地球科学进展 ›› 2004, Vol. 19 ›› Issue (4): 621 -629. doi: 10.11867/j.issn.1001-8166.2004.04.0621

综述与评述 上一篇    下一篇

海洋生物地球化学模式研究进展
商少凌 1;柴 扉 1,2;洪华生 1   
  1. 1. 厦门大学海洋环境科学教育部重点实验室,福建 厦门 361005;2. School of Marine Science, University of Maine, Orono, Maine 04469, USA
  • 收稿日期:2003-04-23 修回日期:2003-10-24 出版日期:2004-08-01
  • 通讯作者: 商少凌(1968-),女,福建省泉州人,副教授,主要从事海洋生物地球化学研究. E-mail:E-mail: slshang@jingxian.xmu.edu.cn
  • 基金资助:

    厦门大学海洋环境科学教育部重点实验室教育部访问学者基金项目“台湾海峡生态动力学模式研究”;国家自然科学基金项目“台湾海峡表层水温的长期变动及其生态响应研究”(编号:49906008)资助

AN OVERVIEW OF MARINE BIOGEOCHEMICAL MODELING

SHANG Shao-ling 1;CHAI Fei 1,2;HONG Hua-sheng 1   

  1. 1.Marine Environmental Laboratory of the Ministry of Education of China, Xiamen University,Xiamen 361005,China;2.School of Marine Science, University of Maine, Orono, Maine 04469, USA
  • Received:2003-04-23 Revised:2003-10-24 Online:2004-08-01 Published:2004-08-01

海洋生物地球化学模式是定量认识物质的海洋生物地球化学循环、理解其控制机制以及预测体系变动的重要手段。20世纪90年代以来,该研究领域的进展主要体现在海洋生物地球化学循环的物理输送和生态动力学过程以及年际、年代际变动的模拟3个方面。物理过程模拟方面的进展,集中在寡营养海区上层海水营养盐的供应机制问题上,在经典的上升流、垂直扩散之外,提出涡旋可能构成一种重要的物理输入过程。而生态动力学过程的模拟方面,90年代前期考虑食物网基本结构,由浮游植物、浮游动物和细菌三大类群构成生物状态变量,氮和磷营养盐以及颗粒碎屑构成其他状态变量;90年代后期,开始引入铁和硅的限制问题,考虑不同浮游植物和浮游动物群落结构的影响,特别是浮游植物粒级结构变化的预测可能是未来该领域力图解决的一个技术问题。年际变化的模拟,多围绕ENSO事件对初级生产的影响及其机制问题展开;年代际和地质年代尺度的体系变动问题仍存在争论,相对缺乏有效的数值模拟研究。该研究领域未来应加强生物—化学过程的函数表达、物理模式、中尺度过程、边界交换以及资料获取技术等方面的研究,以应对目前面临的诸多问题与挑战。

The recent development and progress in marine biogoechemical modeling are reviewed and summarized. In general, biogeochemical models can be classified into several different categories according to various physical, biological and chemical processes in the oceans. There are three main types of modeling approaches focusing on physical transport of nutrients, ecosystem dynamics, and temporal variability of biogeochemical processes in the oceans. Ocean current and mixing are dominate processes in supplying nutrients to the euphotic zone. In the upwelling regions, the vertical advection through upwelling is the main mechanism to deliver nutrients. In the central gyre regions, vertical mixing had been thought as a key process to bring nutrients to the surface. Recent field observations and modeling work have suggested that the vertical motion (both upwelling and downwelling) associated with mesoscale eddy activities in the gyre regions can be a potentially important to supply nutrients into the euphotic zone. So far, most models developed for the central gyre regions are onedimensional or coarse resolution threedimensional, and more eddyresolving biogeochemical models are needed. Prior to early 1990’s, most ecosystem models were developed following a general nutrientphytoplanktonzooplanktondetritus (NPDZ) structure. The state variables are single phytoplankton and zooplankton specie, nitrate or phosphate as a limiting nutrient, and a sinking detritus pool. Recently, development of ecosystem model has been advanced with considering multiple limiting nutrients such as iron and silicate, incorporating more phytoplankton and zooplankton functional groups, and separating detritus materials with different sinking velocity. These advances in ecosystem modeling allow us to investigate more complex processes in the oceans, such as nitrogen fixation by cyanobacterium, iron fertilization, and role of remineralization in nutrient and carbon cycle. The ecosystem and biogeochemical processes in responses to climate variability have been main interests in developing and testing models. Prior to 1990’s, most models were focused on reproducing and understanding seasonal cycle and nutrients and phytoplankton dynamics. Recently, lots of progresses have been made in terms of modeling and understanding on how ecosystem dynamics respond to climate variability on longer time scale, such as El Nino and Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). The progresses in biogeochemical modeling have been made rapidly during the past decade, but challenges are still ahead. For example: physical circulation models need to consider mesoscale processes and to resolve eddyinduced nutrient transports; phytoplankton and zooplankton functional groups need to be better incorporated into models based upon both field and laboratory experiments; biogeochemical models need to be linked from global to basin and regional scales, and property exchange at boundaries across these three scales needs more attention; data assimilation technique is also needed to refine parameter values in ecosystem models. In order to build and establish predictive capabilities of biogeochemical models, multidisciplinary observational networks and computing facilities should be developed and supported.

