地球科学进展 ›› 2021, Vol. 36 ›› Issue (12): 1313 -1323.

全球变化研究 上一篇    下一篇

气候系统中临界转变的研究进展与展望
尹彩春 1 , 2( ), 赵文武 1 , 2( ), 李琰 1 , 2, 李冬冬 3   
  1. 1.北京师范大学地理科学学部 地表过程与资源生态国家重点实验室,北京 100875
    2.北京师范大学 地理科学学部 陆地表层系统科学与可持续发展研究院,北京 100875
    3.复旦大学大气 与海洋科学系 大气科学研究院,上海 200438
  • 收稿日期:2021-07-14 修回日期:2021-10-10 出版日期:2021-12-10
  • 通讯作者: 尹彩春,赵文武,李琰 E-mail:caichun@mail.bnu.edu.cn;zhaoww@bnu.edu.cn
  • 基金资助:
    国家重点研发计划项目“气候变化对生态系统土壤保持服务的影响”(2017YFA0604704)

Critical Transitions in the Climate System: Progress and Prospect

Caichun YIN 1 , 2( ), Wenwu ZHAO 1 , 2( ), Yan LI 1 , 2, Dongdong LI 3   

  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
    2.Institute of Land Surface System and Sustainable Development,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
    3.Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences,Fudan University,Shanghai 200438,China
  • Received:2021-07-14 Revised:2021-10-10 Online:2021-12-10 Published:2022-01-20
  • Contact: Caichun YIN,Wenwu ZHAO,Yan LI E-mail:caichun@mail.bnu.edu.cn;zhaoww@bnu.edu.cn
  • About author:YIN Caichun (1998-), female, Longnan City, Gansu Province, Ph. D student. Research areas include human-nature system and sustainable development. E-mail: caichun@mail.bnu.edu.cn
  • Supported by:
    the National Key Research and Development Program of China "Effects of climate change on ecosystem soil conservation services"(2017YFA0604704)

气候系统属于复杂系统,可以存在双(多)稳态。当系统的控制参数处于临界点附近时,控制参数的微小变化或者外界施加的微小干扰,可能导致系统状态由一种稳态不可逆地突变到另一种稳态,发生临界转变。系统梳理了气候系统中临界转变的基础理论和主要研究内容,探讨了其研究态势,并提出了现有研究存在的问题和重点研究方向。结果表明: 现有研究内容主要聚焦于不同时空尺度气候子系统的临界转变现象及其研究方法、临界转变的驱动因素和形成机制、临界转变的早期预警信号及其检测方法; 气候系统中临界转变的研究表现出以尺度拓展、学科交叉、级联效应、综合集成和人类响应等为主要特点的研究态势; 现有研究存在的问题包括:基础概念的认知和使用有待统一和规范,数据可获取性和定量分析模型的准确性有待提升,临界转变及其潜在气候风险研究有待深化; 我国未来的研究应重点关注临界转变与我国关键生态安全屏障、区域发展格局以及人类安全与福祉的关系等领域。

Climate system is a complex system, which can exist in dual (alternative /multiple) stable states. When the control parameters of the system are near the critical point, the small change of the control parameters or the small interference from the outside may lead to the irreversibly abrupt change of the system state from one stable state to another stable state, which is called the critical transition. This review systematically summarizes the basic theory and main research contents of critical transition in climate system, discusses its research trend, and puts forward existing problems and key research directions. The results show that: The current research mainly focuses on the phenomenon of critical transition in subsystem of climate system at different spatio-temporal scales and corresponding research methods, the driving factors and formation mechanism of critical transition, and the early warning signals and detection methods of critical transition. The research of critical transition in climate system tends to expand the research scale and scope and to carry out interdisciplinary research. It also emphasizes the cascading effect and tends to carry out global integrated research. In addition, related researches are seeking positive coping strategies to prevent the negative effects of critical transition. The problems of existing research include: the cognition and use of basic concepts need to be unified and standardized, data accessibility and accuracy of quantitative analysis model need to be improved, and critical transition and its potential climate risks need to be further studied. Future research in China should focus on the relationship between critical transition and China's key ecological security barriers (e.g., the Tibetan Plateau), regional development patterns, and human security and well-being. Based on the bifurcation theory of climate dynamics system and the research progress of critical transition in climate system, this review can provide reference for the study of climate change and earth system in China.

