地球科学进展 ›› 2022, Vol. 37 ›› Issue (5): 441 -461. doi: 10.11867/j.issn.1001-8166.2022.022

综述与评述    下一篇

青藏高原地区气象干旱研究进展与展望
王劲松 1( ), 姚玉璧 2, 王莺 1( ), 王素萍 1, 刘晓云 1, 周悦 3, 杜昊霖 1, 张宇 1, 任余龙 1   
  1. 1.中国气象局兰州干旱气象研究所,甘肃省(中国气象局)干旱气候变化与减灾重点实验室,甘肃 兰州 730020
    2.兰州资源环境职业技术大学,甘肃 兰州 730021
    3.中国气象局 武汉暴雨研究所,暴雨监测预警湖北省重点实验室,湖北 武汉 430205
  • 收稿日期:2021-10-18 修回日期:2021-12-19 出版日期:2022-05-10
  • 通讯作者: 王莺 E-mail:wjsgsmb_cn@sina.com;wangyn924@163.com
  • 基金资助:
    第二次青藏高原综合科学考察研究项目专题“跨境污染物与环境安全”(2019QZKK0605);甘肃省基础研究创新群体项目“干旱灾害形成机理及其风险预警”(20JR5RA121)

Meteorological Droughts in the Qinghai-Tibet Plateau: Research Progress and Prospects

Jinsong WANG 1( ), Yubi YAO 2, Ying WANG 1( ), Suping WANG 1, Xiaoyun LIU 1, Yue ZHOU 3, Haolin DU 1, Yu ZHANG 1, Yulong REN 1   

  1. 1.Institute of Arid Meteorology,China Meteorological Administration,Key Laboratory of Arid Climate Change and Disaster Reduction of Gansu Province (China Meteorological Administration),Lanzhou 730020,China
    2.Lanzhou Resources&Environment Voc-Tech University,Lanzhou 730021,China
    3.Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research,Institute of Heavy Rain,China Meteorological Administration,Wuhan 430205,China
  • Received:2021-10-18 Revised:2021-12-19 Online:2022-05-10 Published:2022-05-31
  • Contact: Ying WANG E-mail:wjsgsmb_cn@sina.com;wangyn924@163.com
  • About author:WANG Jinsong (1968-), female, Kaili City, Guizhou Province, Professor. Research areas include climate change in arid area and drought monitoring and early warning. E-mail: wjsgsmb_cn@sina.com
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program “Cross-border pollutant investigation and environmental safety”(2019QZKK0605);The Basic Research Innovation Group of Gansu Province “The formation mechanism of drought disaster and its risk warning”(20JR5RA121)

青藏高原是承受自然灾害脆弱性较高的地区。该区域经常遭受雪灾、干旱、大风、雷电、冰雹和洪涝等气象灾害的危害,其中,干旱是该区域除雪灾外影响最为严重的气象灾害。随着气候变化和人类活动的加剧,青藏高原由气象灾害造成的损失不断加剧。为此,着眼于青藏高原的区域特点,对其气象干旱研究现状进行了梳理与分析,系统总结了青藏高原气象干旱的主要研究成果,揭示了青藏高原气象干旱时空分布的基本特征:干旱的高发区在高原的北部、东北部、西南部和东南部,高发时段为1980年代和2000年代;归纳了青藏高原气象干旱监测和预测的主要技术方法:基于干旱指数开展的干旱监测评估和基于干旱影响因子利用气候模式进行的干旱预测;给出了青藏高原干旱灾害风险的发生规律:青藏高原东北部偏南地区是农牧业干旱灾害的高风险区,东北部、西南部和东南部是较高风险区;高寒草原比高寒草甸面临的干旱灾害风险高。基于数值模式和未来情景,预估21世纪青藏高原气温升高、降水增加;但由于降水增加表现出明显的时空分布不均匀性,未来发生季节性和区域性气象干旱的可能性仍然很大;同时,提出了青藏高原气象干旱研究在资料、技术方法和模式应用等方面存在的问题,并结合国际前沿,展望了青藏高原气象干旱未来研究需关注的关键科学问题和技术领域。

The Qinghai-Tibet Plateau is a region vulnerable to natural disasters. There are many natural meteorological disasters occurring on the Qinghai-Tibet Plateau, such as snow disasters, droughts, strong winds, thunder and lightning, hail, and floods. Droughts are the most serious type of meteorological disaster in the region, apart from snow. With climate change and the increase in human activities, the losses caused by natural disasters on the Qinghai-Tibet Plateau are increasing over time. Focusing on the regional characteristics of the Qinghai-Tibet Plateau, we evaluate the situation of meteorological droughts. The main results of meteorological drought research are systematically summarized, and the basic temporal and spatial distribution characteristics of meteorological droughts are revealed. The current technical methods for meteorological drought monitoring and forecasting are clarified, and the laws of meteorological drought disaster risk are elucidated in the Qinghai-Tibet Plateau. The results show that the high-incidence areas of droughts are in the north, northeast, southwest, and southeast of the plateau. The high incidence periods were the 1980s and the 2000s. Drought monitoring is mainly conducted based on the drought index and using drought-prediction climate models based on drought influencing factors. The southern part of the northeastern area is a high-risk region for drought disasters impacting agriculture and animal husbandry, while the northeast, southwest, and southeast are higher-risk areas. The alpine grasslands face a higher risk of drought disasters than alpine meadows. Numerical models based on future scenarios revealed that temperature and precipitation may increase in the Qinghai-Tibet Plateau in the 21st century. However, owing to the obvious unevenness in the temporal and spatial distribution of the increased precipitation, the possibility of seasonal and regional meteorological droughts in the future is still remarkably high. Finally, remaining problems in the study of meteorological droughts in the Qinghai-Tibet Plateau, in terms of data, technical methods, and model applications, are discussed. Combining existing local problems and international perspective, the key scientific issues and technical fields concerning meteorological droughts in the Qinghai-Tibet Plateau are highlighted.

