Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (7): 781-787    DOI: 10.11867/j.issn.1001-8166.2017.07.0781
新技术     
新一代区域气候模式(CWRF)国内应用进展
刘冠州1, 梁信忠1, 2, *
1.南京信息工程大学, 江苏 南京 210044;
2.Earth System Science Interdisciplinary Center, University of Maryland, MD, USA 20742
Progress of the Climate Extension of Weather Research and Forecast(CWRF)Model Application in China
Liu Guanzhou1, Liang Xinzhong1, 2, *
1.Nanjing University of Information Science & Technology,Nanjing 210044,China;
2.Earth System Science Interdisciplinary Center, University of Maryland, MD, 20742, USA
 全文: PDF(1032 KB)   HTML
摘要:

随着区域气候模拟研究的不断深入,新一代区域气候模式CWRF因为其优异性能开始被广泛应用。从其对WRF物理过程的改良,模拟区域和侧边界条件的构建,个例模拟研究和与RegCM的模拟对比3个方面介绍CWRF模式在我国的发展与应用概况,说明CWRF在区域气候模拟中的准确性和先进性。探究了CWRF模式在国内的两大发展前景: 一是在CWRF模式中引入更为准确的物理过程参数化方案,并可进行有机组合实现优化集成气候预报;二是把CWRF与全球气候模式嵌套,进行短期气候的业务预报和长期气候变化及其影响的预测评估。梳理和归纳CWRF模式在我国的应用现状,展望CWRF模式本土化的发展趋势,为CWRF模式的使用和研究提供有意义的参考。

关键词: CWRF模拟区域和侧边界条件区域气候模式    
Abstract:

With the development of regional climate simulation, CWRF, the new generation regional climate model, is increasingly used in climate research because of its advanced capability and high skill. The CWRF application in China was introduced from three aspects: its modifications of WRF physics parameterizations, the construction of modeling domain and lateral boundary conditions, the case simulation study and comparison with RegCM, illustrating the accuracy and advantage of CWRF in regional climate simulations. Furthermore, two major CWRF developmental prospects in China were explored: one was to incorporate more accurate physical parameterization schemes and optimized multi-physics ensemble approach; the other was to nest CWRF in GCMs for short-term climate operational forecast and long-term climate change prediction and impact assessment. The status of CWRF applications in China was summarized and the outlook of its further development was pointed out, which provided a meaningful reference for more general research and application.

Key words: Regional climate model.    CWRF    Modeling domain and lateral boundary conditions
收稿日期: 2017-02-16 出版日期: 2017-07-20
ZTFLH:  P467  
基金资助:

国家气候中心中国精细化区域气候预测系统研发项目“中国精细化区域气候预测系统”(编号:NCC2016013); 江苏省“北极阁”开放研究基金“精细化区域数值模式本地化基础构建”(编号:NJCAR2016ZD03)资助

通讯作者: 梁信忠(1963-),男,浙江温岭人,教授,主要从事数值模式发展及其在气候、环境、农业、经济领域的应用研究.E-mail:xliang@umd.edu   
作者简介: 刘冠州(1993-),男,江苏南通人,硕士研究生,主要从事区域气候数值模拟研究.E-mail:384137890@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘冠州
梁信忠

引用本文:

刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.

Liu Guanzhou, Liang Xinzhong. Progress of the Climate Extension of Weather Research and Forecast(CWRF)Model Application in China. Advances in Earth Science, 2017, 32(7): 781-787.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.07.0781        http://www.adearth.ac.cn/CN/Y2017/V32/I7/781

