸散量分析[J]. 干旱区资源与环境, 2012, 26(7): 57-63.
|
69 |
BURKE E J, BROWN S J. Evaluating uncertainties in the projection of future drought[J]. Journal of Hydrometeorology, 2008, 9(2): 292-299.
|
70 |
DAI A G. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D12): D12115.
|
71 |
DAI A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013,3:52-58.
|
72 |
YANG Qing, LI Mingxing, ZHENG Ziyan, et al. Regional applicability of seven meteorological drought indices in China[J]. Science China:Earth Sciences, 2017,47(3):337-353.
|
|
杨庆, 李明星, 郑子彦, 等. 7种气象干旱指数的中国区域适应性[J]. 中国科学:地球科学,2017, 47(3): 337-353.
|
73 |
GAO Yanhong, XU Jianwei, ZHANG Meng, et al. Advances in the study of the 400 mm isohyet migrations and wetness and dryness changes on the Chinese mainland[J]. Advances in Earth Science, 2020, 35(11): 1 101-1 112.
|
|
高艳红, 许建伟, 张萌, 等. 中国400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1 101-1 112.
|
74 |
WEI Jie, MA Zhuguo. Comparison of palmer drought severity index, percentage of precipitation anomaly and surface humid index[J]. Acta Geographica Sinica, 2003, 58(): 117-124.
|
|
卫捷, 马柱国. Palmer干旱指数、地表湿润指数与降水距平的比较[J]. 地理学报, 2003, 58(): 117-124.
|
75 |
TIAN Guoliang. Methods for monitoring soil moisture using remote sensing technique[J]. Remote Sensing of Environment China, 1991(2): 89-98, 161.
|
|
田国良. 土壤水分的遥感监测方法[J]. 环境遥感, 1991(2): 89-98, 161.
|
76 |
CHEN Y Y, YANG K, QIN J, et al. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4 466-4 475.
|
77 |
WU Shengli, SHI Jiancheng. The application of TRMM/PR to the study of soil moisture change in Tibetan plateau[J]. Journal of Lanzhou University (Natural Sciences), 2007, 43(2): 11-14.
|
|
武胜利, 施建成. TRMM/PR在青藏高原土壤水分变化研究中的应用[J]. 兰州大学学报(自然科学版), 2007, 43(2): 11-14.
|
78 |
XIE Kaixin, ZHANG Tingting, SHAO Yun, et al. Study on soil moisture inversion of plateau pasture using radarsat-2 imagery[J]. Remote Sensing Technology and Application, 2016, 31(1): 134-142.
|
|
谢凯鑫, 张婷婷, 邵芸, 等. 基于Radarsat-2全极化数据的高原牧草覆盖地表土壤水分反演[J]. 遥感技术与应用,2016, 31(1): 134-142.
|
79 |
WAN Hong, GAO Shuo, GUO Peng. Applicability evaluation of FY-3B remote sensing soil moisture products in the Tibetan Plateau[J]. Journal of Arid Land Resources and Environment, 2018, 32(4): 132-137.
|
|
万红, 高硕, 郭鹏. 青藏高原地区FY-3B微波遥感土壤水分产品适用性研究[J]. 干旱区资源与环境, 2018, 32(4): 132-137.
|
80 |
YANG Ting, CHEN Xiuwan, WAN Wei, et al. Soil moisture in the Tibetan plateau using optical and passive microwave remote sensing data[J]. Chinese Journal of Geophysics, 2017,60(7):2 556-2 567.
|
|
杨婷, 陈秀万, 万玮, 等. 基于光学与被动微波遥感的青藏高原地区土壤水分反演[J]. 地球物理学报,2017, 60(7):2 556-2 567.
|
81 |
ZENG Jiangyuan. Study on soil moisture retrieval by passive microwave in Qinghai-Tibet Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2015.
|
|
曾江源. 青藏高原地区被动微波土壤水分反演研究[D].北京: 中国科学院大学,2015.
|
82 |
YANG Xiuhai, ZHUOGA, LUOBU. Drought monitoring in the Tibetan Plateau based on MODIS dataset[J]. Journal of Desert Research, 2014, 34(2): 527-534.
|
|
杨秀海, 卓嘎, 罗布. 基于MODIS数据的青藏高原旱情监测研究[J]. 中国沙漠, 2014, 34(2): 527-534.
|
83 |
ZHAXIYANGZONG, YANG Xiuhai, BIANBACIREN, et al. TVDI-based remote sensing monitoring of droughts over Tibet Plateau[J]. Meteorological Science and Technology, 2010, 38(4): 495-499.
|
|
扎西央宗, 杨秀海, 边巴次仁, 等. 基于TVDI的西藏地区旱情遥感监测[J]. 气象科技, 2010, 38(4): 495-499.
|
84 |
WANG Jun. Drought monitoring in Qinghai Province based on MODIS products[D]. Changsha: Central South University, 2014.
|
|
王君.基于MODIS产品的青海省干旱监测[D].长沙:中南大学, 2014.
|
85 |
WANG Fengjie, FENG Wenlan, ZHAXIYANGZONG, et al. The comparison of FY-3A/VIRR and TERRA/MODIS data for drought monitoring[J]. Journal of Natural Resources, 2017, 32(7): 1 229-1 239.
|
|
王凤杰, 冯文兰, 扎西央宗, 等. 基于FY-3A/VIRR和TERRA/MODIS数据藏北干旱监测对比[J]. 自然资源学报, 2017, 32(7): 1 229-1 239.
|
86 |
ZENG Lin, ZHA Xiyangzong, FENG Wenlan, et al. Study on drought monitoring in northwestern Tibet by remote sensing based on FY-3A/VIRR data[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 334-341.
|
|
曾林, 扎西央宗, 冯文兰, 等. 基于FY-3A/VIRR数据的藏西北干旱遥感监测研究[J]. 冰川冻土, 2019, 41(2): 334-341.
|
87 |
DONG Yan. Drought monitoring in the central basin of “one river and two rivers” in Tibet based on remote sensing data[D]. Nanjing: Nanjing University of Information Science and Technology, 2009.
|
|
董妍. 基于遥感资料的西藏“一江两河”中部流域干旱监测研究[D]. 南京:南京信息工程大学, 2009.
|
88 |
LI Hongmei, MA Yushou. EOS/MODIS-based drought monitoring models for pasture in spring in Qinghai Province[J]. Pratacultural Science, 2008, 25(11): 20-23.
|
|
李红梅, 马玉寿. 基于EOS/MODIS的青海草原春季干旱监测模型[J]. 草业科学, 2008, 25(11): 20-23.
|
89 |
GAO Wei, AN Ru, WANG Zhe. Drought index and its application based on microwave remote sensing technology: a case study in the three-river headwaters region[J]. Arid Zone Research, 2017, 34(3): 541-550.
|
|
高炜, 安如, 王喆. 基于微波遥感技术的干旱监测指数及其应用研究: 以三江源区为例[J]. 干旱区研究, 2017, 34(3): 541-550.
|
90 |
MA Zhuanzhuan, ZHANG Mingjun, WANG Shengjie, et al. Characteristics and differences of temperature rise between the Qinghai-Tibetan Plateau region and northwest arid region of China during 1960-2015[J]. Plateau Meteorology, 2019, 38(1): 42-54.
|
|
马转转, 张明军, 王圣杰, 等. 1960—2015年青藏高寒区与西北干旱区升温特征及差异[J]. 高原气象, 2019, 38(1): 42-54.
|
91 |
YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change, 2014, 112: 79-91.
|
92 |
LI Lin, LI Hongmei, SHEN Hongyan, et al. The truth and inter-annual oscillation causes for climate change in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1 079-1 089.
|
|
李林, 李红梅, 申红艳, 等. 青藏高原气候变化的若干事实及其年际振荡的成因探讨[J]. 冰川冻土, 2018, 40(6): 1 079-1 089.
|
93 |
LI Lin, LI Xiaodong, XIAO Ruixiang, et al. The heterogeneity of climate change and its genesis in the northeastern Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 2019, 34(7): 1 496-1 505.
|
|
李林, 李晓东, 校瑞香, 等. 青藏高原东北部气候变化的异质性及其成因[J]. 自然资源学报, 2019, 34(7): 1 496-1 505.
|
94 |
WANG Yidan, HU Zeyong, SUN Genhou, et al. Discussion on the characteristics of plateau monsoon and its relationship with east Asian summer monsoon[J]. Plateau Meteorology, 2019, 38(3): 518-527.
