地球科学进展 ›› 2004, Vol. 19 ›› Issue (4): 630 -635. doi: 10.11867/j.issn.1001-8166.2004.04.0630

综述与评述 上一篇    下一篇

气溶胶吸收及气候效应研究的新进展
夏祥鳌,王明星   
  1. 中国科学院大气物理研究所,北京 100029
  • 收稿日期:2002-11-08 修回日期:2003-11-03 出版日期:2004-08-01
  • 通讯作者: 作者简介:夏祥鳌(1973-),男,湖南南县人,助理研究员,主要从事气溶胶特性及辐射强迫遥感研究.E-mail:xxa@mail.iap.ac.cn E-mail:E-mail:xxa@mail.iap.ac.cn
  • 基金资助:

    国家自然科学基金项目“北京地区大气微量气体的变化特征研究”(编号:40175008);国家自然科学基金海外学者合作基金项目“卫星遥感地面辐射收支、云和气溶胶参数及其在气候变化研究中的应用”(编号:40028503)资助

LATEST ADVANCES IN AEROSOL ABSORPTION AND ITS CLIMATE EFFECTS

XIA Xiang-ao; WANG Ming-xing   

  1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2002-11-08 Revised:2003-11-03 Online:2004-08-01 Published:2004-08-01

最新研究结果表明仅关注气溶胶大气顶辐射强迫是不够的,特别是对于在短波辐射区域存在较强吸收的气溶胶类型,如烟尘、沙尘气溶胶。INDOEX实验表明来自印度次大陆的吸收性气溶胶产生的地表辐射强迫在量值上是大气顶辐射强迫的3倍左右,二者的差额以大气辐射加热的形式出现。气溶胶吸收通过加热气溶胶层所在大气,减少地表太阳辐射,影响地面蒸发,改变大气稳定度,从而影响水分循环。另外气溶胶的吸收对云产生“燃烧效应”,从而可能导致云量下降。鉴于气溶胶吸收的重要性,气溶胶吸收问题是当前气溶胶气候效应研究的一个热点问题。尽管关于气溶胶的吸收问题以及与之有关的气候效应还存在很大不确定性,根据观测事实或模拟结果得出的结论差别明显,但勿庸置疑的是气溶胶吸收是一个急需深入探讨的课题。由于我国北方地区春季沙尘活动十分频繁,而东部地区由于能源结构以及能源利用效率等问题致使气溶胶中吸收性成分(碳黑)含量偏高,一些资料分析以及模式研究结果均表明我国发生了一些有别于全球或其他地区的独特气候变化现象,初步分析表明气溶胶吸收在其中可能发挥了一定作用,因此加强我国气溶胶吸收特性的观测和理论研究,结合全球或区域气候模式,深入认识我国气溶胶辐射强迫、气候效应具有重要的科学意义,另外对于评估我国近年来采取的一些卓有成效的污染控制措施的环境和气候效应也是必不可少的。

It's not enough to focus only on Top of Atomospheric (TOA) aerosol direct radiative forcing, especially for absorptive aerosol types such as smoke and dust aerosols. It's shown by INDOEX experiment that absorptive aerosol (mainly from anthropogenic productions) surface radiative forcing in magnitude is nearly 3 times more than that at TOA, the difference between them is the heating of atmosphere that contains absorptive aerosol. Combined with the heating of the atmospheric and reducing in earth's surface radiation due to aerosol absorption, evaporation and atmospheric stability may be affected and it is possible to influence hydrological cycle. Additionally, aborptive aerosol may produce cloud “burning effect”, then result in decreased cloud amount. Aerosol absorption has become the hot topic concerning aerosol's effects on climate. It's valuable to study aerosol absorption, since that there are large uncertainties and some inconsistency results have been obtained concerning aerosol absorption and its effects on climate. It's absolutely necessary to strengthen experiment and theory studies on aerosol absorption in China due to high occurrences of dust storms in north China and high concentration of black carbon (BC) in east China. The high concentration of BC is partly resulted by our energy consumption structure and relatively low energy consumption efficiency. It's shown by data and model analyses that aerosol absorption probably plays an important role in unique climate change in China with comparsion of in other region or globe. It's of significance to deepen our knowledge of aerosol radiative forcing and climate effects in China with the help of global or region climate model, at the same time, it's also helpful to estimate the environment and climate effects of pollution control measures taken by our country in recent years. 