中图分类号: 

图1 临界转变和临界点概念的图解(据参考文献[ 8 ]修改)
Fig. 1 Schematic diagram of the critical transition and critical pointmodified after reference 8 ])
图2 气候系统、生态系统、社会经济系统临界点的互动效应和交叉研究 54
Fig. 2 Interactive effects and interdisciplinary research among critical points of climate systemecosystemand socio-economic system 54
1 ZHOU Tianjun, ZOU Liwei, WU Bo, et al. Development of earth/climate system models in China:a review from the Coupled Model Intercomparison Project perspective [J]. Acta Meteorologica Sinica, 2014, 72(5):892-907.
周天军, 邹立维, 吴波, 等. 中国地球气候系统模式研究进展: CMIP计划实施近20年回顾 [J]. 气象学报, 2014, 72(5): 892-907.
2 HUANG Ronghui. Review and prospect of the development of atmospheric science [J]. Advances in Earth Science, 2001, 16 (5): 48-62.
黄荣辉. 大气科学发展的回顾与展望 [J]. 地球科学进展, 2001, 16(5): 48-62.
3 QIN Dahe. Climate change science and sustainable development [J]. Progress in Geography, 2014, 33(7): 874-883.
秦大河. 气候变化科学与人类可持续发展 [J]. 地理科学进展, 2014, 33(7): 874-883.
4 IPCC. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change [R]. Switzerland: IPCC, 2013.
5 ALLEY R B, MAROTZKE J, NORDHAUS W D, et al. Abrupt climate change [J]. Science, 2003, 299(5 615): 2 005-2 010.
6 LENTON T M, HELD H, KRIEGLER E, et al. Tipping elements in the Earth's climate system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 1 786-1 793.
7 SUN Yun, YU Deyong, LIU Yupeng, et al. Advances in detection of major mutations in ecosystems [J]. Chinese Journal of Plant Ecology, 2013, 37: 1 059-1 070.
孙云, 于德永, 刘宇鹏, 等. 生态系统重大突变检测研究进展[J]. 植物生态学报, 2013, 37: 1 059-1 070.
8 SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions [J]. Nature, 2009, 461(7 260): 53-59.
9 SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions [J]. Science, 2012, 338(6 105): 344-348.
10 XU Chi, WANG Haijun, LIU Quanxing, et al. Alternative stable states and tipping points of ecosystems [J]. Biodiversity Science, 2020, 28(11):1 417-1 430.
徐驰, 王海军, 刘权兴, 等. 生态系统的多稳态与突变[J]. 生物多样性, 2020, 28(11): 1 417-1 430.
11 LIU Bingzheng, PENG Jianhua. Nonlinear dynamics [M]. Beijing: Higher Education Press, 2004.
刘秉正, 彭建华. 非线性动力学[M]. 北京: 高等教育出版社, 2004.
12 Strogatz S H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering [M]. 2nd ed. Boca Raton: CRC Press, 2018.
13 BOERS N. Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record [J]. Nature Communications, 2018, 9: 2556.
14 RIETKERK M, DEKKER S C, DE RUITER P C, et al. Self-organized patchiness and catastrophic shifts in ecosystems [J]. Science, 2004, 305: 1 926-1 929.
15 ZENG X D, SHEN S S P, ZENG X B, et al. Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation [J]. Geophysical Research Letters, 2004, 31: L05501.
16 VERONIKA S, ELENA S, BODO B, et al. Tipping elements of the Indian monsoon: prediction of onset and withdrawal [J]. Geophysical Research Letters, 2016, 43(8): 3 982-3 990.
17 GALLE S, GRIPPA M, PEUGEOT C, et al. AMMA‐CATCH, a critical zone observatory in West Africa monitoring a region in transition [J]. Vadose Zone Journal, 2018, 17(1): 1-24.
18 WU Guoxiong, CHOU Jifan, LIU Yimin, et al. Advances and prospects of subtropical high [J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 503-517.
吴国雄, 丑纪范, 刘屹岷, 等. 副热带高压研究进展及展望[J]. 大气科学, 2003, 27(4): 503-517.
19 HONG M, ZHANG R, HU Y, et al. Catastrophe and mechanism analyses of multiple equilibria in the Western Pacific Subtropical High System based on objective fitting of spatial basis functions [J]. Monthly Weather Review, 2016, 144: 997-1 015.
20 GHIL M, LUCARINI V. The physics of climate variability and climate change [J]. Reviews of Modern Physics, 2020, 92(3): 035002.
