[1] Thompson A M, Witte J C, Hudson R D, et al. Tropical tropospheric ozone and biomass burning[J].Science, 2001, 291: 2 128-2 132. [2] