Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (7): 757-768    DOI: 10.11867/j.issn.1001-8166.2017.07.0757
研究论文     
基于L1范数正则项约束的不连续资料三维/四维变分融合研究
王根1, 2, 盛绍学1, 刘惠兰1, 吴蓉3, 杨寅4
1.安徽省气象信息中心 安徽省大气科学与卫星遥感重点实验室, 安徽 合肥 230031;
2.中国气象局沈阳大气环境研究所, 辽宁 沈阳 110000;
3.安徽省气候中心, 安徽 合肥 230031;
4.国家气象中心, 北京 100081
Discontinuous Data 3D/4D Variation Fusion Based on the Constraint of L1 Norm Regularization Term
Wang Gen1, 2, Sheng Shaoxue1, Liu Huilan1, Wu Rong3, Yang Yin4
1.Anhui Meteorological Information Centre Anhui Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China;
2.The Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110000, China;
3.Anhui Climate Center, Hefei 230031, China;
4.National Meteorological Center of China, Beijing 100081, China
 全文: PDF(12602 KB)   HTML
摘要: 经典三维/四维变分融合基于误差服从高斯分布,在极小化迭代时涉及到求解目标泛函梯度,若资料不连续则不可微,从而无法求解相应梯度,故理论要求所融合的资料必须具有“连续性”。采用扩展经典三维/四维变分融合方法,显式地基于L1范数把先验知识作为正则项约束项耦合到经典变分融合模型。在实施过程中把资料映射到小波域,采用新的融合模型在“小波空间”完成资料融合后,再采用小波逆变换映射回“观测空间”。通过线性平流扩散方程作为四维预报模式进行理想试验,试验设计融合背景和观测资料不连续,即在某些点左右导数不相等,试验结果表明文中采用的方法可行。进一步将该方法用于多源降水资料融合试验,采用基于GAMMA拟合函数的概率密度匹配法(Probability Density Function matching method,PDF)进行CMORPH反演降水资料订正,再将订正后的资料与地面站观测资料进行融合。通过与参考场结构相似性度量,得到该方法能更好地保留代表一些天气现象的“离群点”。该融合方法为不连续资料融合,尤其是“跳变点”的变分融合奠定了理论基础并提供了可借鉴的方法。
关键词: 正则项变分融合不连续资料L1范数小波空间    
Abstract: Classical 3D/4D variation fusion is based on the theory that error follows Gaussian distribution. When using minimization iteration, the gradient of objective function is involved, and the solution of which requires the continuity of data. This paper adopted the extended classical 3D/4D variation fusion method, and explicitly applied the prior knowledge, which was based on L1-norm, as regularization constraint to the classical variation fusion method. Original data was firstly projected into the wavelet domain during the implementation process, and new fusion model was adopted for data fusion in wavelet space, then inverse wavelet transform was used to project the result to the observation space. Ideal experiment was carried out by using linear advection-diffusion equation as four-dimensional prediction model, which made a hypothesis of the discontinuity with the data between background and observation, and that meant the derivatives between left and right were not equal on some points. The result of the experiment showed that the method adopted here was practicable. A further research was also done for multi-source precipitation fusion. Firstly, CMORPH inversion precipitation data were corrected through PDF (Probability Density Function, PDF) matching method based on GAMMA fitting function. Then corrected data was fused with the observation one. By comparison with the reference field, the result showed that this method can keep some outliers better, which might represent certain weather phenomenon. The L1-norm regularization variation fusion in this paper provided a possible way to deal with discrete data, especially for jump point.
Key words: L1-norm    Regularization term    Variation fusion    Wavelet space.    Discrete data
收稿日期: 2017-02-26 出版日期: 2017-07-20
ZTFLH:  P468  
基金资助: 安徽省自然科学基金项目“广义变分同化AIRS水汽通道亮温及在安徽强对流天气预报中的应用研究”(编号:1708085QD89); 淮河流域气象开放研究基金项目“基于地面和卫星观测反演的江淮流域降水资料融合算法研究”(编号:HRM201407)资助
作者简介: 王根(1983-),男,江苏泰州人,工程师,主要从事卫星资料同化、GRAPES数值模拟和多源数据融合研究.E-mail:203wanggen@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨寅
盛绍学
吴蓉
王根
刘惠兰

引用本文:

王根, 盛绍学, 刘惠兰, 吴蓉, 杨寅. 基于L1范数正则项约束的不连续资料三维/四维变分融合研究[J]. 地球科学进展, 2017, 32(7): 757-768.

