地球科学进展 ›› 2007, Vol. 22 ›› Issue (10): 1012 -1018. doi: 10.11867/j.issn.1001-8166.2007.10.1012

所属专题: IODP研究

IODP研究 上一篇    下一篇

南海东北部MD05-2905站36 ka BP以来的陆源碎屑沉积特征与东亚季风的演化
杨文光,郑洪波,王可,谢昕,陈国成,梅西   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2007-09-02 修回日期:2007-09-07 出版日期:2007-10-15
  • 通讯作者: 杨文光(1980-),男,安徽太和人,博士研究生,主要从事海洋沉积学与全球变化研究.E-mail:yangwg_cdut@163.com E-mail:yangwg_cdut@163.com
  • 基金资助:

    国家自然科学基金项目“50万年以来高分辨率地磁场长期变化研究”(编号:40676033);国家自然科学基金国际(地区)合作交流项目“晚第四纪印度洋与南中国海古海洋学对比研究”(编号:40710099);科技部“中荷科技联盟”项目“末次冰期以来中国环境(气候)条件的多样性”(编号:2004CB720506);国家高技术研究发展计划项目“大洋钻探技术预研究”(编号:2004AA615030)联合资助.

Sedimentary Characteristic of Terrigenous Clast of Site MD05-2905 in the Northeastern Part of South China 

YANG Wen-guang, ZHENG Hong-bo, WANG Ke,XIE Xin, CHEN Guo-cheng,MEI Xi   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2007-09-02 Revised:2007-09-07 Online:2007-10-15 Published:2007-10-10

在AMS14C精确定年的基础上,去除有机质、生物碳酸盐和生物硅之后,对南海北部MD052905站进行了陆源碎屑的粒度分析。结果显示,15.5~63.5 μm粗粒级成分的含量变化特征可用来指示东亚冬季风的变化,2~9 μm细粒级成分含量变化可用于指示东亚夏季风的变化。末次冰期以冬季风为主,全新世以夏季风为主,36 ka BP以来东亚夏季风有逐渐增强的总体趋势,但也发生多次突变现象,在全新世早期(8 500~11 200 ka BP)达到36ka BP以来的最大值,可能是在岁差周期的控制下,与较强的太阳辐射有关。

Sediments with high sedimentation rate at Site MD05-2905 in the northern part of the South China Sea provide unique materials for a high-resolution study on paleoenvironment. Based on precision dating of AMS14C, grain size analysis of terrigenous clast at Site MD05-2905 is studied after removing organic matter, biological carbonate and biogenic opal. The results show that 15.5~63.5μm, coarse grain size ingredients,may indicate the East Asian winter monsoon changes. And that 2 ~ 9μm,fine grain size ingredients,may be used as a proxy of evolution of the East Asian summer monsoon. The results of grain size analysis, which suggest the East Asian monsoon intensity, revealed that a winter monsoon dominated glacial regime and a summer monsoon dominated Holocene regime, and that the summer monsoon increased gradually,experienced several abrupt change events and reached to the culmination in the early Holocene(8 500~11 200 ka BP) after 36 ka. This, with control by precession periodicity, may be related with the amount of solar radiation at the highest stage which needs further study.

中图分类号: 

