地球科学进展 ›› 2009, Vol. 24 ›› Issue (4): 351 -362. doi: 10.11867/j.issn.1001-8166.2009.04.0351

综述与评述    下一篇

二次光化学氧化剂与气溶胶间的非均相过程
葛茂发,刘 泽,王炜罡   
  1. 中国科学院化学研究所,北京分子科学国家实验室,北京 100190
  • 收稿日期:2008-12-03 修回日期:2009-03-10 出版日期:2009-04-10
  • 通讯作者: 葛茂发 E-mail:gemaofa@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目“大气气溶胶和光化学二次污染物的耦合相互作用研究”(编号:40830101)资助.

Heterogeneous Processes between Secondary Photochemical Oxidants and Aerosols

Ge Maofa, Liu Ze, Wang Weigang   

  1. Beijing National Laboratory for Molecular Sciences (BNLMS),Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
  • Received:2008-12-03 Revised:2009-03-10 Online:2009-04-10 Published:2009-04-10

      光氧化剂和气溶胶颗粒物在大气环境中普遍存在,影响着大气氧化能力和气候,威胁着人类健康。而大气光氧化剂与气溶胶颗粒物间复杂的耦合相互作用能产生二次污染物,使得大气污染过程更为复杂,成为国际大气化学研究的前沿和热点课题。挥发性有机物(VOCs)和氮氧化物(NOx)等一次污染物在大气中经过复杂的光化学反应可形成以臭氧(O3)为主的二次光化学氧化剂,并以大气气溶胶为平台发生非均相反应,使大气污染更严重,引起人们普遍关注。二次光化学氧化剂和气溶胶颗粒物之间非均相过程的实验室研究是深入认识这两者间耦合相互作用的关键,实验室研究可以为分析和深入认识外场观测结果提供基础,还能为数值模式模拟研究提供基本参数。概括了大气二次光化学氧化剂的形成过程,总结了国际上近年来二次光化学氧化剂与大气气溶胶颗粒物非均相反应的实验室研究进展以及研究方法,最后提出了现有的一些主要科学问题,对未来这一重要领域的研究前景进行了展望。

        A wide range of gaseous and particulate phase pollutants are emitted into the atmosphere by routes like external or internal combustion, evaporation, eolian and others. Once released into the atmosphere, these primary emissions are dispersed, transported and, at the same time, transformed by various chemical processes that determine their ultimate environmental fate. The secondary products of these processes are more important ones concerning their effects on human health and the quality of the environment, which represent the critical property determining the establishment of certain air standards and regulatory policies. 
      The prevalence of tropospheric photooxidants is of international concern because of their adverse effects on human health and environment. A lot of nitrogen oxides (NOx) and volatile organic compounds (VOCs) have been emitted from natural and factitious sources, and then transform into secondary photochemical oxidants by the atmospheric oxidation reactions, contributing to atmospheric oxidation capacity and climate change patterns. The formation of secondary photochemical oxidants including ozone (O3), gaseous nitric acid (HNO3), hydrogen peroxide (H2O2) and peroxy acetyl nitrate (PAN) is driven by hydroxyl radical (OH) during the daytime whose main sources are photolysis of O3and nitrous acid (HONO). At night, the nitrite radical (NO3) substitutes OH radical and plays the most important role in the nighttime atmospheric chemical processes. 
      However, the more complicated situation is that aerosol particles are ubiquitous in the Earth's atmosphere. As reactive surfaces they can take part in the heterogeneous reactions with secondary photochemical oxidants. It changes the tropospheric composition and the properties of the gaseous reactants, making the atmosphere pollution even more serious. It also alters the properties of aerosols like hygroscopicity and influences the radiation balance by the direct and indirect effects. Thus, many efforts have been made to this subject, which has become one of focuses of the atmospheric chemical research currently. 