Wang Gen, Sheng Shaoxue, Liu Huilan, Wu Rong, Yang Yin. Discontinuous Data 3D/4D Variation Fusion Based on the Constraint of L1 Norm Regularization Term. Advances in Earth Science, 2017, 32(7): 757-768.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.07.0757        http://www.adearth.ac.cn/CN/Y2017/V32/I7/757

[1] Ghil M, Malanotte-Rizzoli P. Data assimilation in meteorology and oceanography[J]. Advances in Geophysics , 1991, 33(33): 141-266.
[2] Daley R. Atmospheric Data Analysis[M]. Cambridge:Cambridge University Press, 1993.
[3] Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability[M]. Cambridge:Cambridge University Press, 2003:341.
[4] Wang G, Zhang J W. Generalised variational assimilation of cloud-affected brightness temperature using simulated hyper-spectral atmospheric infrared sounder data[J]. Advances in Space Research ,2014, 54(1):49-58.
[5] Evensen G. Data Assimilation: The Ensemble Kalman Filter[M].Berlin/Heiderleng:Springer Science & Business Media, 2009: 307.
[6] Han Pei, Shu Hong,Xu Jianhui.A comparative study of background error covariance localization in EnKF data assimilation[J]. Advances in Earth Science ,2014,29(10):1 175-1 185.
.地球科学进展,2014,29(10): 1 175-1 185.]
[7] Talagrand O, Courtier P. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory[J]. Quarterly Journal of the Royal Meteorological Society , 1987, 113(478): 1 311-1 328.
[8] Lorenc A C, Ballard S P, Bell R S, et al . The Met. Office global three-dimensional variational data assimilation scheme[J]. Quarterly Journal of the Royal Meteorological Society , 2000, 126(570): 2 991-3 012.
[9] Law K J H, Stuart A M. Evaluating data assimilation algorithms[J]. Monthly Weather Revew , 2012,140(11):3 757-3 782.
[10] Zhang Hua, Xue Jishan, Zhuang Shiyu, et al . Idea experiments of GRAPES three-dimensional variational data assimilation system[J]. Acta Meteorological Sinica , 2004,62(1): 31-41.
.气象学报,2004,62(1):31-41.]
[11] Ebtehaj A M, Foufoula-Georgiou E, Zhang S Q, et al . Non-Smooth Variational Data Assimilation with Sparse Priors[J/OL].2012.https:∥www.researchgate.net/ publication/228096140.
[12] Freitag M A, Nichols N K, Budd C J. Resolution of sharp fronts in the presence of model error in variational data assimilation[J]. Quarterly Journal of the Royal Meteorological Society , 2013, 139(672): 742-757.
[13] Ebtehaj A M, Zupanski M, Lerman G, et al . Variational data assimilation via sparse regularization[J]. Tellus A ,2014, 66: 21789, http:∥dx.doi.org/ 10.3402/tellusa.v66.21789.
[14] Pan Yang,Shen Yan,Yu Jingjing, et al .Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique[J]. Acta Meteorologica Sinica ,2012,70(6):1 381-1 389.
.气象学报,2012,70(6):1 381-1 389.]
[15] Shen Y, Zhao P, Pan Y, et al . A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. Journal of Geophysical Research : Atmospheres , 2014, 119(6): 3 063-3 075.
[16] Xie P, Xiong A Y. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses[J]. Journal of Geophysical Research : Atmospheres ,2011, 116(D21),doi:10.1029/2011JD016118.
[17] Pan Yang,Shen Yan,Yu Jingjing, et al . An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method[J]. Acta Meteorologica Sinica ,2015,73(1):177-186.[潘旸,沈艳,宇婧婧,等.基于贝叶斯融合方法的高分辨率地面—卫星—雷达三源降水融合试验[J].气象学报,2015,73(1):177-186.]
[18] Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems[M]. Washington DC:Winston & Sons, 1977.
[19] Wang Gen, Tang Fei, Liu Xiaobei, et al . Application of M-estimators method on FY3B/IRAS channel brightness temperature generalized variational assimilation [J]. Journal of Remote Sensing , 2017, 21(1):52-61.[王根,唐飞,刘晓蓓,等. M-估计法广义变分同化FY3B/IRAS通道亮温[J].遥感学报,2017,21(1):52-61.]