中图分类号: 

[1]IPCC. Radiative forcing of climate change[A]. In: Climate change 2001[C]. Cambridge University Press, 2001.
[2]Charlson R J, Langner J, Rodhe H, et al. Perturbation of the Northern hemisphere radiative balance by back-scattering from anthrpogenic aerosol[J].Tellus, 1991,43AB: 152-163.
[3]Kiehl J T, Briegleb B P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing[J]. Science, 1993, 260: 311-314.
[4]Hobbs P V, Reid J S, Kotchenruther R A, et al. Direct radiative forcing by smoke from biomass burning[J]. Science, 1997, 275: 1776-1778.
[5]Li X, Maring H, Savoie D, et al. Dominance of mineral dust in aerosol light scattering in the North Atlantic trade winds[J]. Nature,1996,380: 416-419.
[6]Tegen I, Hollrig P, Chin M, et al. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results[J].Journal Geophysical Research, 1997, 102:23 895-23 915.
[7]Tegen I, Lacis A A, Fung I. The influence on climate forcing of mineral aerosols from disturbed soils[J]. Nature, 1996, 380: 419-422.
[8]Satheesh S K, Ramanathan V. Large differences in tropical aerosol forcing at the top of the atmosphere and earth's surface[J]. Nature, 2000, 405: 60-63.
[9]Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosol, climate, and hydrological cycle[J]. Science, 2001, 294: 2 119-2 124.
[10]Satheesh S K. Aerosol radiative forcing over land: Effect of surface and cloud reflection[J].Annales Geophysicae, 2002, 20: 1-5.
[11]Ackerman A S, Toon O B, Stevens D E, et al. Reduction of tropical cloudiness by soot[J]. Science, 2000, 288: 1 042-1 047.
[12]Norris J R. Has Northern Indian ocean cloud cover changed due to increasing anthropogenic aerosols?[J]. Geophysical Research Letters, 2001, 28: 3 271-3 274.
[13]Charney J. Drought in the Sahara: A biogeophysical feedback mechanism[J].Science, 1975,187:434-435.
[14]Brooks N,Legrand M. Dust variability over northern Africa and rainfall in the Sahel[A]. In: McLaren S J, Kniveton D R,eds. Linking Climate Change to Land Surface Change[C]. Kluwer Academic Publishers, 1999.125.
[15]Zhang Renjian(张仁健), Wang Mingxing(王明星), Zhang Wen(张文), et al. Physical and chemical characteristics of dust storms in spring, 2000[J]. Climatic and Environmental research(气候与环境研究), 2000, 5: 259-266(in Chinese).
[16]Zhang G, Yi Z, Duce R A, et al. Chemistry of iron in marine aerosols[J].Global Biogeochemical Cycles, 1992,6:161-173.
[17]Ye Duzheng(叶笃正), Chou Jifan(丑纪范), Liu Jiyuan(刘纪远), et al. Causes of sand-stormy weather in Northern China and control measurements[J]. Acta Geographica Sinica(地理学报), 2000, 55:513-521(in Chinese).
[18]Zhou Xiuji(周秀骥), Xu Xiangde(徐祥德), Yan Peng(颜鹏), et al. Dynamic characteristics of dust storms in spring,2000[J].Science in China)D(中国科学D辑), 2002,32:327-334(in Chinese).
[19]Zhang Xiaozhuai(张小曳). Source distributions, emission, transportation, deposition of Asia dust and loess accumulation[J].Quaternary Sciences(第四纪研究), 2001,21:29-40(in Chinese).
[20]Shen Zhibao(沈志宝), Wei Li(魏丽). The influences of atmospheric dust on the radiative heating in the earth atmosphere system and atmosphere in the north western China[J]. Plateau Meteorology(高原气象), 1999,18:425-435(in Chinese).
[21]Shen Zhibao(沈志宝), Wei Li(魏丽). The influence of atmospheric dust on the surface radiative energy budget in Heihe region[J].Plateau Meteorology(高原气象), 1999, 18:1-8(in Chinese).
[22]Qiu Jinheng(邱金桓), Sun Jinhui(孙金辉). Optical remote sensing and analysis of dust storml [J]. Chinese Journal of Atmospheric Science(大气科学),1994, 18:1-10(in Chinese).
[23]Qiu Jinheng(邱金桓). Determine atmospheric aerosol optical depth using multi-waved solar direct radiation observation data. I: Theory[J]. Chinese Journal of Atmospheric Science(大气科学), 1995, 19:385-394(in Chinese).