[1] Luan Yihua, Yu Yongqiang, Zheng Weipeng. Review of development and application of high resolution global climate system model[J]. Advances in Earth Science ,2016,31(3):258-268.
. 地球科学进展, 2016, 31(3):258-268.]
[2] Ai Likun, Wang Xiaoyi. Transdisciplinary study between natural and social sciences in global change research[J]. Advances in Earth Science ,2015,30(11):1 278-1 286.
. 地球科学进展, 2015, 30(11):1 278-1 286.]
[3] Zeng Jingjing, Qu Jiansheng, Pei Huijuan, et al . An overview of international climate change conferences and analysis of recent hot issues[J]. Advances in Earth Science ,2015,30(11):1 210-1 217.
. 地球科学进展, 2015, 30(11):1 210-1 217.]
[4] Wang Hui, Wan Liying, Qin Yinghao, et al . Development and application of the Chinese global operational oceanography forecasting system[J]. Advances in Earth Science ,2016,31(10):1 090-1 104.
. 地球科学进展, 2016, 31(10):1 090-1 104.]
[5] Dong Wenjie,Yuan Wenping,Teng Fei, et al . Coupling Earth System Model and integrated assessment model[J]. Advances in Earth Science ,2016,31(12):1 215-1 219.
. 地球科学进展, 2016, 31(12):1 215-1 219.]
[6] Zeng Qingcun, Lin Zhaohui. Recent progress on the Earth System Dynamical Model and its numerical simulations[J]. Advances in Earth Science , 2010, 25(1):1-6.
. 地球科学进展, 2010, 25(1):1-6.]
[7] Dickinson R E, Errico R M, Giorgi F, et al . A regional climate model for the western United States[J]. Climatic Change , 1989, 15(3):383-422.
[8] Giorgi F, Bates G T. The climatological skill of a Regional Model over complex terrain[J]. Monthly Weather Review , 1989, 117(11):2 325-2 347.
[9] Giorgi F, Marinucci M R, Bates G T. Development of a second-generation Regional Climate Model (RegCM2). Part I: Boundary-layer and radiative transfer processes[J]. Monthly Weather Review , 1993, 121:10.
[10] Giorgi F, Marinucci M R, Bates G T, et al . Development of a second-generation Regional Climate Model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions[J]. Monthly Weather Review , 1993, 121(10):2 814.
[11] Grell G A. Prognostic evaluation of assumptions used by cumulus parameterizations[J]. Monthly Weather Review , 1993, 121 (3):764-787.
[12] Betts A K. A new convective adjustment scheme. Part I: Observational and theoretical basis[J]. Quarterly Journal of the Royal Meteorological Society , 1986, 112(473):677-691.
[13] Betts A K, Miller M J. A new convective adjustment scheme. II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets[J]. Quarterly Journal of the Royal Meteorological Society , 1986, 112(473):693-709.
[14] Emanuel K A. A scheme for representing cumulus convection in large-scale models[J]. Journal of the Atmospheric Sciences , 1991, 48(21):2 313-2 329.
[15] Giorgi F, Coppola E, Solmon F, et al . RegCM4: Model description and preliminary tests over multiple CORDEX domains[J]. Climate Research , 2011, 936(1):577X.
[16] Liang X Z, Kunkel K E, Samel A N. Development of a Regional Climate Model for U.S. Midwest applications. Part I: Sensitivity to Buffer zone treatment[J]. Journal of Climate , 2001, 14(23):4 363-4 378.
[17] Liang X Z, Kunkel K E, Wilhelmson R, et al . The WRF simulation of the 1993 central U.S. heavy rain: Sensitivity to cloud microphysics representation[C]∥Proceedings of the 82 nd AMS Annual Meeting:16 th Conference on Hydrology. Orlando, FL,January,2002,13/17:123-126.
[18] Liang X Z, Li L, Kunkel K E, et al . Regional Climate Model simulation of U.S. precipitation during 1982-2002. Part I: Annual cycle[J]. Journal of Climate , 2004, 17(17):3 510-3 529.
[19] Liang X Z, Pan J, Zhu J, et al . Regional climate model downscaling of the U.S. summer climate and future change[J]. Journal of Geophysical Research Atmospheres , 2006, 111(D10):1 879-1 894.