|
|
王奕丹, 胡泽勇, 孙根厚, 等. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
|
95 |
Shihyen DAO, CHU Fukang. The 100-MB flow patterns in southern Asia in summer and its relation to the advance and retreat of the west-Pacific subtropical anticyclone over the far east [J]. Acta Meteorological Sinica,1964, 34(4): 385-396.
|
|
陶诗言, 朱福康. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系[J].气象学报, 1964, 34(4): 385-396.
|
96 |
WU Guoxiong, CHOU Jifan, LIU Qiming, et al. Dynamics of the formation and variation of subtropical high[M]. Beijing: Science Press, 2002:1-28.
|
|
吴国雄, 丑纪范, 刘屹岷, 等. 副热带高压形成和变异的动力学问题[M]. 北京:科学出版社, 2002:1-28.
|
97 |
LIU Huanzhu, ZHAO Shengrong, ZHAO Cuiguang, et al. Weather abnormal and evolutions of western Pacific subtropical high and south Asian high in summer of 2003[J]. Plateau Meteorology, 2006, 25(2): 169-178.
|
|
刘还珠, 赵声蓉, 赵翠光, 等. 2003年夏季异常天气与西太副高和南亚高压演变特征的分析[J]. 高原气象, 2006, 25(2): 169-178.
|
98 |
GONG Yuanfa, XU Meiling, HE Jinhai, et al. On the relationship between the eastern Tibet Plateau rainfall and subtropical high shift in summer[J]. Acta Meteorologica Sinica, 2006, 64(1): 90-99.
|
|
巩远发, 许美玲, 何金海, 等. 夏季青藏高原东部降水变化与副热带高压带活动的研究[J]. 气象学报, 2006, 64(1): 90-99.
|
99 |
ZHANG Q, HAN L Y, JIA J Y, et al. Management of drought risk under global warming[J]. Theoretical and Applied Climatology, 2016, 125(1/2): 187-196.
|
100 |
ZHANG Yili, LIU Linshan, WANG Zhaofeng, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2 865-2 875.
|
|
张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征[J]. 科学通报, 2019, 64(27): 2 865-2 875.
|
101 |
WANG L, CHEN W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China[J]. International Journal of Climatology, 2014, 34(6): 2 059-2 078.
|
102 |
JIN Z N, ZHUANG Q L, HE J S, et al. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100[J]. Environmental Research Letters, 2015, 10(8): 085007.
|
103 |
DING J Z, CHEN L Y, JI C J, et al. Decadal soil carbon accumulation across Tibetan permafrost regions[J]. Nature Geoscience, 2017, 10(6): 420-424.
|
104 |
DU M Y, LI Y N, ZHANG F W, et al. Recent changes of climate and livestock productions on the Tibetan Plateau and in situ observations of NEE[J]. Journal of Arid Land Studies, 2018, 28:139-142.
|
105 |
GANJURJAV H, HU G Z, WAN Y F, et al. Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau[J]. Ecology and Evolution, 2018, 8(3): 1 507-1 520.
|
106 |
WANG J S, WANG S P, ZHANG Q, et al. Characteristics of drought disaster-causing factor anomalies in southwestern and Southern China against the background of global warming[J]. Polish Journal of Environmental Studies, 2015, 24: 2 241-2 251.
|
107 |
ZHANG Fugui, ZHANG Shunyao, TANG Ruiling, et al. Methane emission characteristics of active layer in wetland permafrost area of the Tibetan Plateau[J]. Geophysical and Geochemical Exploration, 2017, 41(6): 1 027-1 036.
|
|
张富贵, 张舜尧, 唐瑞玲, 等. 青藏高原湿地冻土区活动层甲烷排放特征[J]. 物探与化探, 2017, 41(6): 1 027-1 036.
|
108 |
YUN H B, WU Q B, ZHUANG Q L, et al. Consumption of atmospheric methane by the Qinghai-Tibet Plateau alpine steppe ecosystem[J]. The Cryosphere, 2018, 12(9): 2 803-2 819.
|
109 |
ZHANG Z H, WANG G S, WANG H, et al. Warming and drought increase but wetness reduces the net sink of CH4 in alpine meadow on the Tibetan Plateau[J]. Applied Soil Ecology, 2021,167:104061.
|
110 |
CHEN Nan. High resolution simulation of regional climate change in China under two RCP scenarios[D]. Chengdu: Chengdu University of Information Technology, 2019.
