地球科学进展 ›› 2017, Vol. 32 ›› Issue (7): 769 -780. doi: 10.11867/j.issn.1001-8166.2017.07.0769

所属专题: IODP研究

上一篇    下一篇

海洋沉积物陆源碎屑粒度分析预处理方法研究
赵绍华( ), 刘志飞   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2017-02-08 修回日期:2017-06-28 出版日期:2017-07-20
  • 基金资助:
    国家自然科学基金重大研究计划集成项目“南海深海沉积过程与机制”(编号:91528304);国家自然科学基金重点项目“南海中央海盆中新世以来深水沉积作用及其区域构造与环境演化意义”(编号:41530964)资助

A Study of Pretreatment Methods for Terrigenous Grain-Size Analysis of Marine Sediments

Shaohua Zhao( ), Zhifei Liu   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
  • Received:2017-02-08 Revised:2017-06-28 Online:2017-07-20 Published:2017-07-20
  • About author:

    First author:Zhao Shaohua (1987-), male, Bozhou City, Anhui Province, Ph.D student. Research areas include marine sedimentoloy and palaeoclimatology.E-mail:zsh55228@126.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Deep-sea sedimentation process and mechanism in the South China Sea” (No.91528304) and “Deepwater sedimention since the miocene in the central basin of the South China Sea and its regional tectonic and environmental evolution significance” (No.41530964)

如何有效去除海洋沉积物中的非陆源物质,同时又能完好保存陆源碎屑,是获得陆源碎屑粒度变化信息的先决条件。利用南海MD190航次的深海岩芯沉积物样品,进行了不同预处理条件下的生源物质去除效果和陆源碎屑粒度分析结果的对比研究。结合显微镜和扫描电镜观察,获得了海洋沉积物陆源碎屑粒度分析预处理方法的新认识。结果显示,对于海洋沉积物中的有机质、碳酸盐和生物硅3种生源组分,依次使用浓度为30%的H2O2水浴60 ℃震荡3 h,0.5%的HCl充分反应1 h,2 mol/L的Na2CO3水浴85 ℃震荡5 h,可以有效去除,并能兼顾去除效率以及相对完好地保存陆源碎屑。研究认为,针对不同类型的沉积物样品进行陆源碎屑粒度分析时,应考虑生源碎屑对粒度结果的实际影响,从而选择合适的预处理方案。即在确保陆源碎屑的粒度分析结果更接近真实分布的情况下,沉积物样品的预处理步骤越少越好,并非一定要去除所有的生源成分。如当生物硅含量低于2%时,其对陆源碎屑粒度分析结果的影响很小,可不用去除。另外,超声可导致部分陆源碎屑的破碎,在粒度分析预处理过程中全程不宜使用。

The prerequisite for obtaining variations of terrigenous grain-size of marine sediments is how to effectively remove non-terrigenous matters and preserve terrigenous particles synchronously. Combined with observations under biological microscope and scanning electron microscope, a comparative study of biogenic debris removal effect and terrigenous grain-size analysis under different pretreatment condition was performed on core sediments, which were retrieved in the South China Sea during the MD190 cruise. Our new results showed that the main three biogenic particles, namely, organic matter, carbonate, and opal in marine sediments could be removed effectively by 30% H2O2 in a stirring water bath at 60 ℃ for 3 h, 0.5% HCl for 1 h, and 2 mol/L Na2CO3 in a stirring water bath at 85 ℃ for 5 h, in turn. Such pretreatments achieved the goals of biogenic debris removal efficiency and relatively well-preserved terrigenous particles. Prior to selecting an appropriate pretreatment method, this study suggested that the actual effects of biogenic detritus on grain-size results of diverse marine sediment samples should be taken into account. If the laboratory data are ensured to be closer to the natural grain-size distribution of terrigenous particles, the removals of all biogenic debris are not always needed, and the less pretreatment processes the better. For example, opal particles have little effect on terrigenous grain-size distribution when their percentage is lower than 2%. Thus, there is no use to remove them from marine sediments before laboratory grain-size analysis of terrigenous particles. Additionally, ultrasonic is not suggested through the whole process of terrigenous grain-size analysis because the strong energy of ultrasonic can lead to the fragmentation of some fragile terrigenous particles.