中图分类号: 

图1 不同气候代用资料记录的青藏高原不同区域的干旱时段(资料来源于参考文献[ 38 - 43 ])
灰色阴影区域标示的是各种气候代用资料重建的干旱时段的共同时期
Fig. 1 The drought periods in different regions over the Qinghai-Tibet Plateau recorded by the different climatic proxiesdata from references38-43])
The grey shaded area indicates the common drought periods reconstructed from various climate proxies
图2 青藏高原的气象干旱易发区及其农牧区干旱灾害综合风险的空间分布示意图
干旱易发区1据参考文献[ 21 54 ]修改;干旱易发区2据参考文献[ 23 50 - 51 ]修改;干旱易发区3据参考文献[ 50 52 ]修改;风险区据参考文献[ 55 - 57 ]修改
Fig. 2 The schematic diagram of spatial distribution of drought-prone areas and the drought disasters comprehensive risk in agricultural and pastoral areas over the Qinghai-Tibet Plateau
Drought-prone area 1 modified from references [21,54], drought-prone area 2 modified from references [23,50-51], drought-prone area 3 modified from references [50,52], risk zone modified from references [55-57]
图3 导致青藏高原干旱季节性异常的影响因子及其相互作用示意图
Fig. 3 The schematic diagram of the influencing factors and their interactions leading to the seasonal anomaly of drought over the Qinghai-Tibet Plateau
图4 青藏高原西部干旱的影响因子示意图
Fig. 4 The schematic diagram of influencing factors of drought in western Qinghai-Tibet Plateau
图5 农业干旱脆弱性空间分布(据参考文献[ 22 ]修改)
Fig. 5 The spatial distribution of agricultural drought vulnerabilitymodified after reference 22 ])
图6 青藏高原生态干旱形成及反馈效应
虚线框中是针对青藏高原特点的生态干旱
Fig. 6 The formation and feedback effect of ecological drought over the Qinghai-Tibet Plateau
The ecological drought for considering Qinghai-Tibet Plateau characteristics denotes in the dotted box
1 DAI A G, ZHAO T B. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes[J]. Climatic Change, 2017, 144(3): 519-533.
2 ANDERSON M C, HAIN C, WARDLOW B, et al. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States[J]. Journal of Climate, 2011, 24(8): 2 025-2 044.
3 HUANG Ronghui, DU Zhencai. Evolution characteristics and trend of droughts and floods in China under the background of global warming[J]. Chinese Journal of Nature, 2010, 32(4): 187-195, 184.
黄荣辉, 杜振彩. 全球变暖背景下中国旱涝气候灾害的演变特征及趋势[J]. 自然杂志, 2010, 32(4): 187-195, 184.
4 SU B D, HUANG J L, FISCHER T, et al. Drought losses in China might double between the 1.5 ℃ and 2.0 ℃ warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42): 10 600-10 605.
5 DENG Wei, ZHAO Wei, LIU Bintao, et al. Water security and the countermeasures in south Asia based on the “Belt and Road” initiative[J]. Advances in Earth Science, 2018, 33(7): 687-701.
邓伟, 赵伟, 刘斌涛, 等. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.
6 YAO T D, XIE Z C, WU X L, et al. Climatic change since little ice age recorded by the Dunde ice cap[J]. Science in China (Series B), 1991, 34(6): 760-767.
7 FENG Song, TANG Maocang, WANG Dongmei. The new evidence of Tibetan Plateau as the climate change initiation area for China[J]. Chinese Science Bulletin,1998,43(6): 633-636.
冯松, 汤懋仓, 王冬梅.青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998,43(6): 633-636.
8 WU Guoxiong, LIU Yimin, LIU Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(1): 47-56, 167.
吴国雄, 刘屹岷, 刘新, 等. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 2005, 29(1): 47-56, 167.
9 WU Guoxiong, DUAN Anmin, ZHANG Xueqin, et al. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 167-171.
吴国雄, 段安民, 张雪芹, 等. 青藏高原极端天气气候变化及其环境效应[J]. 自然杂志, 2013, 35(3): 167-171.
10 WANG Tongmei, WU Guoxiong, WAN Rijin. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area[J]. Plateau Meteorology, 2008, 27(1): 1-9.
王同美, 吴国雄, 万日金. 青藏高原的热力和动力作用对亚洲季风区环流的影响[J]. 高原气象, 2008, 27(1): 1-9.
11 LIU X D, CHENG Z G, YAN L B, et al. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J]. Global and Planetary Change, 2009, 68(3): 164-174.
12 YOU Q L, MIN J Z, KANG S C. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J]. International Journal of Climatology, 2016, 36(6): 2 660-2 670.
13 WANG Xin. China meteorological disaster classics: Qinghai volume [M]. Beijing: China Meteorological Press, 2007:22-42.
王莘.中国气象灾害大典:青海卷[M]. 北京: 气象出版社, 2007: 22-42.
14 LIU Guangxuan. China meteorological disaster classics: Tibet volume[M]. Beijing: China Meteorological Press, 2008:157-229.
刘光轩.中国气象灾害大典:西藏卷[M]. 北京:气象出版社, 2008:157-229.
15 CUI Peng, SU Fenghuan, ZOU Qiang, et al. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3 067-3 077.
崔鹏, 苏凤环, 邹强, 等. 青藏高原山地灾害和气象灾害风险评估与减灾对策[J]. 科学通报, 2015, 60(32): 3 067-3 077.
16 XIONG Junnan, LIU Zhiqi, FAN Chunkun, et al. Temporal and spatial distribution characteristics and changing trend of meteorologic disaster in Tibet Autonomous Region from 1983 through 2013[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1 221-1 231.
熊俊楠, 刘志奇, 范春捆, 等. 1983—2013年西藏自治区气象灾害时空分布特征与变化趋势[J]. 冰川冻土, 2017, 39(6): 1 221-1 231.