      In order to make clear the intricate coupling effect between secondary photochemical oxidants and aerosol particles, laboratory simulation is basic. Aerosol samples produced in the laboratory or collected in the atmosphere are selected and put into the reactor such as flow tube, Knudsen cell or aerosol chamber, which react with the secondary photochemical introduced. The kinetics processes and products can be detected by the equipment involving mass spectrometry (MS), Fourier transform infrared spectrometry (FTIR), diffuse reflectance infrared Fourier transform (DRIFTS) and aerosol mass spectrometry (AMS), which are connected to the reactors. Chromatography and surface characterization techniques also can be applied to detect the heterogeneous reaction as the off-line methods. Laboratory researches about heterogeneous kinetic and mechanism are of importance to understand this coupling effect, which could contribute to comprehending the field observed events and provide the basic parameters to model forecast. 
      Research on heterogeneous reactions of secondary photochemical oxidants is challenging. However, there are some aspects that are not clear, and more studies are needed. First, the researches mainly concentrate on the O3 and HNO3 heterogeneous reactions, while less about others. The data must be enriched through the future studies. Second, the reaction system often has isolated secondary photochemical oxidant and individual particles, which is not consistent with real atmospheric composition. It leads certain error between the results from laboratory simulation and field observation. Last but not least, no commercial equipment is applicable to this area. Researchers must establish high-precision and sensitive apparatuses to detect the transformation of reactants under atmospheric conditions. 
      In this review, the formation of secondary photochemical oxidants is introducesd and the recent international laboratory researches and state of the art with regard to this area are concluded. In the end the main scientific problems are put forward, and the prospect is made.

中图分类号: 

[1] Thompson A M, Witte J C, Hudson R D, et al. Tropical tropospheric ozone and biomass burning[J].Science, 2001, 291: 2 128-2 132.
[2] Ryerson T B, Trainer M, Holloway J S, et al. Observations of ozone formation in power plant plumes and implications for ozone control strategies[J].Science,2001, 292: 719-723.
[3] Avino P, Manigrasso M. Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer[J].Atmospheric Environment,2008, 42: 4 138-4 148.
[4] Sitaras I E, Siskos P A. The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case Study[J].Environmental Chemistry Letters, 2008, 6: 59-69.
[5] Wang T, Ding A, Gao J, et al. Strong ozone production in urban plumes from Beijing, China[J].Geophysical Research Letters,2006, 33, L21806, doi: 10.1029/2006GL027689.
[6] Ma Yilin, Zhang Yuanhang. The study on pollution of atmospheric photochemical oxidants in Beijing[J]. Research of Environmental Science, 2000, 13(1):14-17.[马一琳, 张远航. 北京市大气光化学氧化剂污染研究[J]. 环境科学研究, 2000, 13(1):14-17.]
[7] Chan C K, Yao X. Air pollution in Mega cities in China[J].Atmospheric Environment,2008, 42(1): 1-42.
[8] Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosol, climate, and the hydrological cycle[J].Science,2001, 294: 2 119-2 124.
[9] Rosenfeld D. Aerosols, clouds, and climate[J].Science, 2006, 312: 1 323-1 324.
[10] Bréon F M.How do aerosol affect cloudiness and climate?[J].Science, 2006, 313:623-624.
[11] Zhang Xiaoye. Aerosol over China and their climate effect[J].Advances in Earth Science, 2007, 22(1): 12-16.[张小曳. 中国大气气溶胶及其气候效应研究[J]. 地球科学进展, 2007, 22(1): 12-16.]
[12] Duan Jing, Mao Jietai. Progress in researches on interaction between aerosol and cloud[J].Advances in Earth Science, 2008, 23(3): 252-261.[段靖, 毛节泰. 气溶胶与云相互作用的研究进展[J]. 地球科学进展, 2008, 23(3): 252-261.]
[13] Sitch S, Cox P M, Collins W J, et al. Indirect radiative forcing of climate change through ozone effects on the land-carbon Sink[J].Nature,2007, 448:791-795.
[14] Cox R A. Chemical kinetics and atmospheric chemistry: Role of data evaluation[J].Chemical Reviews,2003, 103: 4 533-4 548.