中图分类号: 

表1 南海及世界其他海域沉积物粒度分析预处理方法总结
Table 1 A review of pretreatment methods of sediment grain-size analysis in the South China Sea and other regions
图1 扫描电镜及生物显微镜下的陆源碎屑颗粒及生物碎屑
(a)MD12-3428岩芯沉积物去除生源碎屑后生物显微镜下陆源碎屑颗粒;(b)MD12-3428岩芯沉积物中生物硅和陆源碎屑颗粒生物显微镜下的大小比较;(c)和(d)MD12-3434岩芯沉积物中生物硅和陆源碎屑扫描电镜下的大小比较
Fig.1 Terrigenous and biogenic particles under biological microscope and scanning electron microscope
(a) Terrigenous particles of core MD12-3428 after removed biogenic particles under biological microscope; (b) Terrigenous VS. opal particles of Core MD12-3428 under biological microscope; (c) and (d) Terrigenous VS. opal particles of Core MD12-3434 under scanning electron microscope
表2 MD12-3428岩芯陆源碎屑粒度分析试验样品沉积物组成
Table 2 Sediment compositions of selected samples from Core MD12-3428 for grain-size analysis
表3 MD12-3434岩芯陆源碎屑粒度分析试验样品沉积物组成
Table 3 Sediment compositions of selected samples from Core MD12-3434 for grain-size analysis
表4 MD12-3428岩芯沉积物样品去除有机质后残留样品烧失量随反应时间的变化及试验过程记录
Table 4 Temporal variations of loss on ignition of residual sediments at Core MD12-3428 after removing organic matter under different reaction time and the procedure record
图2 MD12-3428岩芯样品去除有机质后残留样品烧失量的时间序列变化
Fig.2 Temporal variations of loss on ignition of residual sediments at Core MD12-3428 after removing organic matter under different reaction time
图3 MD12-3428岩芯陆源碎屑不同预处理方法粒度分析结果
Fig.3 Results of terrigenous grain-size analysis under different pretreatment procedure at Core MD12-3428
图4 MD12-3434岩芯陆源碎屑不同预处理方法粒度分析结果
Fig.4 Results of terrigenous grain-size analysis under different pretreatment procedures at Core MD12-3434
表5 MD12-3434岩芯沉积物中生物硅除与不除陆源碎屑粒度分析结果对比
Table 5 Comparison between grain-size analysis results of opal-free and opal-within terrigenous particles at Core MD12-3434
表6 超声对MD12-3428岩芯沉积物陆源碎屑粒度分析结果的影响
Table 6 Effect of ultrasound on grain size analysis of terrigenous particles at Core MD12-3428
图5 MD12-3428岩芯陆源碎屑超声后与不超声粒度分析结果
Fig.5 Results of terrigenous grain-size analysis under ultrasonic or without ultrasonic at Core MD12-3428
[1] Gao S, Collins M.Net sediment transport patterns inferred from grain-size trends, based upon definition of “tranport vectors”[J]. Sedimentary Geology, 1992, 81(1/2): 47-60.
[2] Gao S, Collins M,Lanckneus J, et al.Grain size trends assoc iated with net sediment transport patterns: An example from the Belgian continental shelf[J]. Marine Geology, 1994, 121(3/4): 171-185.
[3] McCave I N, Manighetti B, Beveridge S. Changes in circulation of the North Atlantic during the last 25,000 years inferred from grain size measurements[J]. Nature, 1995, 374(6 578): 149-152.
[4] McCave I N, Crowhurst J, Kuhn G, et al. Minimal change in Antarctic circumpolar current flow speed between the last glacial and Holocene[J]. Nature Geoscience, 2014, 7(2): 113-116.
[5] Boulay S, Colin C, Trentesaux A, et al.Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144)[C]∥Prell L, Wang P X, Blum P, et al, eds.Proceedings of the Ocean Drilling Program, 2003,184:1-21.
[6] Boulay S, Colin C, Trentesaux A, et al.Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea[J]. Quaternary Research, 2007, 68(1): 162-172.
[7] Liu Z F, Colin C,Trentesaux A, et al.Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin[J]. Quaternary Research, 2005, 63(3): 316-328.
[8] Wang L J,Sarnthein M, Erlenkeuser H, et al.East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156(1/4): 245-284.
[9] Prins M, Postma G, Weltje G.Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: The Makran continental slope[J]. Marine Geology, 2000, 169(3/4): 351-371.
[10] Prins M, Bouwer L, Beets C, et al.Ocean circulation and iceberg discharge in the glacial North Atlantic: Inferences from unmixing of sediment size distributions[J]. Geology, 2002, 30(6): 555-558.