[20] Miao Chunsheng,Cheng Yuan,Wang Jianhong, et al .Data fusion of offshore SST from China FY and HY2 satellites and its application[J]. Advances in Earth Science ,2015,30(10):1 127-1 143.[苗春生,程远,王坚红,等.中国风云卫星与海洋卫星近海SST资料融合技术及应用研究[J].地球科学进展, 2015, 30(10):1 127-1 143.]
[21] Rawlins F, Ballard S P, Bovis K J, et al . The Met Office global four-dimensional variational data assimilation scheme[J]. Quarterly Journal of the Royal Meteorological Society , 2007, 133(623): 347-362.
[22] Elad M, Milanfar P, Rubinstein R. Analysis versus synthesis in signal priors[J]. Inverse Problems , 2007, 23(3): 947.
[23] Goldfarb D, Yin W. Second-order cone programming methods for total variation-based image restoration[J]. SIAM Journal on Scientific Computing , 2005, 27(2): 622-645.
[24] Kim S J, Koh K, Lustig M, et al . An interior-point method for large-scale-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processing , 2007, 1(4): 606-617.
[25] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing , 2009, 18(11): 2 419-2 434.
[26] Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing , 2007, 1(4): 586-597.
[27] Hansen P C, O’Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing , 1993, 14(6): 1 487-1 503.
[28] Nadarajah S. A generalized normal distribution[J]. Journal of Applied Statistics , 2005, 32(7): 685-694.
[29] Smith K S, Marshall J. Evidence for enhanced eddy mixing at middepth in the Southern Ocean[J]. Journal of Physical Oceanography , 2009, 39(1): 50-69.
[30] Chan R H F, Jin X Q. An Introduction to Iterative Toeplitz Solvers[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2007.
[31] Gaspari G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society , 1999,125(554): 723-757.
[32] Williams C K I, Rasmussen C E. Gaussian Processes for Machine Learning[M].London:The MIT Press, 2006.
[33] Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1989, 11(7): 674-693.
[34] Wang Lei, Chen Rensheng, Song Yaoxuan.Study of statistical characteristics of wet season hourly rainfall at Hulu watershed with Γ function in Qilian Mountains[J]. Advances in Earth Science , 2016, 31(8): 840-848.
.地球科学进展,2016,31(8): 840-848.]
[35] Wang Z, Bovik A C, Sheikh H R, et al . Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing , 2004, 13(4): 600-612.
[36] Ebtehaj A M, Foufoula G E, Lerman G. Sparse regularization for precipitation downscaling[J]. Journal of Geophysical Research : Atmospheres , 2012, 117(D8), doi:10.1029/2011JD017057.
[1] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[2] 阳勇, 陈仁升, 宋耀选. 高寒山区地表温度测算方法研究综述[J]. 地球科学进展, 2014, 29(12): 1383-1393.
[3] 刘斌涛,陶和平,宋春风,郭兵,史展. 我国西南山区降雨侵蚀力时空变化趋势研究[J]. 地球科学进展, 2012, 27(5): 499-509.
[4] 潘小多,李新,钞振华. 区域尺度近地表气候要素驱动数据研制的研究综述[J]. 地球科学进展, 2010, 25(12): 1314-1324.
[5] 康世昌, 黄杰,张强弓. 雪冰中汞的研究进展[J]. 地球科学进展, 2010, 25(8): 783-793.
[6] 赵天保,符淙斌,柯宗建,郭维栋. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 241-254.
[7] 邱新法,仇月萍,曾燕. 重庆山地月平均气温分布式模拟研究[J]. 地球科学进展, 2009, 24(6): 621-628.
[8] 王亚平,黄 耀,张稳. 中国东北三省1960—2005年地表干燥度变化趋势[J]. 地球科学进展, 2008, 23(6): 619-627.
[9] Pavel Ya. Groisman,Richard W. Knight. 在过去40年里出现的新趋势——北美持续旱段[J]. 地球科学进展, 2007, 22(11): 1191-1207.
[10] 王鹏祥,杨金虎,张强,何金海,王德民,陆登荣. 近半个世纪来中国西北地面气候变化基本特征[J]. 地球科学进展, 2007, 22(6): 648-656.
[11] 崔茂常,朱 海. ECMWF再分析日降雨量与CMAP候降雨量在中国境内的数据整合[J]. 地球科学进展, 2000, 15(4): 442-445.
[12] 袁复怀,山发寿,高东林 . 湖泊沉积物中保存的过去200年间中欧地区的气温记录:δ18Op—气温相关关系向过去的外推[J]. 地球科学进展, 1998, 13(4): 393-397.