17 LI H, LIU L, SHAN B Y, XU Z C, et al. Spatiotemporal variation of drought and associated multi-scale response to climate change over the Yarlung Zangbo River Basin of Qinghai-Tibet Plateau, China [J]. Remote Sensing, 2019,11(13):1 596.
18 WILHITE D A, GLANTZ M H. Understanding: the drought phenomenon: the role of definitions[J]. Water International, 1985, 10(3): 111-120.
19 WANG Jinsong, LI Yaohui, WANG Runyuan, et al. Preliminary analysis on the demand and review of progress in the field of meteorological drought research[J]. Journal of Arid Meteorology, 2012, 30(4): 497-508.
王劲松, 李耀辉, 王润元, 等. 我国气象干旱研究进展评述[J]. 干旱气象, 2012, 30(4): 497-508.
20 ZHANG Qiang, HAN Lanying, ZHANG Liyang, et al. Analysis on the character and management strategy of drought disaster and risk under the climatic warming[J]. Advances in Earth Science, 2014, 29(1): 80-91.
张强, 韩兰英, 张立阳, 等. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
21 XIE H, YE J S, LIU X M, et al. Warming and drying trends on the Tibetan Plateau (1971-2005)[J]. Theoretical and Applied Climatology, 2010, 101(3/4): 241-253.
22 WU J J, HE B, LÜ A F, et al. Quantitative assessment and spatial characteristics analysis of agricultural drought vulnerability in China[J]. Natural Hazards, 2011, 56(3): 785-801.
23 GAO Maofang, QIU Jianjun. Characteristics and distribution law of major natural disasters in Tibetan Plateau[J]. Journal of Arid Land Resources and Environment, 2011, 25(8):101-106.
高懋芳, 邱建军.青藏高原主要自然灾害特点及分布规律研究[J]. 干旱区资源与环境, 2011,25(8):101-106.
24 WEI Wei. The interannual shift of the south Asian high and its relation with the Asian summer monsoon[D]. Beijing: Chinese Academy of Meteorological Sciences, 2015.
魏维.南亚高压位置的年际变异特征及其与亚洲夏季风的联系[D].北京:中国气象科学研究院,2015.
25 SHAO D G, CHEN S, TAN X Z, et al. Drought characteristics over China during 1980-2015[J]. International Journal of Climatology, 2018, 38(9): 3 532-3 545.
26 SUN Yi, GONG Yuanfa. Characteristics of abnormal changes of precipitation over the Tibetan Plateau and atmospheric circulation under the influence of Indian summer monsoon [J]. Journal of Chengdu University of Information Technology, 2019, 34(4):411-419.
孙亦,巩远发. 印度夏季风影响下的青藏高原降水及环流异常变化特征[J]. 成都信息工程大学学报,2019, 34(4): 411-419.
27 LI X, ZHANG L, LUO T X. Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau[J]. Scientific Reports, 2020, 10(1): 18797.
28 ZOU L W, ZHOU T J. Near future (2016-40) summer precipitation changes over China as projected by a Regional Climate Model (RCM) under the RCP8.5 emissions scenario: comparison between RCM downscaling and the driving GCM[J]. Advances in Atmospheric Sciences, 2013, 30(3): 806-818.
29 FAN Keke, ZHANG Qiang, SUN Peng, et al. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau[J]. Acta Geographica Sinica, 2019, 74(3): 520-533.
范科科, 张强, 孙鹏, 等. 青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报, 2019, 74(3): 520-533.
30 WU Fangying, YOU Qinglong, XIE Wenxin, et al. Temperature change on the Tibetan Plateau under the global warming of 1.5 ℃ and 2 ℃[J]. Climate Change Research, 2019, 15(2): 130-139.
吴芳营, 游庆龙, 谢文欣, 等.全球变暖1.5 ℃和2 ℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2): 130-139.
31 ZHANG Dongfeng, GAO Xuejie. Climate change of the 21st century over China from the ensemble of RegCM4 simulations [J]. Chinese Science Bulletin, 2020, 65(23): 2 516-2 526.
张冬峰, 高学杰.中国21世纪气候变化的RegCM4多模拟集合预估[J].科学通报, 2020, 65(23): 2 516-2 526.
32 ZHANG Jiayi, Yurui LUN, LIU Liu, et al. CMIP6 evaluation and projection of climate change in Tibetan Plateau[J]. Journal of Beijing Normal University (Natural Science), 2022, 58(1): 77-89.
张佳怡, 伦玉蕊, 刘浏, 等. CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 77-89.
33 ZHANG Gengxi, SU Xiaoling, LIU Wenfei. Future drought trend in China considering CO2 concentration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 84-91.
张更喜, 粟晓玲, 刘文斐. 考虑CO2浓度影响的中国未来干旱趋势变化[J]. 农业工程学报, 2021, 37(1): 84-91.
34 LIU X F, WANG S X, ZHOU Y, et al. Spatial analysis of meteorological drought return periods in China using Copulas[J]. Natural Hazards, 2016, 80(1): 367-388.
35 AYANTOBO O O, LI Y, SONG S B. Copula-based trivariate drought frequency analysis approach in seven climatic sub-regions of mainland China over 1961-2013[J]. Theoretical and Applied Climatology, 2019, 137(3/4): 2 217-2 237.
36 ZUO Y, WANG Q F, ZHENG H, et al. Seasonal variations of the water budget in typical grassland ecosystems in China[J]. Acta Ecologica Sinica, 2016, 36(4): 301-310.
37 DING J Z, YANG T, ZHAO Y T, et al. Increasingly important role of atmospheric aridity on Tibetan alpine grasslands[J]. Geophysical Research Letters, 2018, 45(6): 2 852-2 859.
38 LI Q. Solar forcing of desert vegetation and drought frequency during the last 2700 years in the interior Qaidam Basin, northeastern Tibetan Plateau[J]. Science China Earth Sciences, 2020, 63(4): 561-574.