[24]Luo Yunfeng(罗云峰), Lü Daren(吕达仁), Li Weiliang(李维亮), et al. The characteristics of atmospheric aerosol optical epth variation over China in recent 30 years[J]. Chinese Science Bulletins(科学通报), 2000, 45:549-554(in Chinese).
[25]Andreae M O. The dark side of aerosols[J]. Nature, 409: 671-672.
[26]Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2001, 409: 695-697.
[27]Hansen J, Sato M, Lacis A, et al. Perspective: Climate forcings in the industrial era[J]. Proceedings of the National Academy of Sciences, 1998, 22:12 753-12 758.
[28]Smith S J, Wigley T M L, Edmonds J. A new route toward limiting climate change?[J]. Science, 2000, 290: 1 109-1 110.
[29]Li X W, Zhou X J, Li W L. The cooling of Sichuan province in recent 40 years and its probable mechanism[J]. Acta Meteorologica Sinica, 1995, 9: 57-68.
[30]Luo Y F Zhou X J, Li W L. A numerical study of the atmospheric aerosol climate forcing in China[J]. Chinese Journal of Atmospheric Science, 1999, 23: 1-12.
[31]Qian Yun(钱云), Fu Congbin(符淙斌), Wang Zifa(王自发). The influence of industrial SO2 on temperature in East Asia and China[J]. Climatic and Environmental Research(环境和气候研究), 1996,2:143-149(in Chinese).
[32]Yu S C, Saxena V K, Zhao Z C. A comparison of signals of regional aerosol-induced forcing in eastern China and the southeastern United States[J].Geophysical Research Letters, 2001, 28: 713716.
[33]Krishnan R, Ramanathan V. Evidence of surface cooling from absorbing aerosols[J]. Geophysical Research Letters, 2002, 29:10.1029/2002GL014687.
[34]Kaiser D P. Analysis of total cloud amount over China[J]. Geophysical Research Letters, 1998, 25: 3 599-3 602. 
[35]Xu Q. Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution[J]. Atmospheric Environment, 2001, 35: 5 029-5 040.
[36]Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297: 2 250-2 253.
[37]Rosenfeld D. Suppression of rain and snow by urban and industrial air pollution[J]. Science, 2000, 287: 1 793-1 796.
[38]Lohmann U. Interactions between anthropogenic aerosols and hydrologic cycles[J]. IGACtivities, 2002,26:3-7.  
[39]Streets D G, Jiang K J, Hu X L, et al. Recent reductions in China's greenhouse gas emissions[J]. Science, 2001, 294: 1 835-1 836.
[40]Chameides W L, Hu H, Liu S, et al. Case study of the effects of atmospheric aerosols and reagional haze on agriculture: An opportunity to enhance crop yields in China through emission controls? [J]. Proceedings of the National Academy of Sciences, 1999, 26: 13 626-13 633.
[41]Chameides WL, Li X, Tang X, et al. Is ozone pollution affecting crop yields in China?[J]. Geophysical Research Letters, 1999, 26: 867-870.

[1] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[2] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[3] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[4] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[5] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[6] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[7] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[8] 李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展, 2015, 30(2): 226-236.
[9] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[10] 张世春,王毅勇,童全松. 碳同位素技术在碳质气溶胶源解析中应用的研究进展[J]. 地球科学进展, 2013, 28(1): 62-70.
[11] 郑有飞,董自鹏,吴荣军,李占清,江洪. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2): 224-234.
[12] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[13] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的210Pb和7Be示踪:II.月及年时间尺度的剖析[J]. 地球科学进展, 2010, 25(5): 505-514.
[14] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的 210Pb和 7Be示踪:Ⅰ.周时间尺度的解释[J]. 地球科学进展, 2010, 25(5): 492-504.
[15] 葛茂发,刘 泽,王炜罡. 二次光化学氧化剂与气溶胶间的非均相过程[J]. 地球科学进展, 2009, 24(4): 351-362.
阅读次数
全文


摘要