地球科学进展 ›› 1999, Vol. 14 ›› Issue (3): 306 -311. doi: 10.11867/j.issn.1001-8166.1999.03.0306

全球变化研究 上一篇    下一篇

花粉植被化与全球古植被计划研究
于 革   
  1. 中国科学院南京地理与湖泊研究所,江苏 南京 210008
  • 收稿日期:1998-08-18 修回日期:1998-11-20 出版日期:1999-06-01
  • 通讯作者: 于革,女,1957年11月出生,研究员,主要从事第四纪气候与花粉学研究。
  • 基金资助:

    国家教育部1996年“留学回国人员科研启动资金”和中国科学院1998年“百人计划”资助。

STUDIES ON BIOMIZATION AND THE GLOBAL PALAEO-VEGETATION PROJECT

YU Ge   

  1. Nanjing Institute of Geography and Limnology,CAS,Nanjing 210008,China
  • Received:1998-08-18 Revised:1998-11-20 Online:1999-06-01 Published:1999-06-01

花粉是全球陆地分布最广的古气候环境信息来源。以花粉为基本资料的重建全球古植被计划自1994年实施以来,经数百名国际学者包括我国在内的第四纪花粉学等领域的专家合作,在综合和重建晚第四纪植被和制图方面取得了重大进展。研究成果提供了6 ka BP和18 ka BP两个时期的植被,在填补地理空白的基础上构成了全球规模古植被分布。对模拟未来气候植被、CO2和大气成分及其作用、千年尺度气候变化成因等全球变化热点研究将发挥重大作用。

Pollen records from dated sediments give spatially extensive coverage of data on vegetation distribution changes and therefore, can be used for proxy indicators for reconstructions of palaeovegetation and palaeoclimate. An international project on pollen-based reconstruction of global palaeovegetation (The BIOME 6000 project of IGBP) has made great progress in the synthesis and mapping of Late Quaternary palaeoecology since its inauguration in 1994 with an international cooperation of Quaternary palynologists,palaeoecologists and botanists. The project is focus on the mid-Holocene and the last glacial maximum,conventionally associated with the millennia around 6 ka BP and 18 ka BP as key periods at which to attempt to reconstruct natural changes in the Earth system. Applications of pollen data are expected to use a global synthesis. Success depends on community-wide participation for data compilation and quality assurance, and on a robust methodology for assigning palaeorecords to biomes. Thus the biomes are applied by a global consistent standard and can be used for various vegetation types in different regions. By involving
regional experts in PFT assignments, one can combine data from different floras without compromising global consistency in biome assignments and the primary data are put into community data bases. The aim of BIOME6000 is to collect pollen data for 6 ka BP and 18 ka BP and to construct global maps of biomes,using a standard objective biomization technique which assign pollen spectra to biomes via plant functional types (PFTs). Present results have generated state-of-the-art palaeovegetation maps based on the individual site data for the two palaeo-time periods in globe-scale; many sites are over some regions in previous geographical gaps. The possibility of achieving greater realism in global depends not only on biosphere modeling developments, but also on the availability of key input information of such as basic data on PFTs, and global-scale validation data sets. Major benefits will be envisaged to be obtained from a co-evolution of the synthesis and analysis of data describing vegetation changes from the past, such as benchmarks for evaluating palaeoclimate simulations, to test biogeophysical feedback hypotheses, and to help derive estimates of changes in biospheric variables that are related to the distribution of vegetation types.
Developments of BIOME 6000 products will play great roles in the future global change science, including fields of the coupled climate-biome model simulations, the functions and impacts of atmospheric trace-gas and aerosol composition on climate changes, and the mechanisms on millennial time scale.This paper is attempted to introduce the project BIOME6000 and involved international participants including Chinese Quaternary palynologiests cooperation, to describe the method used for biome reconstruction, to review the major progresses and present products, and to discuss the applications of possible developments for the near future.

中图分类号: 