[15] Wennberg P O, Hanisco T F, Jaeglé L, et al. Hydrogen radical, nitrogen radical, and the production of O3 in the upper troposphere[J].Science,1998, 279: 49-53.
[16] Kley D, Kleimann M, Sanderman H, et al. Photochemical Oxidants: State of the science[J].Environmental Pollution, 1999, 100: 19-42. 
[17] Jenkin M E, Clemitshaw K C. Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer[J].Atmospheric Environment,2000, 34: 2 499-2 527.
[18] Lelieveld J, Butler T M, Crowley J N, et al. Atmospheric oxidation capacity sustained by a tropical forest[J].Nature,2008, 452: 737-740.
[19] Jia Long, Ge Maofa, Xu Yongfu, et al. Advances in atmospheric ozone chemistry[J].Progress in Chemistry, 2006, 18(11): 1 565-1 574.[贾龙, 葛茂发, 徐永福,等.大气臭氧化学研究进展[J]. 化学进展, 2006, 18(11): 1 565-1 574.]
[20] Lewis A C, Carslaw N, Marriott P J, et al. A larger pool of Ozone-forming carbon compounds in urban atmospheres[J].Nature, 2000, 405: 778-781.
[21] Hewitt A N. Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observation[J].Journal of Atmospheric Chemistry, 1991, 12: 181-194.
[22] Anglada J M, Aplincourt P, Bofill J M, et al. Atmospheric formation of OH radicals and H2O2 from alkene ozonolysis under humid conditions[J].ChemPhyChem,2002, 2: 215-221.
[23] Perner D, Platt U. Detection of nitrous-acid in the atmosphere by differential optical absorption[J]. Geophysical Research Letters,1979, 6: 917-920.
[24] Lammel G, Cape J N. Nitrous acid and nitrite in the atmosphere[J].Chemical Society Reviews,1996, 25(5): 361-369.
[25] Kleffmann J. Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer[J].ChemPhyChem, 2007, 8: 1 137-1 144.
[26] Kamboures M A, Jonathan D R, Miller Y, et al. Complexes of HNO3 and NO3- with NO2 and N2O4, and their potential role in atmospheric HONO formation[J].Physical Chemistry Chemical Physics, 2008, 10:6 019-6 032.
[27] Li S, Matthews J, Sinha A. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O[J].Science, 2008, 319:1 657-1 660.
[28] Grassian V H. Chemical reaction of nitrogen oxides on the surface of oxide, carbonate, soot, and mineral dust particles: Implications for the chemical balance of the troposphere[J].The Journal of Physical Chemistry:A, 2002,106: 860-877.
[29] Finlayson-Pitts B J, Wingen L M, Summer A L, et al. The heterogeneous hydrolysis of NO2 in laboratory systems and in Outdoor and indoor atmospheres: An integrated mechanism[J].Physical Chemistry Chemical Physics,2003, 5: 223-242.
[30] Ammann M, Kalberer M, Jost D T, et al. Heterogeneous production of nitrous acid on soot in polluted air masses[J].Nature,1998, 395: 157-160.
[31] Zhou X L, Huang G, Civerolo K, et al. Summertime observation of HONO, HCHO, and O3 at the summit of whiteface mountain, New York[J].Journal of Geophysical Research,2007, 112, D08311, doi:10.1029/2006JD007256.
[32] Su H, Cheng Y F, Shao M, et al. Nitrous Acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China[J].Journal of Geophysical Research, 2008, 113, D14312, doi:10.1029/2007JD009060.
[33] Akimoto H, Takagi H, Sakamaki F. Photoenhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapor: Extra radical source in smog chamber experiments[J].International Journal of Chemical Kinetics,1987, 19:539-551.
[34] Ramazan K A, Syomin D, Finlayson-Pitts B J. The photochemical production of HONO during the heterogeneous hydrolysis of NO2[J].Physical Chemistry Chemical Physics,2004, 6:3 836-3 843.