21 LIU Z, WANG Y, GALLIMORE R, et al. On the cause of abrupt vegetation collapse in North Africa during the Holocene: climate variability vs. vegetation feedback [J]. Geophysical Research Letters, 2006, 33: L22709.
22 STOMMEL H. Thermohaline Convection with two stable regimes of Flow [J]. Tellus, 1961, 13: 224-230.
23 ZHAO Dongsheng, ZHANG Xuemei. Review of alternative stable states theory in ecosystem[J]. Acta Ecologica Sinica, 2021, 41(16): 6 314-6 328.
赵东升, 张雪梅. 生态系统多稳态研究进展[J]. 生态学报, 2021, 41(16): 6 314-6 328.
24 BERDUGO M, DELGADO-BAQUERIZO M, SOLIVERES S, et al. Global ecosystem thresholds driven by aridity [J]. Science, 2020, 367: 787-790.
25 HU W, RAN J, DONG L, et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships [J]. Nature Communications, 2021, 12: 5350.
26 National Research Council of the National Academies. Surface temperature reconstructions for the last 2000 years [M]. Washington DC: The National Academies Press, 2006.
27 KRIEGLER E, HALL J W, HELD H, et al. Imprecise probability assessment of tipping points in the climate system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5 041-5 046.
28 LENTON T M, MYERSCOUGH R J, MARSH R, et al. Using GENIE to study a tipping point in the climate system [J]. Philosophy Transactions of the Royal Society A—Mathematical Physics and Engineering Sciences, 2008, 367: 871-884.
29 LENTON T M. Environmental tipping points [J]. Annual Review of Environment and Resources, 2013, 38: 1-29.
30 KLOSE A K, KARLE V, WINKELMANN R, et al. Emergence of cascading dynamics in interacting tipping elements of ecology and climate [J]. Royal Society Open Science, 2020, 7(6): 200599.
31 NEPSTAD D C, STICKLER C M, FILHO B S, et al. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point [J]. Philosophical Transactions of the Royal Society B—Biological Sciences, 2008, 363(1 498): 1 737-1 746.
32 BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests [J]. Science, 2008, 320: 1 444-1 449.
33 GE Quansheng, WANG Fang, CHEN Panqin, et al. Progress and trend of global change research [J]. Advances in Earth Science, 2007, 22(4): 417-427.
葛全胜, 王芳, 陈泮勤, 等. 全球变化研究进展和趋势 [J]. 地球科学进展, 2007, 22(4):417-427.
34 NORTH G R. The small ice cap instability in diffusive climate models [J]. Journal of the Atmospheric Sciences, 1984, 41(23): 3 390-3 395.
35 EISENMAN I, WETTLAUFER J S. Nonlinear threshold behavior during the loss of Arctic Sea ice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1):28-32.
36 ABBOT D S, SILBER M, PIERREHUMBERT T. Bifurcations leading to summer Arctic Sea ice loss [J]. Journal of Geophysical Research, 2011, 116: D19120.
37 TIETSCHE S, NOTZ D, JUNGCLAUS J H, et al. Recovery mechanisms of Arctic summer sea ice [J]. Geophysical Research Letters, 2011, 38: L02707.
38 HOLLAND M M, BITZ C M, TREMBLAY B. Future abrupt reductions in the summer Arctic sea ice [J]. Geophysical Research Letters, 2006, 33: L23503.
39 KUEHN C. A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics [J]. Physica D: Nonlinear Phenomena, 2011, 240(12): 1 020-1 035.
40 COLE L E S, BHAGWAT S A, WILLIS K J. Recovery and resilience of tropical forests after disturbance [J]. Nature Communications, 2014, 5:3906.
41 DAKOS V, VAN NES E H, DONANGELO R, et al. Spatial correlation as leading indicator of catastrophic shifts [J]. Theoretical Ecology, 2009, 3(3): 163-174.
42 DAKOS V, SCHEFFER M, NES E H V, et al. Slowing down as an early warning signal for abrupt climate change [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(38): 14 308-14 312.
43 LENTON T M, LIVINA V N, DAKOS V, et al. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness [J]. Philosophical transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370(1 962):1 185-1 204.
44 LENTON T M. Tipping positive change [J]. Philosophical Transactions of the Royal Society B, 2020, 375(1 794): 20190123.
45 GUTTAL V, JAYAPRAKASH C. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems [J]. Theoretical Ecology, 2008, 2(1): 3-12.
46 YIN Z, DEKKER S C, RIETKERK M, et al. Network based early warning indicators of vegetation changes in a land-atmosphere model [J]. Ecological Complexity, 2016, 26: 68-78.
47 LENTON T M. Early warning of climate tipping points [J]. Nature Climate Change, 2011, 1(4): 201-209.
48 TORNQVIST T E, JANKOWSKI K L, YONGXIANG L, et al. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise [J]. Science Advances, 2020, 6(21): eaaz5512.
49 THOMAS Z. Using natural archives to detect climate and environmental tipping points in the Earth system [J]. Quaternary Science Reviews, 2016, 152: 60-71.
50 LEMOINE D, TRAEGER C P. Economics of tipping the climate dominoes [J]. Nature Climate Change, 2016, 6: 514-519.
51 LADE S J, TAVONI A, LEVIN S A, et al. Regime shifts in a social-ecological system [J]. Theoretical Ecology, 2013, 6(3): 359-372.
52 CHAVAS J P, GRAINGER C, HUDSON N. How should economists model climate? Tipping points and nonlinear dynamics of carbon dioxide concentrations [J]. Journal of Economic Behavior & Organization, 2016, 132(PT.B): 56-65.
53 OTTO I M, DONGES J F, CREMADES R, et al. Social tipping dynamics for stabilizing Earth's climate by 2050 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5):2 354-2 365.
54 GINKEL K C H VAN, BOTZEN W J W, HAASNOOT M, et al. Climate change induced socio-economic tipping points: review and stakeholder consultation for policy relevant research [J]. Environmental Research Letters, 2020, 15(2): 2-17.
55 RAMANATHAN V, CHUNG C, KIM D, et al. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(15): 5 326-5 333.
56 LENTON T M, ROCKSTROEM J, GAFFNEY O, et al. Climate tipping points-too risky to bet against [J]. Nature, 2019, 575(7 784): 592-595.
57 ROCHA J C, PETERSON G, BODIN O, et al. Cascading regime shifts within and across scales [J]. Science, 2018, 362(6 421): 1 379-1 383.
58 STEFFEN W, ROCKSTRÖM J, RICHARDSON K, et al. Trajectories of the Earth system in the Anthropocene [J]. Proceedings of the National Academy of sciences of the United States of America, 2018, 115(33): 8 252-8 259.
59 TAN I, STORELVMO T, ZELINKA M D. Observational constraints on mixed-phase clouds imply higher climate sensitivity [J]. Science, 2016, 352(6 282): 224-227.
60 HOOIDONK R V, MAYNARD J, TAMELANDER J, et al. Local-scale projections of coral reef futures and implications of the Paris agreement[J]. Scientific Reports, 2016, 6: 39666.
61 SUDING K N, GROSS K L, HOUSEMAN G R. Alternative states and positive feedbacks in restoration ecology [J]. Trends in Ecology and Evolution, 2004, 19: 46-53.
62 HOLMGREN M, SCHEFFER M. Strong facilitation in mild environments: the stress gradient hypothesis revisited [J]. Journal of Ecology, 2010, 98: 1 269-1 275.
63 WESTLEY F, OLSSON P, FOLKE C, et al. Tipping toward sustainability: emerging pathways of transformation [J]. Ambio, 2011, 40(7):762-780.
64 HAYWOOD J M, JONES A, BELLOUIN N, et al. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall [J]. Nature Climate Change, 2013, 3(7): 660-665.
65 ASHWIN P, WIECZOREK S, VITOLO R, et al. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system [J]. Philosophical Transactions of the Royal Society A, 2012, 370: 1 166-1 184.
66 SELKOE K A, BLENCKNER T, CALDWELL M R, et al. Principles for managing marine ecosystems prone to tipping points [J]. Ecosystem Health and Sustainability, 2015, 1(5). DOI:10.1890/EHS14-0024.1 .