[20] Liu Shuyan. CWRF Application in East China Monsoon Area[D]. Nanjing: Nanjing University of Information Science & Technology , 2006.
. 南京:南京信息工程大学, 2006.]
[21] Liang X Z, Xu M, Yuan X, et al . Regional Climate-Weather Research and Forecasting Model[J]. Bulletin of the American Meteorological Society , 2012, 93(9):1 363-1 387.
[22] Liang X Z, Choi H I, Kunkel K E, et al. Surface boundary conditions for Mesoscale Regional Climate Models[J]. Earth Interactions , 2005, 9(12):305-319.
[23] Liang X Z, Xu M, Zhu J, et al. Development of the Regional Climate-Weather Research and Forecasting Model (CWRF): Treatment of topography[C]∥Proceedings of the 2005 WRF/MM5 User’s Workshop,Boulder,Co,2005:5.
[24] Liang X Z, Xu M, Gao W, et al. Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data[J]. Journal of Geophysical Research Atmospheres , 2005, 110(D11):1 341-1 355.
[25] Zhao Zongci, Luo Yong. Investigations of application for the Regional Climate Model over East Asia[J]. Chinese Journal of Atmospheric Sciences , 1999, 23(5):522-532.
. 大气科学, 1999, 23(5):522-532.]
[26] Fu Congbin, Wang Shuyu, Xiong Zhe, et al . Progress report on Regional Climate Model Intercomparison Project for Asia [J]. Climatic and Environmental Research , 2004, 9(2):225-239. [符淙斌, 王淑瑜, 熊喆,等. 亚洲区域气候模式比较计划的进展[J]. 气候与环境研究, 2004, 9(2):225-239.]
[27] Trenberth K E, Berry J C, Buja L E. Vertical Interpolation and Truncation of Model-Coordinate Data[Z]. NCAR Technical Note NCAR/TN-396+STR, 1993,doi:10.5065/D6HX9NH.
[28] Higgins R W, Mo K C, Schubert S D. The moisture budget of the Central United States in spring as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses[J]. Monthly Weather Review , 1996, 124(5):939-963.
[29] Mo K C, Higgins R W. Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO Reanalyses[J]. Journal of Climate , 1996, 9(7):1 531-1 545.
[30] Boyle J S. Comparison of Atmospheric Water Vapor in Observational and Model Data Sets[R]. Office of Scientific & Technical Information Technical Reports, 2000,doi:10.2172/792757.
[31] Liu Shuyan, Liang Xinzhong, Gao Wei, et al . Application of Climate-Weather Research and Forecasting Model (CWRF) in China: Domain optimization [J]. Chinese Journal of Atmospheric Sciences , 2008, 32(3):457-468.
. 大气科学, 2008, 32(3):457-468.]
[32] Zeng Qingcun, Li Rongfeng. On the computational chaos in the finite difference schemes with non-uniform grids[J]. Chinese Journal of Atmospheric Sciences , 1982, 11(4):221-226.
. 大气科学, 1982, 11(4):221-226.]
[33] Liao Dongxian, Lu Weisong. Some problems in regional numerical weather prediction[J]. Acta Meteorologica Sinica , 1982, 40(4):387-397.
. 气象学报, 1982, 40(4):387-397.]
[34] Yan Hong. The design of a nested fine-mesh model over the complex topography part one:Basic structure of the numerical model[J]. Plateau Meteorology ,1987, 6(Suppl.1):1-63.
. 高原气象, 1987, 6(增刊1):1-63.]
[35] Yan Hong. The design of a nested fine-mesh model over the complex topography part two: Parameterization of the sub-grid physical processes[J]. Plateau Meteorology , 1987, 6(Suppl.1):64-139.
. 高原气象, 1987, 6(增刊1):64-139.]
[36] Davies H C, Turner R E. Updating prediction models by dynamical relaxation: An examination of the technique[J]. Quarterly Journal of the Royal Meteorological Society , 1977, 103(436):225-245.
[37] Zeng Mingjian, Lu Weisong, Liang Xinzhong, et al . Ensemble forecast experiment on precipitation in summer by CWRF numeric Model [J]. Plateau Meteorology , 2008,27(6):1 218-1 228.
. 高原气象, 2008,27(6):1 218-1 228.]
[38] Wang Xiaoqing, Liu Jian, Wang Zhiyuan. Comparison of simulated and reconstructed temperature in China during the past 2000 years[J]. Advances in Earth Science ,2015,30(12):1 318-1 327.