〔1〕Kutzbach J E, Webb T III. Conceptual basis for understanding Late-Quaternary climates. In: Wright Jr H Eet aleds.Global climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, 1993. 5~11.
〔2〕COHMAP Members. Climatic changes of the last 18 000 years:observations and model simulations. Science, 1988, 241: 1043~1 052.
〔3〕Joussaume S, Taylor K E. Status of the paleoclimate modeling intercomparison project (PMIP). In: Proceedings of the First International AMIP Scientific Conference (Monterey, California, USA, 15~19 May 1995). World Meteorology Organization, Geneva. 1995,92: 425~430.
〔4〕Foley J A. The sensitivity of the terrestrial biosphere to climatic change: a simulation of the middle Holocene. Global Biogeochemical Cycles, 1994, 8 : 505~525.
〔5〕Kutzbach J E, Bonan G, Foley J,et al. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 1996, 384 : 623~626.
〔6〕TEMPO Members. Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6 000 years BP. Global Biogeochemical Cycles, 1996, 10 :727~736.
〔7〕VEMAP Members. Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2doubling. Global Biogeo-chemical Cycles, 1995, 9 : 407~437.
〔8〕Van Campo E, Guiot J, Peng C. A data-based re-appraisal of the terrestrial carbon budget at the last glacial maximum.Globle and Planetary Change, 1993, 8 : 189~201.
〔9〕Steffen W L, Cramer W, Plohl M,et al. Global vegetation models: incorporating transient changes to structure and composition. Journal of Vegetation Science, 1996, 7 : 321~328.
〔10〕Mellilo J, Prentice I C, Schulze E-D,et al. Terrestrial biotic responses to environmental change and feedbacks to climate.In: Houghton J Tet al. eds. Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, 1996. 445~482.
〔11〕Prentice I C, Webb III T. BIOME 6000: reconstructing global mid-Holocene vegetation patterns from palaeoecological records. Journal of Biogeography, 1998, 25: 997~1 006.
〔12〕Anonymous. Global Analysis, Interpretation and Modelling.IGBP Report series, 1994, 30 : 7~43.
〔13〕Guiot J. Structural characteristics of proxy data and methods for quantitative climate reconstruction. Palaklimaforschung,1991, 6:271~284.
〔14〕Prentice I C, Guiot J, Huntley B,et al. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics, 1996, 12 : 185~194.
〔15〕Guiot J, Cheddadi R, Prentice I C,et al. A method of biome and land surface mapping from pollen data: application to Europe 6 000 years ago. Palaeoclimates: Data and Modelling,1996, 1: 311~324.
〔16〕Webb III T. A Global Paleoclimatic Data Base for 6 000 yr BP. DOE/eV/10097-6, US Department of Energy, Washington, 1985. 155.
〔17〕于革,孙湘君,秦伯强,等.中国中全新世的植被模拟.中国科学(D辑), 1998, 28: 73~78.
〔18〕Yu G, Prentice I C, Harrison S P,et al. Biome reconstructions for China at 0 and 6ka. Journal of Biogeography, 1998,25:1 055~1 069.
〔19〕Woodward F I. Climate and plant distribution. Cambridge University Press, Cambridge, 1987. 174.
〔20〕Prentice I C, Cramer W, Harrison S P,et al. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 1992, 19: 117~134.
〔21〕于革. 1997年夏国际古气候会议的热点之一:中国的中全新世和末次盛冰期.科学通报, 1997, 42: 1 903~1 904.
〔22〕任国玉.亚太地区晚第四纪古环境会议简介.地球科学进展, 1998, 13(3): 318.
〔23〕Peyron O, Guiot J, Cheddadi R,et al. Climate reconstruction in Europe for 18 000 YR BP from pollen data. Quaternary Research, 1998, 49: 183~196.
〔24〕Claussen M, Gayler V. Modelling paleo-and present-day vegetation patterns. Annales Geophysicae, 1995, 13 ( Suppl II): 357.
〔25〕Foley J A, Prentice I C, Ramankutty N,et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 1996, 10 : 603~628.
〔26〕Jacobson G L, Webb III T, Grimm E C. Patterns and rates of vegetation change during the deglaciation of eastern North America. In: Ruddiman W F,et aleds. North America and adjacent Oceans during the Last Deglaciation. The Geology of North America, 1987, v. K-3: 277~287.
〔27〕Berglund B E, Barnekow L, Hammarlund D,et al. Holocene forest dynamics and climate changes in the Abisko area,northern Sweden-the Sonesson model of vegetation history reconsidered and confirmed. Ecological Bulletins, 1996, 45:15~30.
〔28〕Koc N, Schrader H. Surface sediment diatom distribution and Holocene paleotemperature variations in the Greenland,Iceland and Norwegian Sea. Paleoceanography, 1990, 5:557~580.
〔29〕Sarnthein M, Jansen E, Weinelt M. Variations in Atlantic surface ocean paleoceangraphy, 50°~80°: A time-slice record the last 30 000 years. Paleoceangraphy, 1995, 10: 1063~1 094.
〔30〕Bjock S, Kromer B, Johnsen S,et al. Synchronized terrestrial atmospheric deglacial records around the North Atlantic.Science, 1996, 274 : 1 155~1 159.
〔31〕Peltier W R. Ice age paleotopography. Science, 1994, 265:195~201.
〔32〕Lorius C, Oeschger H. Palaeo-perspectives: reducing uncertainties in global change? Ambio, 1994, 23: 30~36.
〔33〕de Noblet N, Prentice I C, Joussaume S,et al. Possible role of atmospheric-biosphere interactions in triggering the last glaciation. Geophysical Research Letters, 1996, 23: 3 191~3 194.

[1] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
[2] 刘冰,靳鹤龄,孙忠,苏志珠,张彩霞. 青藏高原东北部共和盆地风成沉积地球[J]. 地球科学进展, 2012, 27(7): 788-799.
[3] 马耀明,姚檀栋,胡泽勇,王介民. 青藏高原能量与水循环国际合作研究的进展与展望[J]. 地球科学进展, 2009, 24(11): 1280-1284.
[4] 曹光杰,王建,屈贵贤. 末次盛冰期以来长江河口段河道演变研究综述[J]. 地球科学进展, 2006, 21(10): 1039-1045.
[5] 冯筠;高峰;黄新宇. 构建天地一体化的全球对地观测系统——三次国际地球观测峰会与GEOSS[J]. 地球科学进展, 2005, 20(12): 1327-1333.
[6] 陈春;张志强;林海. 地球模拟器及其模拟研究进展[J]. 地球科学进展, 2005, 20(10): 1135-1142.
[7] 柴育成,姚玉鹏,田兴有,易善锋,肖宗正,肖建新. 面向世界,积极参与国际竞争[J]. 地球科学进展, 1998, 13(1): 75-77.
[8] 孙和平,许厚泽. 国际地球动力学合作项目的实施与展望[J]. 地球科学进展, 1997, 12(2): 152-157.
[9] 任国玉. 国外末次冰期极盛期以来陆地植物花粉研究主要进展[J]. 地球科学进展, 1994, 9(2): 59-64.
[10] 任国玉. 国外末次冰期极盛期以来环境演变研究的主要特点[J]. 地球科学进展, 1994, 9(2): 65-69.
阅读次数
全文


摘要