中图分类号: 

[1]Riley G A, Stommel H, Bumpus D F . Quantitative ecology of the plankton of the Western North Atlantic[J]. Bulletin Bingham Oceanography Collection, 1949,12:1-169.
[2]Xu Yongfu(徐永福). On the study of the biogeochemical cycle of carbon dioxide[J]. Advance in Earth Sciences(地球科学进展),1995,10(4):367-372(in Chinese).
[3]Gao Huiwang(高会旺), Feng Shizuo(冯士笮), Guan Yuping(管玉平). Progress in marine planktonic ecosystem modelling[J]. Limnology Oceanography(海洋与湖沼),2000,31(3) :341-348(in Chinese).
[4]Emerson S, Quay P, Karl D, et al. Experimental determination of the organic carbon flux from open-ocean surface waters[J]. Nature, 1997,389:951-954.
[5]Doney S C, Glover D M, Najjar R G. A new coupled, one-dimensional biological-physical model for the upper ocean:Applications to the JGOFS Bermuda Atlantic Time Series(BATS)site[J]. Deep-Sea Research II,1996,43:591-624.
[6]Haigh S P, Denman K L, Hsich W W. Simulation of the planktonic ecosystem response to pre-and post-1976 forcing in an isopycnic model of the North Pacific[J]. Canadian Journal of Fishery Aquatic Science, 2001,58:703-722.
[7]McGillicuddy D J, Jr Robinson A R. Eddy-induced nutrient supply and new production[J]. Deep-Sea Research Ⅰ,1997,44:1 427-1 450.
[8]Oschlies A, Garcon V. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean[J]. Nature, 1998,394:266-269.
[9]Spall S A, Richards K J. A numerical model of mesoscale frontal instabilities and plankton dynamics.I.Model formulation and initial experiments[J]. Deep-Sea Reseach II,2000,47:1 261-1 301.
[10]Gao S, Jia J J. Modeling suspended sediment distribution in continental shelf upwelling/downwelling systems[J]. [WT6BX]GeoMarine Letters,2003,22:218-226.
[11]Fasham M J R, Ducklow H W, Mckelvie S M. A nitrogen based model of plankton dynamics in the oceanic mixed layer[J]. Journal of Marine Research,1990,48:591-639.
[12]Sarmiento J L, Orr J C. Threedimensional simulations of the impact of southern ocean nutrient depletion on atmospheric CO2 and ocean chemistry[J]. Limnology Oceanography,1991,36(8):1 928-1 950.
[13]Hurtt G C, Armstrong R A. A pelagic ecosystem model calibrated with BATS data[J]. Deep-Sea Research, 1996, 43:653684.
[14]Bissett W P, Walsh J J, Dieterle D A, et al. Carbon cycling in the upper waters of the Sargasso Sea. I. Numerical simulation of differential carbon and nitrogen fluxes[J]. Deep-Sea Research, 1999a,46:205-269.
[15]Bissett W P, Carder K L, Walsh J J, et al. Carbon cycling in the upper waters of the Sargasso Sea.Ⅱ. Numerical simulation of apparent and inherent optical properties[J]. Deep-Sea Research, 1999b,46:271-317.
[16]Dadou I,Lamy F Modéle. Unidimensionnel intégré en mode forcé: Application au site oligotrophe d`EUMELI[A]. In: Repport JGOFS-France[C]. 1996,22:34.
[17]Joos F, Siegenthaler J L. Estimates of the effect of southern ocean iron fertilization on atmospheric CO2 concentrations[J]. Nature, 1991,349:772-775.
[18]Kurz K D, MaierReimer E. Iron fertilization of the austral ocean-the Hamburg model assessment[J]. Global Biogeochemical Cycles, 1993,7(1):229-244.
[19]Price N M, Andersen L F, Morel F M M. The equatorial Pacific Ocean:Grazer controlled phytoplankton populations in an iron-limited system[J]. Deep-Sea Research, 1991,38:1 361-1 378.
[20]Miller C B, Frost B W, Wheeler P A, et al. Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem[J]. Limnology Oceanography, 1991,36:1 600-1 615.
[21]Chai F, Lindley S T, Barber R T. Origin and maintenance of a high nitrate condition in the equatorial Pacific[J]. Deep-Sea Research II, 1996,43:1 031-1 064.
[22]Armstrong R A. An optimization-based model of iron-light-ammonium colimition of nitrate uptake and phytoplankton growth[J]. Limnology Oceanography, 1999a,44:1 436-1 446.
[23]Taylor A H, Harbour D S, Harris R P, et al. Seasonal succession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen[J]. Journal Plankton Research,1993,15:875-891.