39 ZHANG Jiawu, JIN Ming, CHEN Fahu, et al. Precipitation changes in the northeast of Qinghai Plateau recorded by sedimentary cores of Qinghai Lake in the past 800 years[J]. Chinese Science Bulletin, 2004, 49(1): 10-14.
张家武, 金明, 陈发虎, 等. 青海湖沉积岩芯记录的青藏高原东北部过去800年以来的降水变化[J]. 科学通报, 2004, 49(1): 10-14.
40 SHEPPARD P R, TARASOV P E, GRAUMLICH L J, et al. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China[J]. Climate Dynamics, 2004, 23(7/8): 869-881.
41 HUANG Xiaomei, XIAO Dingmu, QIN Ningsheng. Drought reconstruction based on tree-ring width in headwaters of the Lancang River[J]. Arid Zone Research, 2019,36(2): 280-289.
黄小梅, 肖丁木, 秦宁生.基于树轮宽度的澜沧江源区干旱重建[J]. 干旱区研究, 2019, 36(2): 280-289.
42 CHENG Xuehan, Lixin LÜ. Extreme drought events since 1560 A.D. recorded by tree rings on the southeast Qinghai-Tibetan plateau[J]. Quaternary Sciences, 2015, 35(5):1 093-1 101.
程雪寒, 吕利新. 藏东南树木年轮记载的公元1560年以来的极端干旱事件[J]. 第四纪研究,2015, 35(5):1 093-1 101.
43 GOU Xiaohua, YANG Tao, GAO Linlin, et al. A 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2013, 58(11):978-985.
勾晓华, 杨涛, 高琳琳, 等.树轮记录的青藏高原东南部过去457年降水变化历史[J]. 科学通报, 2013, 58(11): 978-985.
44 FAN Z X, BRÄUNING A, CAO K F. Tree-ring based drought reconstruction in the central Hengduan Mountains region (China) since A.D. 1655[J]. International Journal of Climatology, 2008, 28(14): 1 879-1 887.
45 COOK E R, ANCHUKAITIS K J, BUCKLEY B M, et al. Asian monsoon failure and megadrought during the last millennium[J]. Science, 2010, 328(5 977): 486-489.
46 FANG K Y, GOU X H, CHEN F H, et al. Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability[J]. Climate Dynamics, 2010, 35(4): 577-585.
47 DUAN Keqin, YAO Tandong, WANG Ninglian, et al. The difference in precipitation variability between the north and south Tibetan Plateaus[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 726-732.
段克勤, 姚檀栋, 王宁练, 等. 青藏高原南北降水变化差异研究[J]. 冰川冻土, 2008, 30(5): 726-732.
48 WANG Jingai, SUN Heng, XU Wei, et al. Spatio temporal change of drought disaster in China in recent fifty years[J]. Journal of Natural Disasters, 2002, 11(2): 1-6.
王静爱, 孙恒, 徐伟, 等. 近50年中国旱灾的时空变化[J]. 自然灾害学报, 2002, 11(2): 1-6.
49 LIANG L, ZHAO S H, QIN Z H, et al. Drought change trend using MODIS TVDI and its relationship with climate factors in China from 2001 to 2010[J]. Journal of Integrative Agriculture, 2014, 13(7): 1 501-1 508.
50 HE B, LÜ A, WU J J, et al. Drought hazard assessment and spatial characteristics analysis in China[J]. Journal of Geographical Sciences, 2011, 21(2): 235-249.
51 REN Yulong, SHI Yanjun, WANG Jinsong, et al. Spatial and temporal variation characteristics of drought in northwest China during 1961-2009 with standardized precipitation index[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 938-948.
任余龙, 石彦军, 王劲松, 等. 1961—2009年西北地区基于SPI指数的干旱时空变化特征[J]. 冰川冻土, 2013, 35(4): 938-948.
52 LIANG E Y, SHAO X M, XU Y. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau[J]. Theoretical and Applied Climatology, 2009, 98(1/2): 9-18.
53 ZHANG C, TANG Q H, CHEN D L, et al. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J]. Journal of Hydrometeorology, 2019, 20(2): 217-229.
54 XU Xingkui, CHEN Hong, LEVY Jason K. Temporal and spatial changes of vegetation cover characteristics in the Tibetan Plateau under the background of climate warming and its causes[J]. Chinese Science Bulletin, 2008, 53(4): 456-462.
徐兴奎, 陈红, LEVY Jason K.气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析[J]. 科学通报, 2008, 53(4): 456-462.
55 ZHAO Zhilong, ZHANG Yili, LIU Fenggui, et al. Drought disaster risk analysis of Tibetan Plateau[J]. Journal of Mountain Science, 2013,31(6):672-684.
赵志龙, 张镱锂, 刘峰贵, 等.青藏高原农牧区干旱灾害风险分析[J]. 山地学报, 2013, 31(6):672-684.
56 HE B, WU J J, LÜ A, et al. Quantitative assessment and spatial characteristic analysis of agricultural drought risk in China[J]. Natural Hazards, 2013, 66(2): 155-166.
57 ZHOU Wei, ZHONG Xianghao, ZENG Yunying. Ecological risk assessment and management in farming-pastoral area in Tibet Plateau—case study in Zhanang County Lhoka Prefecture[J]. Agricultural Research in the Arid Areas, 2006, 24(3): 164-169, 193.
周伟, 钟祥浩, 曾云英. 西藏高原农牧区生态风险评估与管理策略: 以山南地区扎囊县为例[J]. 干旱地区农业研究, 2006, 24(3): 164-169, 193.
58 CHEN Q, LIU F G, CHEN R J, et al. Trends and risk evolution of drought disasters in Tibet region, China[J]. Journal of Geographical Sciences, 2019, 29(11): 1 859-1 875.
59 DU Jun, XIANG Yuyi. Research on climatic character and defensive measures against summer drought in Tibet[J]. Agricultural Reseach in the Arid Areas, 2000, 18(1): 101-107.
杜军, 向毓意. 西藏地区夏季旱灾的防御对策研究[J]. 干旱地区农业研究, 2000, 18(1): 101-107.