. 地球科学进展, 2015, 30(12):1 318-1 327.]
[39] Zeng Mingjian, Lu Weisong, Liang Xinzhong, et al . Numeric simulation of influence of the topography on continuous freezing disaster distribution occurred south of China at beginning of 2008[J]. Plateau Meteorology , 2009, 28(6):1 376-1 387.
. 高原气象, 2009, 28(6):1 376-1 387.]
[40] Pal J S, Giorgi F, Bi X, et al . Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET[J]. Bulletin of the American Meteorological Society , 2007, 88(9):1 395-1 409.
[41] Liu Y, Giorgi F, Washington W M. Simulation of summer monsoon climate over East Asia with an NCAR Regional climate model[J]. Monthly Weather Review , 1994, 122(10):2 331-2 348.
[42] Ling T, Xu M, Liang X Z, et al . A multilevel ocean mixed layer model resolving the diurnal cycle: Development and validation[J]. Journal of Advances in Modeling Earth Systems , 2015, 7(4):1 680-1 692.
[43] Liang X Z, Xu M, Gao W, et al . A distributed cotton growth model developed from GOSSYM and its parameter determination[J]. Agronomy Journal , 2012, 104(3):661.
[44] Liang X Z, Xu M, Gao W, et al . Physical modeling of U.S. cotton yields and climate stresses during 1979 to 2005[J]. Agronomy Journal , 2012, 104(3):675.
[45] Qiao F, Liang X Z. Effects of cumulus parameterizations on predictions of summer flood in the Central United States[J]. Climate Dynamics , 2014, 45(3/4):727-744.
[46] Qiao F, Liang X Z. Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States[J]. Climate Dynamics , 2017,49:225-247.
[47] Liang X Z, Zhang F. The Cloud-Aerosol-Radiation (CAR) ensemble modeling system[J]. Atmospheric Chemistry & Physics , 2013,13(16): 8 335-8 364.
[48] Liang X Z, Xu M, Kunkel K E, et al . Regional climate model simulation of U.S. Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations[J]. Journal of Climate , 2007, 20(20):5 201-5 207.
[49] Qiao F, Liang X. Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans[J]. Climate Dynamics , 2016, 8(2):1-23.
[50] Yuan X, Liang X. Improving cold season precipitation prediction by the nested CWRF-CFS system[J]. Geophysical Research Letters , 2011, 38(2):79-89.
[51] Chen L, Liang X Z, Dewitt D, et al . Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system[J]. Climate Dynamics , 2016, 46(3/4):879-896.
[52] Choi H I, Kumar P, Liang X Z. Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability[J]. Water Resources Research , 2007, 43(4):797-809.
[53] Choi H I, Liang X Z. Improved terrestrial hydrologic representation in mesoscale land surface models[J]. Journal of Hydrometeorology , 2010, 11(3):797-809.
[54] Choi H I, Liang X Z, Kumar P. A conjunctive surface-subsurface flow representation for mesoscale land surface models[J]. Journal of Hydrometeorology , 2013, 14(5):1 421-1 442.
[55] Wang X, Liang X Z, Jiang W, et al . WRF-Chem simulation of East Asian air quality: Sensitivity to temporal and vertical emissions distributions[J]. Atmospheric Environment , 2010, 44(5):660-669.
[56] He H, Liang X Z, Lei H, et al . Future U.S. ozone projections dependence on regional emissions, climate change, long-range transport and differences in modeling design[J]. Atmospheric Environment , 2016, 128:124-133.
[57] Weaver C P, Liang X Z, Zhu J, et al . A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations[J]. Bulletin of the American Meteorological Society , 2009, 90(90):1 843-1 863.
[58] Shafiee-Jood M, Cai X, Chen L, et al . Assessing the value of seasonal climate forecast information through an end-to-end forecasting framework: Application to U.S. 2012 drought in central Illinois[J]. Water Resources Research , 2015, 50(8):6 592-6 609.

[1] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[2] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.