|
|
陈楠.两种RCP情景下中国区域气候变化的高分辨率模拟[D].成都: 成都信息工程大学, 2019.
|
111 |
ZHAO T B, DAI A G. The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario[J]. Journal of Climate, 2015, 28(11): 4 490-4 512.
|
112 |
ZHAO T B, DAI A G. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes[J]. Climatic Change, 2017, 144(3): 535-548.
|
113 |
DUAN Qingyun, XIA Jun, MIAO Chiyuan, et al. The uncertainty in climate change projections by global climate models[J]. Chinese Journal of Nature, 2016, 38(3): 182-188.
|
|
段青云, 夏军, 缪驰远, 等. 全球气候模式中气候变化预测预估的不确定性[J]. 自然杂志, 2016, 38(3): 182-188.
|
114 |
LUN Y R, LIU L, CHENG L, et al. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau[J]. International Journal of Climatology, 2021, 41(7): 3 994-4 018.
|
115 |
HU Qin, JIANG Dabang, FAN Guangzhou. Climate change projection on the Tibetan Plateau: results of CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 260-270.
|
|
胡芩, 姜大膀, 范广洲. 青藏高原未来气候变化预估: CMIP5模式结果[J]. 大气科学, 2015, 39(2): 260-270.
|
116 |
LI Linchao. Temporal-spatial evolution of extreme temperature, precipitation and drought event and its projection by multi-model ensemble[D]. Yangling: Northwest A & F University, 2019.
|
|
李林超. 极端气温、降水和干旱事件的时空演变规律及其多模式预测[D]. 杨凌: 西北农林科技大学, 2019.
|
117 |
IPCC. Working group I contribution to the IPCC fifth assessment report, climate change 2013: the physical science basis: summary for policymakers[R]. Geneva, Switzerland: World Meteorological Organization, 2013.
|
118 |
ZHANG Renhe, SU Fengge, JIANG Zhihong, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J]. Chinese Science Bulletin, 2015, 60(32): 3 036-3 047.
|
|
张人禾, 苏凤阁, 江志红, 等. 青藏高原21世纪气候和环境变化预估研究进展[J]. 科学通报, 2015, 60(32): 3 036-3 047.
|
119 |
ZHANG Yujing. High resolution numerical simulation and prediction of regional extreme climate events in China by precis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
|
|
张玉静. PRECIS 对中国区域极端气候事件的高分辨率数值模拟与预估[D]. 北京: 中国农业科学院, 2017.
|
120 |
LANG Xianmei, SUI Yue. Changes in mean and extreme climates over China with a 2 °C global warming[J]. Chinese Science Bulletin, 2013, 58(8): 734-742.
|
|
郎咸梅, 隋月.全球变暖情景下中国平均气候和极端气候事件变化预估[J]. 科学通报,2013, 58(8):734-742.
|
121 |
HU Ting, SUN Ying, ZHANG Xuebin. Temperature and precipitation projection at 1.5 and 2℃ increase in global mean temperature[J]. Chinese Science Bulletin, 2017, 62(26): 3 098-3 111.
|
|
胡婷, 孙颖, 张学斌. 全球1.5和2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3 098-3 111.
|
122 |
TRENBERTH K E. Framing the way to relate climate extremes to climate change[J]. Climatic Change, 2012, 115(2): 283-290.
|
123 |
LIU K, JIANG D B, MA J Y. Drought over China in the 21st century: results of RegCM3[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6): 509-513.
|
124 |
ZHANG Bing, GONG Yuanfa, XU Ying, et al. Evaluation on the simulation of the drought change in China based on global climate models from CMIP5[J]. Journal of Arid Meteorology, 2014, 32(5): 694-700.
|
|
张冰, 巩远发, 徐影, 等. CMIP5全球气候模式对中国地区干旱变化模拟能力评估[J]. 干旱气象, 2014, 32(5): 694-700.
|
125 |
ZHAO Yilei. Simulation and prediction of regional meteorological drought events in China[D]. Nanjing: Nanjing University of Information Science and Technology, 2013.
|
|
赵一磊.中国区域性气象干旱事件的模拟和预估[D]. 南京:南京信息工程大学, 2013.
|
126 |
XU Chonghai, LUO Yong, XU Ying. Simulation and prediction of the drought variations in China by Multi-model ensemble[J]. Journal of Glaciology and Geocryology, 2010,32(5):867-874.