60 LI S S, YAO Z J, LIU Z F, et al. The spatio-temporal characteristics of drought across Tibet, China: derived from meteorological and agricultural drought indexes[J]. Theoretical and Applied Climatology, 2019, 137(3/4): 2 409-2 424.
61 WANG Hui, ZHANG Lu, SHI Xingdong, et al. Some new changes of the regional climate on the Tibetan Plateau since 2000[J]. Advances in Earth Science, 2021, 36(8): 785-796.
王慧, 张璐, 石兴东, 等. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
62 TANG Min, ZHANG Bo, ZHANG Yaozong, et al. Assessment of spring and summer meteorological droughts based on SPEI and SPI in eastern agricultural region of Qinghai Province[J]. Journal of Natural Resources, 2017,32(6): 1 029-1 042.
唐敏, 张勃, 张耀宗, 等. 基于SPEI和SPI指数的青海省东部农业区春夏气象干旱特征的评估[J]. 自然资源学报,2017, 32(6):1 029-1 042.
63 YAO Yao, ZHANG Xin, MA Quan, et al. Application research on different drought indices in crop growing period at east agricultural region of Qinghai Province[J]. Journal of Natural Disasters, 2014, 23(4):177-184.
姚瑶, 张鑫, 马全, 等. 青海省东部农业区作物生长期不同气象干旱指标应用研究[J]. 自然灾害学报, 2014, 23(4):177-184.
64 Puzeng DUO. Analysis adaptability of three drought index of agricultural region in eastern Qinghai Province[D]. Yangling: Northwest A & F University, 2017.
多普增. 三种气象干旱指数在青海省东部农业区的适用性分析[D]. 杨凌: 西北农林科技大学, 2017.
65 SHI Jinmei, TANG Hongyu, XU Weijun, et al. Dryness/wetness changes in Qinghai Province during 1959-2003[J]. Advances in Climate Change Research, 2007, 3(6): 356-361.
史津梅, 唐红玉, 许维俊, 等. 1959—2003年青海省干湿变化分析[J]. 气候变化研究进展, 2007, 3(6): 356-361.
66 TAO Ran, ZHANG Ke. PDSI-based analysis of characteristics and spatiotemporal changes of meteorological drought in China from 1982 to 2015[J]. Water Resources Protection, 2020, 36(5): 50-56.
陶然, 张珂. 基于PDSI的1982—2015年我国气象干旱特征及时空变化分析[J]. 水资源保护, 2020, 36(5): 50-56.
67 ZHAO Xinlai, LI Wenlong, XULIN Guo, et al. The responses of Pa, SPI, and SPEI to dry climate in alpine meadows of eastern Qinghai-Tibet Plateau[J]. Pratacultural Science, 2017, 34(2): 273-282.
赵新来, 李文龙, XULIN Guo, 等. Pa、SPI和SPEI干旱指数对青藏高原东部高寒草地干旱的响应比较[J]. 草业科学, 2017, 34(2): 273-282.
68 LI Pengfei, SUN Xiaoming, ZHAO Xinyi. Analysis of precipitation and potential evapotranspiration in arid and semi arid area of China in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2012, 26(7): 57-63.
李鹏飞, 孙小明, 赵昕奕. 近50年中国干旱半干旱地区降水量与潜在蒸散量分析[J]. 干旱区资源与环境, 2012, 26(7): 57-63.
69 BURKE E J, BROWN S J. Evaluating uncertainties in the projection of future drought[J]. Journal of Hydrometeorology, 2008, 9(2): 292-299.
70 DAI A G. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D12): D12115.
71 DAI A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013,3:52-58.
72 YANG Qing, LI Mingxing, ZHENG Ziyan, et al. Regional applicability of seven meteorological drought indices in China[J]. Science China:Earth Sciences, 2017,47(3):337-353.
杨庆, 李明星, 郑子彦, 等. 7种气象干旱指数的中国区域适应性[J]. 中国科学:地球科学,2017, 47(3): 337-353.
73 GAO Yanhong, XU Jianwei, ZHANG Meng, et al. Advances in the study of the 400 mm isohyet migrations and wetness and dryness changes on the Chinese mainland[J]. Advances in Earth Science, 2020, 35(11): 1 101-1 112.
高艳红, 许建伟, 张萌, 等. 中国400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1 101-1 112.
74 WEI Jie, MA Zhuguo. Comparison of palmer drought severity index, percentage of precipitation anomaly and surface humid index[J]. Acta Geographica Sinica, 2003, 58(): 117-124.
卫捷, 马柱国. Palmer干旱指数、地表湿润指数与降水距平的比较[J]. 地理学报, 2003, 58(): 117-124.
75 TIAN Guoliang. Methods for monitoring soil moisture using remote sensing technique[J]. Remote Sensing of Environment China, 1991(2): 89-98, 161.
田国良. 土壤水分的遥感监测方法[J]. 环境遥感, 1991(2): 89-98, 161.
76 CHEN Y Y, YANG K, QIN J, et al. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4 466-4 475.
77 WU Shengli, SHI Jiancheng. The application of TRMM/PR to the study of soil moisture change in Tibetan plateau[J]. Journal of Lanzhou University (Natural Sciences), 2007, 43(2): 11-14.
武胜利, 施建成. TRMM/PR在青藏高原土壤水分变化研究中的应用[J]. 兰州大学学报(自然科学版), 2007, 43(2): 11-14.
78 XIE Kaixin, ZHANG Tingting, SHAO Yun, et al. Study on soil moisture inversion of plateau pasture using radarsat-2 imagery[J]. Remote Sensing Technology and Application, 2016, 31(1): 134-142.
谢凯鑫, 张婷婷, 邵芸, 等. 基于Radarsat-2全极化数据的高原牧草覆盖地表土壤水分反演[J]. 遥感技术与应用,2016, 31(1): 134-142.