[1]Milliman J D, Meade R H. World wide delivery of river sediment to the ocean[J].Journal of Geology, 1983,91(1):1-21.
[2]Wang Pinxian, et al. South China Sea Since 150ka[M]. Shanghai: Tongji University Press,1995.[汪品先,等.十五万年来的南海[M].上海:同济大学出版社,1995.]
[3]Zhu Zhaoyu, Qiu Yan, Zhou Houyun, et al.A summary review of research progress on global change in the South China Sea[J].Journal of Geomechanics,2002,8(4):315-323.[朱照宇,邱燕,周厚云,等.南海全球变化研究进展[J].地球力学学报,2002,8(4):315-323.]
[4]Huang C Y, Liew P M, Zhao M,et al.Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years[J].Earth and Planetary Science Letters,1997,146:59-72.
[5]Jian Z, Huang B, Kuhnt W,et al.Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea[J].Quaternary Research, 2001,55:363-370.
[6]Sun Donghuai, An Zhisheng, Su Ruixia, et al.Mathematical separation of grain size groups from sediments in paleoenvironment researching and its applications[J].Progress in Natural Science,2001,11(3):269-276.[孙东怀,安芷生,苏瑞侠,等.古环境中沉积物粒度组分分离的数学方法及其应用[J].自然科学进展, 2001,11(3):269-276.] 
[7]Prins M A, Postma G, Weltje G J. Controls on terrigenous sediments supply to the Arabian Sea during the late Quaternary: The Makran continental slope[J].Marine Geology,2000, 169: 351-371.
[8]Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J].Sedimentary Geology,2003, 162: 39-62.
[9]Sun Youbin, Gao Shu, Li Jun. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous component in marginal sea setting[J].Chinese Science Bulletin,2003,48(2):184-187.
[10]Boulay S, Colin C, Trentesaux A,et al. Mineralogy and Sedimentology of Pleistocene Sediment in the South China Sea (ODPSite1144)[R].Proceedings of the Ocean Drilling Program, Scientific Results,2003,184:1-21.
[11]Liu Zhifei, Colin C, Trentesaux A, et al.Late Quaternary weathering and erosion of the eastern Tibetan Plateau and the Mekong Basin and East Asian monsoon evolution recorded by the sediments from the South China sea[J].Bulletin of Mineralogy, Petrology and Geochemistry,2005,24(1):30-38.[刘志飞,Colin C,Trentesaux A,等. 青藏高原东部及湄公河盆地晚第四纪风化剥蚀与东亚季风演化在南海中的记录[J]. 矿物岩石地球化学通报,2005,24(1):30-38.]
[12]Tuo Shouting, Liu Zhifei, Zhao Quanhong, et al.The earliest Oligocene glacial maximum: Records from ODP Site 1265, South Atlantic[J].Earth Science—Journal of China University of Geosciences,2006,31(2):151-158.[拓守廷,刘志飞,赵泉鸿,等. 渐新世初大冰期事件:南大西洋ODP1265站的记录[J].地球科学——中国地质大学学报,2006,31(2):151-158.]
[13]Xiang Rong, Yang Zuosheng, Guo Zhigang,et al.Paleoenvironmental implications of grain size component variations in the mud area south west of Cheju Island, ECS[J].Earth Science—Journal of China University of Geosciences,2005,30(5):582-588.[向荣,杨作升,郭志刚,等.济州岛西南泥质区粒度组分变化的古环境应用[J]. 地球科学——中国地质大学学报,2005, 30(5):582-588.]
[14]Ye Fang, Liu Zhifei, Tuo Shouting, et al.Grain size record of terrigenous clast during mid-Pleistocene transition (0.78~1.0 Ma) in the northern South China sea[J].Marine Geology and Quaternary Geology,2007, 27(2):77-83.[叶芳,刘志飞,拓守廷,等.南海北部中更新世0.78~1.0 Ma期间的陆源碎屑粒度记录[J].海洋地质与第四纪地质,2007,27(2):77-83.]
[15]Shao L, Li X H, Wei G J,et al.Provenance of a prominent sediment drift on the northern slope of the South China Sea[J].Science in China(Series D),2001,44: 919-925.
[16]Liu Zhifei, Trentesaux A, Clemens S,et al.Quaternary clay mineralogy in the northern South China Sea(ODP Site1146):Implications for oceanic current transport and East Asian monsoon evolution[J].Science in China(SeriesD),2003,46(12):1 223-1 235.
[17]Wang L, Sarnthein M, Erlenkeuser H,et al.East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China sea[J].Marine Geology,1999,156(1/4): 245-284.
[18]Chen Longxun, Zhu Qian'gen, Luo Huibang,et al.The East Asian Monsoon[M].Beijing:Meteorology Press,1991:28-61.[陈隆勋,朱乾根,罗会帮,等.东亚季风[M].北京:气象出版社,1991:28-61.]
[19]Wang L,Sarnthein M,Grootes P M,et al.Millenial reoccurrence of century-scale abrupt events of East Asian monsoon: A possible heat conveyor for the global deglaciation[J].Paleoceanography,1999,14(6):725-731.
[20]Pettke T, Halliday A, Hall C,et al.Dust production and deposition in Asia and the North Pacific Ocean over the past 12Ma[J].Earth and Planetary Science Letters,2000, 178:397-413.
[21]Jones C, Halliday A, Rea D,et al.Neodymium isotopic variation in North Pacific modern silicate sediment and their significance of detrital REE contributions to sea water[J].Earth and Planetary Science Letters,1994,127:55-66.
[22]Wehausen R, Brumsack H J.Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments[J].Earth and Planetary Science Letters,2002, 201: 621-636.
[23]Laskar J. The chaotic motion of the solar system:A numerical estimate of the size of the chaotic zones[J].Icarus,1990, 88:266-291.
[24]Paillard D, Labeyrie L, Yiou P. Analyseries 1.0: A Macintosh software for the analysis of geographical time-series[J].EOS,1996,77:379.
[25]Wang Shuyun, Lu Houyuan, Liu Jiaqi,et al. The early Holocence optimum inferred from a highresolution pollen record of Huguanyan Maar Lake in southern China[J].Chinese Science Bulletin,2007,52(20):2 829-2 836.
[26]Sirocko F, Sarnthein M, Erlenkenkeuser,et al.Century-scale events in monsoonal climate over the past 24000 years[J].Nature,1993, 364:322-324.
[27]Blunier T J, Chappellaz J, Schwander B,et al.Variations in atmospheric methane concentration during the Holocene epoch[J].Nature,1995, 374:46-49.
[28]Porter S C,An Z. Correlation between climate events in the North Atlantic and China during the last glaciation[J].Nature,1995, 375:305-308.
[29]Wang Y J, Cheng H, Edwards R L,et al.A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave,China[J].Science,2001,294:2 345-2 348.
[30]Dykoski C A, Edwards R L, Cheng H,et al.A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J].Earth and Planetary Science Letters,2005,233(1/2):71-86.

[1] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[2] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[3] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[4] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[5] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[6] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[7] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[8] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[9] 赵绍华, 刘志飞. 海洋沉积物陆源碎屑粒度分析预处理方法研究[J]. 地球科学进展, 2017, 32(7): 769-780.
[10] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[11] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
[12] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[13] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[14] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[15] 吉琳, 庞奖励, 黄春长, 查小春, 周亚利, 刘涛, 王蕾彬. 汉江上游晏家棚段全新世古洪水研究 *[J]. 地球科学进展, 2015, 30(4): 487-494.
阅读次数
全文


摘要