|
|
许崇海, 罗勇, 徐影. IPCC AR4多模式对中国地区干旱变化的模拟及预估[J]. 冰川冻土, 2010, 32(5): 867-874.
|
127 |
ZHOU Xiuhua. Simulation and prediction of climate in southwest and its surrounding areas of China[D]. Beijing: Chinese Academy of Meteorological Sciences, 2014.
|
|
周秀华. 我国西南及周边地区气候的模拟和预估[D].北京:中国气象科学研究院, 2014.
|
128 |
GUAN Yinghui. Extreme climate change and its future trend prediction in the Yangtze River Basin[D]. Yangling: Northwest A&F University, 2015.
|
|
关颖慧.长江流域极端气候变化及其未来趋势预测[D].杨凌:西北农林科技大学, 2015.
|
129 |
GONG Tiantian. Analysis of the spatial and temporal characteristics of droughts in China and its population exposure based on PDSI[D]. Nanjing: Nanjing University of Information Science & Technology, 2018.
|
|
宫甜甜.基于PDSI的中国干旱时空变化及其人口暴露度研究[D].南京:南京信息工程大学, 2018.
|
130 |
GUO H, BAO A M, LIU T, et al. Evaluation of PERSIANN-CDR for meteorological drought monitoring over China[J]. Remote Sensing, 2016, 8(5): 379.
|
131 |
NIU Wenjuan, GOU Si, LIU Chao, et al. Preliminary studies on ecological drought[J]. Journal of Irrigation and Drainage, 2016, 35(): 84-89.
|
|
牛文娟, 苟思, 刘超, 等. 生态干旱初探[J]. 灌溉排水学报, 2016, 35(): 84-89.
|
132 |
WANG Chenghai, WU Yongping, CUI Yang. Evaluating the progress of the CMIP and its application prospect in China[J]. Advances in Earth Science, 2009, 24(5): 461-468.
|
|
王澄海, 吴永萍, 崔洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
|
133 |
JI Zhenming. High resolution numerical simulation of climate change in China under new emission scenarios[D].Beijing: Chinese Academy of Sciences, 2012.
|
|
吉振明. 新排放情景下中国气候变化的高分辨率数值模拟研究[D]. 北京:中国科学院研究生院, 2012.
|
134 |
HU Qin, JIANG Dabang, FAN Guangzhou. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938.
|
|
胡芩, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938.
|
135 |
BRADFORD J B, SCHLAEPFER D R, LAUENROTH W K, et al. Robust ecological drought projections for drylands in the 21st century[J]. Global Change Biology, 2020, 26(7): 3 906-3 919.
|
136 |
JI Z M, KANG S C. Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J]. Journal of the Atmospheric Sciences, 2013, 70(4): 1 278-1 290.
|
137 |
SU F G, DUAN X L, CHEN D L, et al. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. Journal of Climate, 2013, 26(10): 3 187-3 208.
|
138 |
TONG K, SU F G, YANG D Q, et al. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J]. International Journal of Climatology, 2014, 34(2): 265-285.
|
139 |
LIAN X, PIAO S L, LI L Z X, et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation[J]. Science Advances, 2020, 6(1): eaax0255.
|
140 |
MA Ning. Comparison of variations in land surface evapotranspiration between typical alpine steppe and wetland ecosystems on the Tibetan Plateau over the last four decades[J]. Advances in Earth Science, 2021, 36(8): 836-848.
|
|
马宁. 近40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
|
141 |
GUO D L, SUN J Q, YU E T. Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau[J]. Atmospheric and Oceanic Science Letters, 2018, 11(3): 219-227.
|
142 |
SU Xiaoling, JIANG Tianliang, NIU Jiping. Concept and research progress of ecological drought[J]. Water Resources Protection, 2021, 37(4): 15-21, 28.
|
|
粟晓玲, 姜田亮, 牛纪苹. 生态干旱的概念及研究进展[J]. 水资源保护, 2021, 37(4): 15-21, 28.
|
143 |
TIETJEN B, SCHLAEPFER D R, BRADFORD J B, et al. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands[J]. Global Change Biology, 2017, 23(7): 2 743-2 754.
|
144 |
CRAUSBAY S D, RAMIREZ A R, CARTER S L, et al. Defining ecological drought for the twenty-first century[J]. Bulletin of the American Meteorological Society, 2017, 98(12): 2 543-2 550.
|