79 WAN Hong, GAO Shuo, GUO Peng. Applicability evaluation of FY-3B remote sensing soil moisture products in the Tibetan Plateau[J]. Journal of Arid Land Resources and Environment, 2018, 32(4): 132-137.
万红, 高硕, 郭鹏. 青藏高原地区FY-3B微波遥感土壤水分产品适用性研究[J]. 干旱区资源与环境, 2018, 32(4): 132-137.
80 YANG Ting, CHEN Xiuwan, WAN Wei, et al. Soil moisture in the Tibetan plateau using optical and passive microwave remote sensing data[J]. Chinese Journal of Geophysics, 2017,60(7):2 556-2 567.
杨婷, 陈秀万, 万玮, 等. 基于光学与被动微波遥感的青藏高原地区土壤水分反演[J]. 地球物理学报,2017, 60(7):2 556-2 567.
81 ZENG Jiangyuan. Study on soil moisture retrieval by passive microwave in Qinghai-Tibet Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2015.
曾江源. 青藏高原地区被动微波土壤水分反演研究[D].北京: 中国科学院大学,2015.
82 YANG Xiuhai, ZHUOGA, LUOBU. Drought monitoring in the Tibetan Plateau based on MODIS dataset[J]. Journal of Desert Research, 2014, 34(2): 527-534.
杨秀海, 卓嘎, 罗布. 基于MODIS数据的青藏高原旱情监测研究[J]. 中国沙漠, 2014, 34(2): 527-534.
83 ZHAXIYANGZONG, YANG Xiuhai, BIANBACIREN, et al. TVDI-based remote sensing monitoring of droughts over Tibet Plateau[J]. Meteorological Science and Technology, 2010, 38(4): 495-499.
扎西央宗, 杨秀海, 边巴次仁, 等. 基于TVDI的西藏地区旱情遥感监测[J]. 气象科技, 2010, 38(4): 495-499.
84 WANG Jun. Drought monitoring in Qinghai Province based on MODIS products[D]. Changsha: Central South University, 2014.
王君.基于MODIS产品的青海省干旱监测[D].长沙:中南大学, 2014.
85 WANG Fengjie, FENG Wenlan, ZHAXIYANGZONG, et al. The comparison of FY-3A/VIRR and TERRA/MODIS data for drought monitoring[J]. Journal of Natural Resources, 2017, 32(7): 1 229-1 239.
王凤杰, 冯文兰, 扎西央宗, 等. 基于FY-3A/VIRR和TERRA/MODIS数据藏北干旱监测对比[J]. 自然资源学报, 2017, 32(7): 1 229-1 239.
86 ZENG Lin, ZHA Xiyangzong, FENG Wenlan, et al. Study on drought monitoring in northwestern Tibet by remote sensing based on FY-3A/VIRR data[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 334-341.
曾林, 扎西央宗, 冯文兰, 等. 基于FY-3A/VIRR数据的藏西北干旱遥感监测研究[J]. 冰川冻土, 2019, 41(2): 334-341.
87 DONG Yan. Drought monitoring in the central basin of “one river and two rivers” in Tibet based on remote sensing data[D]. Nanjing: Nanjing University of Information Science and Technology, 2009.
董妍. 基于遥感资料的西藏“一江两河”中部流域干旱监测研究[D]. 南京:南京信息工程大学, 2009.
88 LI Hongmei, MA Yushou. EOS/MODIS-based drought monitoring models for pasture in spring in Qinghai Province[J]. Pratacultural Science, 2008, 25(11): 20-23.
李红梅, 马玉寿. 基于EOS/MODIS的青海草原春季干旱监测模型[J]. 草业科学, 2008, 25(11): 20-23.
89 GAO Wei, AN Ru, WANG Zhe. Drought index and its application based on microwave remote sensing technology: a case study in the three-river headwaters region[J]. Arid Zone Research, 2017, 34(3): 541-550.
高炜, 安如, 王喆. 基于微波遥感技术的干旱监测指数及其应用研究: 以三江源区为例[J]. 干旱区研究, 2017, 34(3): 541-550.
90 MA Zhuanzhuan, ZHANG Mingjun, WANG Shengjie, et al. Characteristics and differences of temperature rise between the Qinghai-Tibetan Plateau region and northwest arid region of China during 1960-2015[J]. Plateau Meteorology, 2019, 38(1): 42-54.
马转转, 张明军, 王圣杰, 等. 1960—2015年青藏高寒区与西北干旱区升温特征及差异[J]. 高原气象, 2019, 38(1): 42-54.
91 YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change, 2014, 112: 79-91.
92 LI Lin, LI Hongmei, SHEN Hongyan, et al. The truth and inter-annual oscillation causes for climate change in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1 079-1 089.
李林, 李红梅, 申红艳, 等. 青藏高原气候变化的若干事实及其年际振荡的成因探讨[J]. 冰川冻土, 2018, 40(6): 1 079-1 089.
93 LI Lin, LI Xiaodong, XIAO Ruixiang, et al. The heterogeneity of climate change and its genesis in the northeastern Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 2019, 34(7): 1 496-1 505.
李林, 李晓东, 校瑞香, 等. 青藏高原东北部气候变化的异质性及其成因[J]. 自然资源学报, 2019, 34(7): 1 496-1 505.
94 WANG Yidan, HU Zeyong, SUN Genhou, et al. Discussion on the characteristics of plateau monsoon and its relationship with east Asian summer monsoon[J]. Plateau Meteorology, 2019, 38(3): 518-527.
王奕丹, 胡泽勇, 孙根厚, 等. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
95 Shihyen DAO, CHU Fukang. The 100-MB flow patterns in southern Asia in summer and its relation to the advance and retreat of the west-Pacific subtropical anticyclone over the far east [J]. Acta Meteorological Sinica,1964, 34(4): 385-396.
陶诗言, 朱福康. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系[J].气象学报, 1964, 34(4): 385-396.
96 WU Guoxiong, CHOU Jifan, LIU Qiming, et al. Dynamics of the formation and variation of subtropical high[M]. Beijing: Science Press, 2002:1-28.