[35] Stemmler K, Ammann M, Donders C,et al. Photosensitized reduction of nitrogen dioxide on humic Acid as a source of nitrous Acid[J]. Nature,2006, 440: 195-198.
[36] Ndour M, D′ Anna B, George C, et al. Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations[J].Geophysical Research Letters, 2008, 35, L05812, doi:10.1029/2007GL032006.
[37] Gustafsson R J,Kyriakou G, Lambert R M. The molecular mechanism of tropospheric nitrous acid production on mineral dust surfaces[J].ChemPhyChem,2008, 9:1 390-1 393.
[38] Ravishankara A R. Heterogeneous and multiphase chemistry in the troposphere[J].Science, 1997, 276:1 058-1 065.
[39] Andreae M O, Crutzen P J. Atmospheric aerosol: Biogeochemical sources and role in atmospheric chemistry[J].Science, 1997, 276: 1 052-1 058.
[40] de Reus M, Dentener F, Thomas A, et al. Airborne observation of dust aerosol over the north Atlantic ocean during ACE2: Indications for heterogeneous ozone destruction[J].Journal of Geophysical Research, 2000, 105: 15 263-15 275.
[41] Bonasoni P, Cristofanelli P, Calzolari F, et al. Aerosol-ozone correlations during dust transport episodes[J].Atmospheric Chemistry and Physics, 2004,4:1 201-1 215.
[42] Michel A E, Usher C R, Grassian V H. Heterogeneous and catalytic uptake of ozone on mineral oxides and dust: A knudsen cell investigation[J].Geophysical Research Letters,2002, 29,doi: 10.1029/2002GL014896.
[43] Michel A E, Usher C R, Grassian V H. Reactive uptake of ozone on mineral oxides and mineral dust[J]. Atmospheric Environment,2003, 37: 3 201-3 211.
[44] Mogili P K, Kleiber P D, Young M A, et al. Heterogeneous uptake of ozone on reactive components of mineral dust aerosol: An environmental aerosol reaction chamber study[J].The Journal of Physical Chemistry A, 2006, 110: 13 799-13 807.
[45] Ullerstam M, Vogt R, Langer S, et al. The kinetics and mechanism of SO2 oxidation by O3 on mineral dust[J].Physical Chemistry Chemical Physics,2002,4:4 694-4 699.
[46] Li L, Chen Z M, Zhang Y H, et al. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate[J].Atmospheric Chemistry and Physics, 2006, 6: 2 453-2 464.
[47] Chen Z M, Jie C Y, Li S, et al. Heterogeneous reactions of methacrolein and methyl vinyl ketone: Kinetics and mechanisms of uptake and ozonolysis on silicon dioxide[J].Journal of Geophysical Research,2009(in press).[48] Ge M F, Tong S R, Wang W G, et al. Kinetics and Mechanisms of SO2 Oxidation by O3 on the Surface of Aluminum Oxide Particles[M]. Aerosols: Chemistry, Environmental Impact and Health Effects, Nova Science Publishers,2009.
[49] Foster K L, Plastridge R A, Bottenheim J W, et al. The role of Br2 and BrCl in surface ozone destruction at polar sunrise[J].Science, 2001, 291:471-474.
[50] Abbatt J P D, Waschewsky G C G. Heterogeneous interactions of HOBr, HNO3, O3, and NO2 with deliquescent NaCl aerosols at room temperature[J].The Journal of Physical Chemistry A,1998, 102:3 719-3 725.[51] Oum K W, Lakin M J, DeHaan D O, et al. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt Particles[J].Science, 1998, 279: 74-77.
[52] Sadanaga Y, Hirokawa J, Akimoto H. Formation of molecular chlorine in dark condition: Heterogeneous reaction of ozone with sea salt in the present of ferric ion[J].Geophysical Research Letters, 2001, 28: 4 433-4 436.
[53] Brown M A, Newberg J T, Krisch M J, et al. Reactive uptake of ozone on solid potassium iodide[J].The Journal of Physical Chemistry C,2008, 112: 5 520-5 525.