[11] Praetorius S, McManus J, Oppo D, et al. Episodic reductions in bottom-water currents since the last ice age[J]. Nature Geoscience, 2008, 1(7): 449-452, doi:10.1038/ngeo227.
[12] Hu D K,Böning P, Köhler C, et al.Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea[J]. Chemical Geology, 2012,(326/327): 1-18,doi:10.1016/j.chemgeo.2012.07.024.
[13] Xie Xin, Zheng Hongbo, Chen Guocheng, et al.Pretreatment method of grain size measurement of marine sediments in paleoenvironment research[J]. Acta Sedimentologica Sinica, 2007, 25(5): 684-692.
[谢昕, 郑洪波, 陈国成, 等. 古环境研究中深海沉积物粒度测试的预处理方法[J]. 沉积学报, 2007, 25(5): 684-692.]
[14] Tjallingii R, Claussen M, Stuut J B, et al.Coherent high- and low-latitude control of the northwest African hydrological balance[J]. Nature Geoscience, 2008, 1(10): 670-675.
[15] Hall I,McCave I, Zahn R, et al. Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: Reflections of East Antarctic Ice Sheet growth[J]. Paleoceanography, 2003, 18(2): 1 040, doi:10.1029/2002PA000817.
[16] Deplazes G, Lückge A, Stuut J B, et al.Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations[J]. Paleoceanography, 2014, 29, doi:10.1002/2013PA002509.
[17] Chen Guocheng, Zheng Hongbo, Li Jianru, et al.Dynamic control on grain-size distribution of terrigenous sediments in the western South China Sea: Implication for East Asian monsoon evolution[J]. Chinese Science Bulletin, 2008, 53(10):1 533-1 543.
[陈国成, 郑洪波, 李建如, 等. 南海西部陆源沉积粒度组成的控制动力及其反映的东亚季风演化[J]. 科学通报, 2007, 52(23): 2 768-2 776.]
[18] Zheng Hongbo, Chen Guocheng, Xie Xin, et al.Grain size distribution and dynamic control of late Quaternary terrigenous sediments in the South China Sea and their implication for East Asian monsoon evolution[J]. Quaternary Sciences, 2008, 28(3): 414-424.
[郑洪波, 陈国成, 谢昕, 等. 南海晚第四纪陆源沉积: 粒度组成、动力控制及反映的东亚季风演化[J]. 第四纪研究, 2008, 28(3): 414-424.]
[19] Yang Wenguang, Zheng Hongbo, Wang Ke, et al.Sedmientary characteristic of terrigenous clast of Site MD05-2905 in the northeastern part of South China Sea after 36 ka and evolution of East Asian monsoon[J]. Advances in Earth Science, 2007, 22(10): 1 012-1 018.
[杨文光, 郑洪波, 王可, 等. 南海东北部MD05-2905站36 ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10): 1 012-1 018.]
[20] Zhong Y, Chen Z, Li L, et al.Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: Evidence from grain size of the terrigenous sediments[J]. Continental Shelf Research, 2017, 40: 11-26,doi:10.1016/j.csr.2017.01.023.
[21] Wan S M, Li A C,Stuut J B, et al.Grain-size records at ODP Site 1146 from the northern South China Sea: Implications on the East Asian monsoon evolution since 20 Ma[J]. Science in China (Series D), 2007, 50(10): 1 536-1 547.
[22] Huang J, Li A C, Wan S M.Sensitive grain-size records of Holocene East Asian summer monsoon in sediments of northern South China Sea slope[J].Quaternary Research, 2011, 75(3): 734-744.
[23] Tuo Shouting.High Resolution Sedimentological Record and Its Paleoclimate Study during the Mid-Pleistocene Climate Transition in the Northern South China Sea[D]. Shanghai: Tongji University, 2008.
[拓守廷. 南海北部中更新世气候转型期高分辨率沉积学记录及其古气候研究[D]. 上海: 同济大学, 2008.]
[24] Liu J G, Xiang R, Kao S J,et al.Sedimentary responses to sea-level rise and Kuroshio Current intrusion since the Last Glacial Maximum: Grain size and clay mineral evidence from the northern South China Sea slope[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 450: 111-121,doi:10.1016/j.palaeo.2016.03.002.
[25] Hamann Y, Ehrmann W, Schmied G, et al.Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments[J]. Marine Geology, 2008, 248(1/2): 97-114.
[26] Tamburini F, Adatte T, Föllmi K, et al.Investigating the history of East Asian monsoon and climate during the last glacial interglacial period (0-140000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology, 2003, 201(1/3):147-168.