吴国雄, 丑纪范, 刘屹岷, 等. 副热带高压形成和变异的动力学问题[M]. 北京:科学出版社, 2002:1-28.
97 LIU Huanzhu, ZHAO Shengrong, ZHAO Cuiguang, et al. Weather abnormal and evolutions of western Pacific subtropical high and south Asian high in summer of 2003[J]. Plateau Meteorology, 2006, 25(2): 169-178.
刘还珠, 赵声蓉, 赵翠光, 等. 2003年夏季异常天气与西太副高和南亚高压演变特征的分析[J]. 高原气象, 2006, 25(2): 169-178.
98 GONG Yuanfa, XU Meiling, HE Jinhai, et al. On the relationship between the eastern Tibet Plateau rainfall and subtropical high shift in summer[J]. Acta Meteorologica Sinica, 2006, 64(1): 90-99.
巩远发, 许美玲, 何金海, 等. 夏季青藏高原东部降水变化与副热带高压带活动的研究[J]. 气象学报, 2006, 64(1): 90-99.
99 ZHANG Q, HAN L Y, JIA J Y, et al. Management of drought risk under global warming[J]. Theoretical and Applied Climatology, 2016, 125(1/2): 187-196.
100 ZHANG Yili, LIU Linshan, WANG Zhaofeng, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2 865-2 875.
张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征[J]. 科学通报, 2019, 64(27): 2 865-2 875.
101 WANG L, CHEN W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China[J]. International Journal of Climatology, 2014, 34(6): 2 059-2 078.
102 JIN Z N, ZHUANG Q L, HE J S, et al. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100[J]. Environmental Research Letters, 2015, 10(8): 085007.
103 DING J Z, CHEN L Y, JI C J, et al. Decadal soil carbon accumulation across Tibetan permafrost regions[J]. Nature Geoscience, 2017, 10(6): 420-424.
104 DU M Y, LI Y N, ZHANG F W, et al. Recent changes of climate and livestock productions on the Tibetan Plateau and in situ observations of NEE[J]. Journal of Arid Land Studies, 2018, 28:139-142.
105 GANJURJAV H, HU G Z, WAN Y F, et al. Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau[J]. Ecology and Evolution, 2018, 8(3): 1 507-1 520.
106 WANG J S, WANG S P, ZHANG Q, et al. Characteristics of drought disaster-causing factor anomalies in southwestern and Southern China against the background of global warming[J]. Polish Journal of Environmental Studies, 2015, 24: 2 241-2 251.
107 ZHANG Fugui, ZHANG Shunyao, TANG Ruiling, et al. Methane emission characteristics of active layer in wetland permafrost area of the Tibetan Plateau[J]. Geophysical and Geochemical Exploration, 2017, 41(6): 1 027-1 036.
张富贵, 张舜尧, 唐瑞玲, 等. 青藏高原湿地冻土区活动层甲烷排放特征[J]. 物探与化探, 2017, 41(6): 1 027-1 036.
108 YUN H B, WU Q B, ZHUANG Q L, et al. Consumption of atmospheric methane by the Qinghai-Tibet Plateau alpine steppe ecosystem[J]. The Cryosphere, 2018, 12(9): 2 803-2 819.
109 ZHANG Z H, WANG G S, WANG H, et al. Warming and drought increase but wetness reduces the net sink of CH4 in alpine meadow on the Tibetan Plateau[J]. Applied Soil Ecology, 2021,167:104061.
110 CHEN Nan. High resolution simulation of regional climate change in China under two RCP scenarios[D]. Chengdu: Chengdu University of Information Technology, 2019.
陈楠.两种RCP情景下中国区域气候变化的高分辨率模拟[D].成都: 成都信息工程大学, 2019.
111 ZHAO T B, DAI A G. The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario[J]. Journal of Climate, 2015, 28(11): 4 490-4 512.
112 ZHAO T B, DAI A G. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes[J]. Climatic Change, 2017, 144(3): 535-548.
113 DUAN Qingyun, XIA Jun, MIAO Chiyuan, et al. The uncertainty in climate change projections by global climate models[J]. Chinese Journal of Nature, 2016, 38(3): 182-188.
段青云, 夏军, 缪驰远, 等. 全球气候模式中气候变化预测预估的不确定性[J]. 自然杂志, 2016, 38(3): 182-188.
114 LUN Y R, LIU L, CHENG L, et al. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau[J]. International Journal of Climatology, 2021, 41(7): 3 994-4 018.
115 HU Qin, JIANG Dabang, FAN Guangzhou. Climate change projection on the Tibetan Plateau: results of CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 260-270.
胡芩, 姜大膀, 范广洲. 青藏高原未来气候变化预估: CMIP5模式结果[J]. 大气科学, 2015, 39(2): 260-270.
116 LI Linchao. Temporal-spatial evolution of extreme temperature, precipitation and drought event and its projection by multi-model ensemble[D]. Yangling: Northwest A & F University, 2019.
李林超. 极端气温、降水和干旱事件的时空演变规律及其多模式预测[D]. 杨凌: 西北农林科技大学, 2019.
117 IPCC. Working group I contribution to the IPCC fifth assessment report, climate change 2013: the physical science basis: summary for policymakers[R]. Geneva, Switzerland: World Meteorological Organization, 2013.
118 ZHANG Renhe, SU Fengge, JIANG Zhihong, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J]. Chinese Science Bulletin, 2015, 60(32): 3 036-3 047.
张人禾, 苏凤阁, 江志红, 等. 青藏高原21世纪气候和环境变化预估研究进展[J]. 科学通报, 2015, 60(32): 3 036-3 047.
119 ZHANG Yujing. High resolution numerical simulation and prediction of regional extreme climate events in China by precis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
张玉静. PRECIS 对中国区域极端气候事件的高分辨率数值模拟与预估[D]. 北京: 中国农业科学院, 2017.
