[1]Riley G A, Stommel H, Bumpus D F . Quantitative ecology of the plankton of the Western North Atlantic[J]. Bulletin Bingham Oceanography Collection, 1949,12:1-169. [2]Xu Yongfu(徐永福). On the study of the biogeochemical cycle of carbon dioxide[J]. Advance in Earth Sciences(地球科学进展),1995,10(4):367-372(in Chinese). [3]Gao Huiwang(高会旺), Feng Shizuo(冯士笮), Guan Yuping(管玉平). Progress in marine planktonic ecosystem modelling[J]. Limnology Oceanography(海洋与湖沼),2000,31(3) :341-348(in Chinese). [4]Emerson S, Quay P, Karl D, et al. Experimental determination of the organic carbon flux from open-ocean surface waters[J]. Nature, 1997,389:951-954. [5]Doney S C, Glover D M, Najjar R G. A new coupled, one-dimensional biological-physical model for the upper ocean:Applications to the JGOFS Bermuda Atlantic Time Series(BATS)site[J]. Deep-Sea Research II,1996,43:591-624. [6]Haigh S P, Denman K L, Hsich W W. Simulation of the planktonic ecosystem response to pre-and post-1976 forcing in an isopycnic model of the North Pacific[J]. Canadian Journal of Fishery Aquatic Science, 2001,58:703-722. [7]McGillicuddy D J, Jr Robinson A R. Eddy-induced nutrient supply and new production[J]. Deep-Sea Research Ⅰ,1997,44:1 427-1 450. [8]Oschlies A, Garcon V. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean[J]. Nature, 1998,394:266-269. [9]Spall S A, Richards K J. A numerical model of mesoscale frontal instabilities and plankton dynamics.I.Model formulation and initial experiments[J]. Deep-Sea Reseach II,2000,47:1 261-1 301. [10]Gao S, Jia J J. Modeling suspended sediment distribution in continental shelf upwelling/downwelling systems[J]. [WT6BX]GeoMarine Letters,2003,22:218-226. [11]Fasham M J R, Ducklow H W, Mckelvie S M. A nitrogen based model of plankton dynamics in the oceanic mixed layer[J]. Journal of Marine Research,1990,48:591-639. [12]Sarmiento J L, Orr J C. Threedimensional simulations of the impact of southern ocean nutrient depletion on atmospheric CO2 and ocean chemistry[J]. Limnology Oceanography,1991,36(8):1 928-1 950. [13]Hurtt G C, Armstrong R A. A pelagic ecosystem model calibrated with BATS data[J]. Deep-Sea Research, 1996, 43:653684. [14]Bissett W P, Walsh J J, Dieterle D A, et al. Carbon cycling in the upper waters of the Sargasso Sea. I. Numerical simulation of differential carbon and nitrogen fluxes[J]. Deep-Sea Research, 1999a,46:205-269. [15]Bissett W P, Carder K L, Walsh J J, et al. Carbon cycling in the upper waters of the Sargasso Sea.Ⅱ. Numerical simulation of apparent and inherent optical properties[J]. Deep-Sea Research, 1999b,46:271-317. [16]Dadou I,Lamy F Modéle. Unidimensionnel intégré en mode forcé: Application au site oligotrophe d`EUMELI[A]. In: Repport JGOFS-France[C]. 1996,22:34. [17]Joos F, Siegenthaler J L. Estimates of the effect of southern ocean iron fertilization on atmospheric CO2 concentrations[J]. Nature, 1991,349:772-775. [18]Kurz K D, MaierReimer E. Iron fertilization of the austral ocean-the Hamburg model assessment[J]. Global Biogeochemical Cycles, 1993,7(1):229-244. [19]Price N M, Andersen L F, Morel F M M. The equatorial Pacific Ocean:Grazer controlled phytoplankton populations in an iron-limited system[J]. Deep-Sea Research, 1991,38:1 361-1 378. [20]Miller C B, Frost B W, Wheeler P A, et al. Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem[J]. Limnology Oceanography, 1991,36:1 600-1 615. [21]Chai F, Lindley S T, Barber R T. Origin and maintenance of a high nitrate condition in the equatorial Pacific[J]. Deep-Sea Research II, 1996,43:1 031-1 064. [22]Armstrong R A. An optimization-based model of iron-light-ammonium colimition of nitrate uptake and phytoplankton growth[J]. Limnology Oceanography, 1999a,44:1 436-1 446. [23]Taylor A H, Harbour D S, Harris R P, et al. Seasonal succession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen[J]. Journal Plankton Research,1993,15:875-891. [24]Dugdale R C, Wilkerson F P, Minas H J. The role of a silicate pump in driving new production[J]. Deep-Sea Research, 1995,42:697-719. [25]Dugdale R C, Wilkerson F P. Silicate regulation of new production in the equatorial Pacific upwelling[J]. Nature, 1998, 391:270-273. [26]Hutchins D A, Bruland K W. Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime[J]. Nature,1998,393:561-564. [27]Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters[J]. Nature, 1998,393:774-777. [28]Chai F, Dugdale R C, Peng T H, et al. One-dimensional ecosystem model of the equatorial Pacific Upwelling system. Part I: Model development and silicon and nitrogen cycle[J]. Deep-Sea Research II,2002, 49:2 713-2 743. [29]Dugdale R C, Barber R, Chai F, et al. One-dimensional ecosystem model of the equatorial Pacific upwelling system.Part II:sensitivity analysis and comparison with JGOFS EqPac data[J]. Deep-Sea Research II,2002,49:2 747-2 768. [30]Gnanadesikan A. A global model of silicon cycling: Sensitivity to eddy parameterization and dissolution[J]. Global Biogeochemical Cycles,1999,13:199-220. [31]Karl D, Letelier R, Tupas L, et al. The role of nitrogen fixation in biogechemical cycling in the subtropical North Pacific Ocean[J]. Nature, 1997,388: 533-538. [32]Gruber N, Keeling C D, Stocker T F. Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea[J]. Deep-Sea Research,1998,45:673-717. [33]Hood R R, Bates N R, Capone D G, et al. Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS[J]. Deep-Sea Research II, 2001,48:1 609-1 648. [34]Stoens A, Menkès C, Radenac MH, et al. The coupled physical-new production system in the equatorial Pacific during the 1992-1995 El Niño[J]. Journal of Geophysical Research,1999,104:3 323-3 339. [35]Chavez F P, Strutton P G, Frienderich G E, et al. Biological and chemical response of the equatorial Pacific ocean to the 1997-98 EI Niño[J]. Science, 1999,286:2 126-2 131. [36]Leonard C L, McClain C R, Murtugudde R, et al. An iron-based ecosystem model of the central equatorial Pacific[J]. Journal of Geophysical Research, 1999,104:1 325-1 341. [37]Friedrichs M A M, Hofmann E E. Physical control of biological processes in the central equatorial Pacific Ocean[J]. Deep-Sea Research, 2001,48:1 023-1 069. [38]McClain C R, Arrigo K. Observations and simulations of physical and biological processes at Ocean Weather Station P,1951-1980[J]. Journal of Geophysical Research,1996,101:3 697-3 713. [39]Wong C S, Whitney F Aa, Matear R J, et al. Enhancement of new production in the northeast subarctic Pacific Ocean during negative North Pacific index events[J].Limnology Oceanography,1998,43:1 418-1 426. [40]Venrick E L, McGowan J A, Cayan D R, et al. Climate and chlorophyll a: Long-term trends in the central north Pacific Ocean[J]. Science, 1987,238:70-72. [41]Chai F, Jiang M S, Barber R T, et al. Interdecadal variation of the transition zone Chlorophyll front: A physical-biological model simulation between 1960 and 1990[J]. Journal of Oceanography,2003, 59: 461-475. [42]Archer D, Maier-Reimer E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration[J]. Nature, 1994,367: 260-264. [43]Doney S C. Major challenges confronting marine biogeochemical modeling[J]. Global Biogeochemical Cycles,1999,13:705-714. [44]Hofmann E E, Friedrichs M A M. Predictive modeling for marine ecosystems[A].In: Robinson A R, McCarthy J J, Rothschild B J,eds. The Sea[C]. New York: John Wiley & Sons, 2002. 537-561. |