67 ZHAO W W, LIU Y X, DARYANTO S, et al. Metacoupling supply and demand for soil conservation service [J]. Current Opinion in Environmental Sustainability, 2018, 33: 136-141.
68 TÀBARA J D, FRANTZESKAKI N, HÖLSCHER K, et al. Positive tipping points in a rapidly warming world [J]. Current Opinion in Environmental Sustainability, 2018, 31:120-129.
69 LONTZEK T, CAI Y, JUDD K, et al. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy [J]. Nature Climate Change, 2015, 5: 441-444.
70 IPCC. Climate change 2007: the physical science basis. contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change [R]. Switzerland: IPCC, 2007.
71 ROBINSON A, CALOV R, GANOPOLSKI A. Multistability and critical thresholds of the Greenland ice sheet [J]. Nature Climate Change, 2012, 2: 429-432.
72 WU G, DUAN A, LIU Y, et al. Tibetan Plateau climate dynamics: recent research progress and outlook [J]. National Science Review, 2015, 2: 100-116.
73 LI Yaohui, MENG Xianhong, ZHANG Hongsheng, et al. Advances and key scientific issues of land-atmosphere coupling between the Tibet Plateau and the northern desert and its impact on Northern China drought [J]. Advances in Earth Science, 2021, 36(3): 265-275.
李耀辉,孟宪红,张宏升,等.青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
74 WANG Yujun, REN Hongli, WANG Lin. Study of seasonal-interannual climate predictions of temperature and snow depth over the third pole [J]. Advances in Earth Science, 2021, 36(2): 198-210.
汪芋君,任宏利,王琳.第三极地区气温和积雪的季节—年际气候预测研究[J].地球科学进展,2021,36(2):198-210.
75 SHI Yafeng, SHEN Yongping, LI Dongliang, et al. Characteristics and trends of climate transition from warm-dry to warm-wet in northwest China[J]. Quaternary Sciences, 2003, 23(2): 152-164.
施雅风, 沈永平, 李栋梁,等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.
76 XU D, LIN Y. Impacts of irrigation and vegetation growth on summer rainfall in the Taklimakan Desert [J]. Advances in Atmospheric Sciences, 2021, 38: 1 863-1 872.
77 ZHANG C, CAI W J, LIU Z, et al. Five tips for China to realize its co-targets of climate mitigation and Sustainable Development Goals (SDGs) [J]. Geography and Sustainability, 2020, 1(3): 245-249.
78 YIN C C, ZHAO W W, CHERUBINI F, et al. Integrate ecosystem services into socioeconomic development to enhance achievement of sustainable development goals in the post-pandemic era [J]. Geography and Sustainability, 2021, 2: 68-73.
79 HUANG J, ZHANG L, LIU X, et al. Global prediction system for COVID-19 pandemic [J]. Science Bulletin, 2020, 65: 1 884-1 887.
80 LI X, ZHAO Z B, LIU F. Big data assimilation to improve the predictability of COVID-19 [J]. Geography and Sustainability, 2020, 1(4): 317-320.
[1] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[2] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[3] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[4] 马耀明, 胡泽勇, 田立德, 张凡, 段安民, 阳坤, 张镱锂, 杨永平. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
[5] 张韧, 洪梅, 刘科峰, 朱伟军. 基于副热带高压异常活动个例的动力模型重构与变异特性剖析[J]. 地球科学进展, 2014, 29(11): 1250-1261.
[6] WuGuoxiong, LinHai, ZouXiaolei, LiuBoqi, HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[7] 肖子牛, 钟琦, 尹志强, 周立旻, 宋燕, 韩延本, 黄聪, 潘静, 赵亮. 太阳活动年代际变化对现代气候影响的研究进展[J]. 地球科学进展, 2013, 28(12): 1335-1348.
[8] 曾庆存,林朝晖. 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010, 25(1): 1-6.
[9] 周天军,满文敏,张洁. 过去千年气候变化的数值模拟研究进展[J]. 地球科学进展, 2009, 24(5): 469-476.
[10] 马耀明,姚檀栋,胡泽勇,王介民. 青藏高原能量与水循环国际合作研究的进展与展望[J]. 地球科学进展, 2009, 24(11): 1280-1284.
[11] 周天军,王绍武,张学洪. 大洋温盐环流与气候变率的关系研究:科学界的一个新课题[J]. 地球科学进展, 2000, 15(6): 654-660.
[12] 龚道溢,王绍武. 近百年全球温度变化中的ENSO分量[J]. 地球科学进展, 1999, 14(5): 518-523.
[13] 黄荣辉,徐飞亚. 大气科学研究的一个前沿领域—气候系统动力学与气候预测[J]. 地球科学进展, 1996, 11(3): 231-237.
阅读次数
全文


摘要