[24]Dugdale R C, Wilkerson F P, Minas H J. The role of a silicate pump in driving new production[J]. Deep-Sea Research, 1995,42:697-719.
[25]Dugdale R C, Wilkerson F P. Silicate regulation of new production in the equatorial Pacific upwelling[J]. Nature, 1998, 391:270-273.
[26]Hutchins D A, Bruland K W. Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime[J]. Nature,1998,393:561-564.  
[27]Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters[J]. Nature, 1998,393:774-777.
[28]Chai F, Dugdale R C, Peng T H, et al. One-dimensional ecosystem model of the equatorial Pacific Upwelling system. Part I: Model development and silicon and nitrogen cycle[J]. Deep-Sea Research II,2002, 49:2 713-2 743. 
[29]Dugdale R C, Barber R, Chai F, et al. One-dimensional ecosystem model of the equatorial Pacific upwelling system.Part II:sensitivity analysis and comparison with JGOFS EqPac data[J]. Deep-Sea Research II,2002,49:2 747-2 768.
[30]Gnanadesikan A. A global model of silicon cycling: Sensitivity to eddy parameterization and dissolution[J]. Global Biogeochemical Cycles,1999,13:199-220.
[31]Karl D, Letelier R, Tupas L, et al. The role of nitrogen fixation in biogechemical cycling in the subtropical North Pacific Ocean[J]. Nature, 1997,388: 533-538.
[32]Gruber N, Keeling C D, Stocker T F. Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea[J]. Deep-Sea Research,1998,45:673-717.
[33]Hood R R, Bates N R, Capone D G, et al. Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS[J]. Deep-Sea Research II, 2001,48:1 609-1 648.
[34]Stoens A, Menkès C, Radenac MH, et al. The coupled physical-new production system in the equatorial Pacific during the 1992-1995 El Niño[J]. Journal of Geophysical Research,1999,104:3 323-3 339.
[35]Chavez F P, Strutton P G, Frienderich G E, et al. Biological and chemical response of the equatorial Pacific ocean to the 1997-98 EI Niño[J]. Science, 1999,286:2 126-2 131.
[36]Leonard C L, McClain C R, Murtugudde R, et al. An iron-based ecosystem model of the central equatorial Pacific[J]. Journal of Geophysical Research, 1999,104:1 325-1 341.
[37]Friedrichs M A M, Hofmann E E. Physical control of biological processes in the central equatorial Pacific Ocean[J]. Deep-Sea Research, 2001,48:1 023-1 069.
[38]McClain C R, Arrigo K. Observations and simulations of physical and biological processes at Ocean Weather Station P,1951-1980[J]. Journal of Geophysical Research,1996,101:3 697-3 713.
[39]Wong C S, Whitney F Aa, Matear R J, et al. Enhancement of new production in the northeast subarctic Pacific Ocean during negative North Pacific index events[J].Limnology Oceanography,1998,43:1 418-1 426. 
[40]Venrick E L, McGowan J A, Cayan D R, et al. Climate and chlorophyll a: Long-term trends in the central north Pacific Ocean[J]. Science, 1987,238:70-72.
[41]Chai F, Jiang M S, Barber R T, et al. Interdecadal variation of the transition zone Chlorophyll front: A physical-biological model simulation between 1960 and 1990[J]. Journal of Oceanography,2003, 59: 461-475.
[42]Archer D, Maier-Reimer E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration[J]. Nature, 1994,367: 260-264.
[43]Doney S C. Major challenges confronting marine biogeochemical modeling[J]. Global Biogeochemical Cycles,1999,13:705-714.
[44]Hofmann E E, Friedrichs M A M. Predictive modeling for marine ecosystems[A].In: Robinson A R, McCarthy J J, Rothschild B J,eds. The Sea[C]. New York: John Wiley & Sons, 2002. 537-561.

[1] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[4] 刘桂梅,李海,王辉,柴扉. 我国海洋绿潮生态动力学研究进展[J]. 地球科学进展, 2010, 25(2): 147-153.
[5] 戴民汉;翟惟东;鲁中明;蔡平河;蔡卫君;洪华生. 中国区域碳循环研究进展与展望[J]. 地球科学进展, 2004, 19(1): 120-130.
[6] 叶笃正,符淙斌,季劲钧,董文杰,吕建华,温刚,延晓冬. 有序人类活动与生存环境[J]. 地球科学进展, 2001, 16(4): 453-460.
阅读次数
全文


摘要