[54] Ackerman A S, Toon O B, Stevens D E, et al. Reduction of tropical cloudiness by soot[J].Science,2000, 288: 1 042-1 047.
[55] Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297: 2 250-2 253.
[56] Hansen J, Nazarenko L. Soot climate forcing via snow and Ice Albedos[J].Proceedings of the National Academy of Sciences of the United States of America,2003, 101: 423-428.
[57] McConnell J R, Edwards R, Kok G L, et al. 20th-Century industrial black carbon emissions altered arctic climate forcing[J].Science, 2007, 317: 1 381-1 384.
[58] Smith D M, Chughtai A R. Reaction kinetics of ozone at low concentrations with n-Hexane soot[J].Journal of Geophysical Research,1996, 101: 19 607-19 620.
[59] Smith D M, Chughtai A R. Photochemical effects in the heterogeneous reaction of soot with ozone at low concentration[J].Journal of Atmospheric Chemistry,1997, 26: 77-91.
[60] Chughtai A R, Kin J M, Smith D M. The effect of temperature and humidity on the reaction of ozone with combustion soot: Implications for reactivity near the tropopause[J].Journal of Atmospheric Chemistry,2003, 45: 231-243.
[61] Kamm S, Möhler O, Naumann K-H, et al. The heterogeneous reaction of ozone with soot aerosol[J].Atmospheric Environment,1999, 33: 4 651-4 661.
[62] Disselkamp R S, Carpenter M A, Cowin J P, et al. Ozone loss in soot aerosols[J].Journal of Geophysical Research,2000, 105: 9 767-9 771.
[63] Longfellow C A, Ravishankara A R, Hanson D R. Reactive and nonreactive uptake on hydrocarbon soot: HNO3, O3 and N2O5[J].Journal of Geophysical Research,2000, 105: 24 345-24 350.
[64] Lelièvre S, Bedjanian Y, Pouvesle N, et al. Heterogeneous reaction of ozone with hydrocarbon flame soot[J].Physical Chemistry Chemical Physics, 2004, 6:1 181-1 191.
[65] Dubowski Y, Vieceli J, Tobias D J, et al. Interaction of gas-phase ozone at 296 K with unsaturated self-assembled monolayers: A new look at an old system[J].The Journal of Physical Chemistry A, 2004, 108: 10 473-10 485.
[66] de Gouw J A, Lovejoy E R. Reactive uptake of ozone by liquid organic compounds[J].Geophysical Research Letters,1998, 25: 931-934.
[67] Thornberry T, Abbatt J P D. Heterogeneous reaction of ozone with liquid unsaturated Fatty acids: Detailed kinetics and gas-phase product studies[J].Physical Chemistry Chemical Physics,2004, 6: 84-93.
[68] Hearn J D, Smith G D. Kinetics and product studies for ozonolysis reactions of organic particles using aerosol CIMS[J].The Journal of Physical Chemistry:A,2004, 108: 10 019-10 029.
[69] Park J, Gomez A L, Walser M L, et al. Ozonolysis and photolysis of alkene-terminated self-assembled monolayers on quartz nanoparticles: Implications for photochemical aging of organic aerosol particles[J].Physical Chemistry Chemical Physics,2006, 8: 2 506-2 512.
[70] Jammoul A, Gligorovski S, George C, et al. Photosensitized Heterogeneous chemistry of ozone on organic films[J].The Journal of Physical Chemistry A,2008, 112: 1 268-1 276.
[71] Zahardis J, Geddes S, Petrucci G A. The ozonolysis of primary aliphatic amines in fine particles[J].Atmospheric Chemistry and Physics,2008, 8: 1 181-1 194.
[72] Fan Z, Kamens R M, Zhang J, et al. Ozone-nitrogen dioxide-NPAH heterogeneous soot particle reactions and modeling NPAH in the atmosphere[J].Environmental Science & Technology,1996, 30: 2 821-2 827.
[73] Pöschl U, Letzel T, Schauer C, et al. Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo\[a\]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications[J].The Journal of Physical Chemistry A,2001, 105:4 029-4 041.