120 LANG Xianmei, SUI Yue. Changes in mean and extreme climates over China with a 2 °C global warming[J]. Chinese Science Bulletin, 2013, 58(8): 734-742.
郎咸梅, 隋月.全球变暖情景下中国平均气候和极端气候事件变化预估[J]. 科学通报,2013, 58(8):734-742.
121 HU Ting, SUN Ying, ZHANG Xuebin. Temperature and precipitation projection at 1.5 and 2℃ increase in global mean temperature[J]. Chinese Science Bulletin, 2017, 62(26): 3 098-3 111.
胡婷, 孙颖, 张学斌. 全球1.5和2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3 098-3 111.
122 TRENBERTH K E. Framing the way to relate climate extremes to climate change[J]. Climatic Change, 2012, 115(2): 283-290.
123 LIU K, JIANG D B, MA J Y. Drought over China in the 21st century: results of RegCM3[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6): 509-513.
124 ZHANG Bing, GONG Yuanfa, XU Ying, et al. Evaluation on the simulation of the drought change in China based on global climate models from CMIP5[J]. Journal of Arid Meteorology, 2014, 32(5): 694-700.
张冰, 巩远发, 徐影, 等. CMIP5全球气候模式对中国地区干旱变化模拟能力评估[J]. 干旱气象, 2014, 32(5): 694-700.
125 ZHAO Yilei. Simulation and prediction of regional meteorological drought events in China[D]. Nanjing: Nanjing University of Information Science and Technology, 2013.
赵一磊.中国区域性气象干旱事件的模拟和预估[D]. 南京:南京信息工程大学, 2013.
126 XU Chonghai, LUO Yong, XU Ying. Simulation and prediction of the drought variations in China by Multi-model ensemble[J]. Journal of Glaciology and Geocryology, 2010,32(5):867-874.
许崇海, 罗勇, 徐影. IPCC AR4多模式对中国地区干旱变化的模拟及预估[J]. 冰川冻土, 2010, 32(5): 867-874.
127 ZHOU Xiuhua. Simulation and prediction of climate in southwest and its surrounding areas of China[D]. Beijing: Chinese Academy of Meteorological Sciences, 2014.
周秀华. 我国西南及周边地区气候的模拟和预估[D].北京:中国气象科学研究院, 2014.
128 GUAN Yinghui. Extreme climate change and its future trend prediction in the Yangtze River Basin[D]. Yangling: Northwest A&F University, 2015.
关颖慧.长江流域极端气候变化及其未来趋势预测[D].杨凌:西北农林科技大学, 2015.
129 GONG Tiantian. Analysis of the spatial and temporal characteristics of droughts in China and its population exposure based on PDSI[D]. Nanjing: Nanjing University of Information Science & Technology, 2018.
宫甜甜.基于PDSI的中国干旱时空变化及其人口暴露度研究[D].南京:南京信息工程大学, 2018.
130 GUO H, BAO A M, LIU T, et al. Evaluation of PERSIANN-CDR for meteorological drought monitoring over China[J]. Remote Sensing, 2016, 8(5): 379.
131 NIU Wenjuan, GOU Si, LIU Chao, et al. Preliminary studies on ecological drought[J]. Journal of Irrigation and Drainage, 2016, 35(): 84-89.
牛文娟, 苟思, 刘超, 等. 生态干旱初探[J]. 灌溉排水学报, 2016, 35(): 84-89.
132 WANG Chenghai, WU Yongping, CUI Yang. Evaluating the progress of the CMIP and its application prospect in China[J]. Advances in Earth Science, 2009, 24(5): 461-468.
王澄海, 吴永萍, 崔洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
133 JI Zhenming. High resolution numerical simulation of climate change in China under new emission scenarios[D].Beijing: Chinese Academy of Sciences, 2012.
吉振明. 新排放情景下中国气候变化的高分辨率数值模拟研究[D]. 北京:中国科学院研究生院, 2012.
134 HU Qin, JIANG Dabang, FAN Guangzhou. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938.
胡芩, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938.
135 BRADFORD J B, SCHLAEPFER D R, LAUENROTH W K, et al. Robust ecological drought projections for drylands in the 21st century[J]. Global Change Biology, 2020, 26(7): 3 906-3 919.
136 JI Z M, KANG S C. Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J]. Journal of the Atmospheric Sciences, 2013, 70(4): 1 278-1 290.
137 SU F G, DUAN X L, CHEN D L, et al. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. Journal of Climate, 2013, 26(10): 3 187-3 208.
138 TONG K, SU F G, YANG D Q, et al. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J]. International Journal of Climatology, 2014, 34(2): 265-285.
139 LIAN X, PIAO S L, LI L Z X, et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation[J]. Science Advances, 2020, 6(1): eaax0255.
140 MA Ning. Comparison of variations in land surface evapotranspiration between typical alpine steppe and wetland ecosystems on the Tibetan Plateau over the last four decades[J]. Advances in Earth Science, 2021, 36(8): 836-848.
马宁. 近40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
141 GUO D L, SUN J Q, YU E T. Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau[J]. Atmospheric and Oceanic Science Letters, 2018, 11(3): 219-227.
142 SU Xiaoling, JIANG Tianliang, NIU Jiping. Concept and research progress of ecological drought[J]. Water Resources Protection, 2021, 37(4): 15-21, 28.
粟晓玲, 姜田亮, 牛纪苹. 生态干旱的概念及研究进展[J]. 水资源保护, 2021, 37(4): 15-21, 28.
143 TIETJEN B, SCHLAEPFER D R, BRADFORD J B, et al. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands[J]. Global Change Biology, 2017, 23(7): 2 743-2 754.
144 CRAUSBAY S D, RAMIREZ A R, CARTER S L, et al. Defining ecological drought for the twenty-first century[J]. Bulletin of the American Meteorological Society, 2017, 98(12): 2 543-2 550.
[1] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[2] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[3] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[4] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[5] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[6] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[7] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[8] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[9] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[10] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[11] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[12] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[13] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[14] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[15] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
阅读次数
全文


摘要