[27] Zhao Y L, Liu Z F, Colin C,et al.Turbidite deposition in the southern South China Sea during the last glacial: Evidence from grain-size and major elements records[J]. Chinese Science Bulletin, 2011, 56(33): 3 558-3 565.
[28] Chen Muhong, Zheng Fan, Lu Jun, et al.Original component of grain size index in core sediment from southwestern slope of the South China Sea and its paleoenvironmental implication[J]. Chinese Science Bulletin, 2005, 50(9): 896-902.
[陈木宏, 郑范, 陆钧, 等. 南海西南陆坡区沉积物粒级指标的物源特征及古环境意义[J]. 科学通报, 2005, 50(7): 684-690.]
[29] Wang P X, Li Q Y, Li C F.Geology of the China Seas[M]. Amsterdam:Elsevier, 2014: 232-259.
[30] Konert M, Vandenberghe J.Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction[J]. Sedimentology, 1997, 44(3): 523-535.
[31] Kissel C, Jian Z, Leau H, et al. MD190-CIRCEA Cruise Report[R].Les Rapports de Campagne la Mer, IPEV, ref: OCE/2012/01.
[32] Gee G, Or D.Particle size analysis[M]∥Dane J, Topp D, eds. Methods of Soil Analysis: Part 4 Physical Methods. Madison, USA: Soil Science Society of America, Inc., 2002: 255-293.
[33] Zhao Shaohua, Liu Zhifei, Chen Quan, et al.Spatiotemporal variations of deep-sea sediment components and their fluxes since the last glaciation in the northern South China Sea[J]. Science China: Earth Science, 2017, 60(7):1 368-1 381, doi: 10.1007/s11430-016-9058-6.
[赵绍华, 刘志飞, 陈全, 等. 南海北部末次冰期以来深水沉积物组成及其堆积速率的时空变化特征[J]. 中国科学: 地球科学, 2017, 47(9):958-971, doi: 10.1360/N072016-00276.]
[34] Liu Z F,Trentesaux A, Clemens S, et al.Clay mineral assemblages in the northern South China Sea—Implications for East Asian monsoon evolution over the past 2 million years[J]. Marine Geology, 2003, 201(1/3): 133-146.
[35] Liu Z F, Colin C,Trentesaux A, et al.Erosional history of the eastern Tibetan Plateau over the past 190 kyr: Clay mineralogical and geochemical investigations from the southwestern South China Sea[J]. Marine Geology, 2004, 209(1/4): 1-18.
[36] Wang Rujian, Li Jian.Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea[J]. Chinese Science Bulletin, 2003, 48(4): 363-367.
[王汝建, 李建. 南海ODP 1143站第四纪高分辨率的蛋白石记录及其古生产力意义[J]. 科学通报, 2003, 48(1): 74-77.]
[37] Wang Rujian, Jian Zhimin, Xiao Wenshen, et al.Quaternary biogenic opal records in the South China Sea linkages to East Asian monsoon, global ice volume and orbital forcing[J]. Science in China (Series D), 2007, 50(5): 710-724.
[王汝建, 翦知湣, 肖文申, 等. 南海第四纪的生源蛋白石记录:与东亚季风、全球冰量和轨道驱动的联系[J]. 中国科学:D辑, 2007, 37(4): 521-533.]
[38] Wu Jiawang.Sedimentology and Element Geochemistry Records in the Western Pacific Warm Pool during Late Quaternary and Their Paleoenvironmental Significances[D]. Shanghai: Tongji University, 2012.
[吴家望. 西太平洋暖池晚第四纪的沉积学和地球化学记录及其古环境意义[D]. 上海: 同济大学, 2012.]
[39] Schuhen H, Leinweber P, Theng B.Characterization of organic matter in an interlayer clay-organic complexe from soil by pyrolysis methylation-mass spectrometry[J]. Geoderma, 1996, 69(1/2): 105-118.
[40] Cai Jingong, Bao Yujin, Yang Shouye, et al.Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone[J]. Science in China (Series D), 2007, 50(5): 765-775.
[蔡进功, 包于进, 杨守业, 等. 泥质沉积物和泥岩中有机质的赋存形式与富集机制[J]. 中国科学:D辑, 2007, 37(2): 234-243.]
[41] Dutkiewicz A, Callaghan S, Müller R.Controls on the distribution of deep-sea sediments[J]. Geochemistry Geophysics Geosystems, 2016,17(8):3 075-3 098, doi:10.1002/2016GC006428.
[42] Trentesaux A, Recourt P, Bout-Roumazeilles V, et al.Cabonate grain-size distribution in hemipelagic sediments from a laster particle sizer[J]. Journal of Sediment Research, 2001, 71(5): 858-862.
[1] 刘喜停,颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
[2] 杨文光,郑洪波,王可,谢昕,陈国成,梅西. 南海东北部MD05-2905站36 ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10): 1012-1018.
阅读次数
全文


摘要