[74] Perraudin E,Budzinski H, Villenave E. Identification and quantification of ozonation products of anthracene and phenanthrene adsorbed on silica particles[J].Atmospheric Environment,2007, 41: 6 005-6 017.
[75] Perraudin E, Budzinski H, Villenave E. Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles[J].Journal of Atmospheric Chemistry,2007, 56: 57-82.
[76] Wu P M, Okada K. Nature of coarse nitrate particles in the atmosphere-A single particle approach[J].Atmospheric Environment,1994, 28: 2 053-2 060.
[77] Lee S H, Murphy D M, Thomas D S, et al. Chemical components of single particles measured with particle analysis by laser mass spectrometry (PALMS) during the atlanta superSite project: Focus on organic/Sulfate, lead, soot, and mineral dust[J].Journal of Ceophysical Research Atmospheres, 2002, 107, 4003, doi:10.1029/2000JD000011.
[78] Galy Lacaux C, Carmichael G R, Song C H. Heterogeneous processes involving nitrogenous compounds and saharan dust inferred from measurements and model calculations[J].Journal of Geophysical Research, 2001, 106: 12 559-12 578.
[79] Hanke M, Umann B, Uecker J, et al. Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionization mass spectrometry during the MINATROC field campaign 2000 on monte cimone[J].Atmospheric Chemistry and Physics,2003, 3: 417-436.
[80] Underwood G M, Li P, Al-Abadleh H, et al. A Knudsen cell study of the heterogeneous reactivity of nitric Acid on Oxide and mineral dust particles[J].The Journal of Physical Chemistry A, 2001, 105: 6 609-6 620.
[81] Johnson E R, Sciegienka J, Carlos-Cuellar, et al. Heterogeneous uptake of gaseous nitric acid on dolomite (CaMg(CO3)2) and calcite (CaCO3) particles: A knudsen cell study using multiple, single and fractional particle layers[J].The Journal of Physical Chemistry A, 2005, 109: 6 901-6 911.
[82] Goodman A L, Bernard E T, Grassian V H. Spectroscopic study of nitric acid uptake kinetics in the presence of adsorbed water[J].The Journal of Physical Chemistry:A, 2001, 105: 6 443-6 457.
[83] Hanisch F, Crowley J N. The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual Mineral and Clay Mineral Components[J].Physical Chemistry Chemical Physics,2001, 3: 2 474-2 482. 
[84] Cwiertny D M, Baltrusaitis J, Hunter G J, et al. Characterization and acid-mobilization study of Iron-Containing mineral dust source materials[J].Journal of Geophysical Research Atmospheres, 2008, 113, D05202, doi:10.1029/2007JD009332.
[85] Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial pacific ocean[J].Nature, 1996, 383: 495-501.
[86] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science,2005, 308: 67-71.
[87] Mochida M, Finlayson-Pitts B J. FTIR studies of the reaction of gaseous NO with HNO3 on porous glass: Implications for conversion of HNO3 to photochemically active NOx in the atmosphere[J].The Journal of Physical Chemistry A, 2000,104: 9 705-9 711.
[88] Rivera-Figueroa A M, Sumner A L, Finlayson-Pitts B J. Laboratory studies of potential mechanisms of renoxification of tropospheric nitric acid[J].Environmental Science & Technology,2003, 34: 548-554.
[89] Saliba N A, Mochida M, Finlayson-Pitts B J. Laboratory studies of sources of HONO in polluted urban atmospheres[J]. Geophysical Research Letters, 2000, 27: 3 229-3 232.
[90] Syomin D, Ramazan K A, Finlayson-Pitts B J. The photochemical production of HONO during the heterogeneous hydrolysis of NO2[J].Physical Chemistry Chemical Physics, 2004, 6: 3 836-3 843.
[91] Ramazan K A, Wingen L M, Miller Y, et al. New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: Key role of molecular nitric acid and its complexes[J].The Journal of Physical Chemistry:A,2006, 110: 6 886-6 897.
[92] Gard E E, Kleeman M J, Gross D S, et al. Direct observation of heterogeneous chemistry in the atmosphere[J].Science, 1998, 279: 1 184-1 187.
[93] Fenter F F, Caloz F, Rossi M J. Kinetics of nitric acid uptake by salt[J].The Journal of Physical Chemistry,1994, 98: 9 801-9 810.
[94] Allen H C, Laux J M, Vogt R, et al. Water-induced reorganization of ultrathin nitrate films on NaCl: Implications for the tropospheric chemistry of sea salt particles[J].The Journal of Physical Chemistry,1996, 100: 6 371-6 375.
[95] Laux J M, Fister T F, Finlayson-Pitts B J, et al. X-ray photoelectron spectroscopy studies of the effects of water vapor on Ultrathin nitrate layers on NaCl[J].The Journal of Physical Chemistry,1996, 100: 19 891-19 897.
[96] Vogt R, Elliott C, Allen H C, et al. Some new laboratory approaches to studying tropospheric heterogeneous reactions[J].Atmospheric Environment,1996, 30:1 729-1 739.
[97] Davies J A, Cox R A. Kinetics of the heterogeneous reaction of HNO3 with NaCl: Effect of water vapor[J].The Journal of Physical Chemistry: A,1998, 102: 7 631-7 642.
[98] Ghosal S, Hemminger J C. Effect of water on the HNO3 pressure Dependence of the reaction between gas-phase HNO3 and NaCl surfaces[J].The Journal of Physical Chemistry:A, 1999, 103: 4 777-4 781.
[99] Ghosal S, Hemminger J C. Surface adsorbed water on NaCl and its effect on nitric acid reactivity with NaCl powders[J].The Journal of Physical Chemistry: B,2004, 108: 14 102-14 108.
[100] Kondo Y, Toon O B, Irie H, et al. Uptake of reactive nitrogen on cirrus cloud particles in the upper traposphere and lowermost Stratosphere[J].Geophysical Research Letters,2003, 30, 1154, doi:10.1029/2002GL016539.
[101] Ziereis H, Minikin A, Hchlager H, et al. Uptake of reactive nitrogen on cirrus cloud particles during INCA[J].Geophysical Research Letters,2004, 31, L05115, doi:10.1029/2003GL018794.
[102] Popp P J, Gao R S, Marcy T P, et al. Nitric acid uptake on subtropical cirrus cloud particles[J].Journal of Geophysical Research, 2004, 109, D06302, doi:10.1029/2003JD004255.
[103] Voigt C, Schlager H, Ziereis H, et al. Nitric acid in cirrus clouds[J].Geophysical Research Letters,2006, 33, L05803, doi:10.1029/2005GL025159.
[104] Zondlo M A, Barone S B, Tolbert M A. Uptake of HNO3 on ice under upper tropospheric conditions[J].Geophysical Research Letters,1997,24:1 391-1 394.
[105] Hynes R G, Fernandez M A, Cox R A. Uptake of HNO3 on water-ice and coadsorption of HNO3 and HCl in the temperature range 210-235K[J].Journal of Geophysical Research(Atmospheres),2002, 107, 4797, doi:10.1029/2001JD001557.
[106] Choi W, Leu M-T. Nitric acid uptake and decomposition on black carbon (soot) surfaces: Its implications for the upper troposphere and lower stratosphere[J]. The Journal of Physical Chemistry A,1998, 102: 7 618-7 630.
[107] Muñoz M S S, Rossi M J. Heterogeneous reactions of HNO3 with flame soot generated under different combustion conditions: Reaction mechanism and kinetics[J].Physical Chemistry Chemical Physics,2002, 4: 5 110-5 118.
[108] Valdez M P, Bales R C, Stanley D A, et al. Gaseous deposition to snow 1. experimental study of SO2 and NO2 deposition[J].Journal of Geophysical Research,1987, 92: 9 779-9 787.
[109] Gunz D W, Hoffmann M R. Field investigations on the snow chemistry in central and southern california-1. Inorganic ions and hydrogen peroxide[J].Atmospheric Environment,1990, 24A: 1 661-1 671.
[110] Mitra S K, Barth S, Pruppacher H R. A laboratory study on the scavenging of SO2 by snow crystals[J].Atmospheric Environment,1990, 24A: 2 307-2 312.
[111] Conklin M H, Sommerfeld R A, Laird S K, et al. Sulfur dioxide reactions on ice surfaces: Implications for dry deposition to snow[J].Atmospheric Environment,1993, 27A: 159-166.
[112] Chu L, Diao G, Chu L T. Heterogeneous interaction of SO2 on H2O2-ice films at 190~210K[J].The Journal of Physical Chemistry A,2000, 104: 7 565-7 573.
[113] Clegg S M, Abbatt J P D. Oxidation of SO2 by H2O2 on ice surfaces at 228K: A sink for SO2 in ice clouds[J].Atmospheric Chemistry and Physics,2001, 1: 73-78.
[114] Cape J N, Hargreaves K J, Storeton-West R, et al. Nitrite in orographic cloud as an indicator of nitrous acid in rural air[J].Atmospheric Environment,1992, 26A(13): 2 301-2 307.
[115] Bongartz A, Kames J, Schurath U, et al. Experimental determination of HONO mass accommodation coefficients using two different Techniques[J].Journal of Atmospheric Chemistry,1994, 18: 149-169.
[116] Hirokawa J, Kato T, Mafune F. Uptake of gas-phase nitrous Acid by pH-controlled aqueous solution studied by a wetted wall flow tube[J].The Journal of Physical Chemistry:A,2008, 112:12 143-12 150.
[117] Zhang R Y, Leu M-T, Keyser L F. Heterogeneous chemistry of HONO on liquid sulfuric acid: A new mechanism of chlorine activation on stratospheric sulfate aerosols[J].The Journal of Physical Chemistry,1996, 100: 339-345.
[118] Fenter F F, Rossi M J. Heterogeneous kinetics of HONO on H2SO4 solutions and on ice: Activation of HCl[J].The Journal of Physical Chemistry,1996, 100: 13 765-13 775.
[119] Harrison R M, Collins G. Measurements of reaction coefficients of NO2 and HONO on aerosol particles[J].Journal of Atmospheric Chemistry,1998, 30: 397-406.
[120] Baker J, Ashbourn S F M, Cox R A. Heterogeneous reactivity of nitrous acid on submicron sulfuric acid aerosol[J]. Physical Chemistry Chemical Physics,1999:1 683-1 690.

[1] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[2] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[3] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[4] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[5] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[6] 李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展, 2015, 30(2): 226-236.
[7] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[8] 张世春,王毅勇,童全松. 碳同位素技术在碳质气溶胶源解析中应用的研究进展[J]. 地球科学进展, 2013, 28(1): 62-70.
[9] 郑有飞,董自鹏,吴荣军,李占清,江洪. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2): 224-234.
[10] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的210Pb和7Be示踪:II.月及年时间尺度的剖析[J]. 地球科学进展, 2010, 25(5): 505-514.
[11] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的 210Pb和 7Be示踪:Ⅰ.周时间尺度的解释[J]. 地球科学进展, 2010, 25(5): 492-504.
[12] 申彦波,赵宗慈,石广玉. 地面太阳辐射的变化、影响因子及其可能的气候效应最新研究进展[J]. 地球科学进展, 2008, 23(9): 915-924.
[13] 段婧,毛节泰. 气溶胶与云相互作用的研究进展[J]. 地球科学进展, 2008, 23(3): 252-261.
[14] 申彦波,王标,石广玉. 2006年春季我国东部海域气溶胶光学厚度与沙尘天气[J]. 地球科学进展, 2008, 23(3): 290-298.
[15] 张小曳. 中国大气气溶胶及其气候效应的研究[J]. 地球科学进展, 2007, 22(1): 12-16.
阅读次数
全文


摘要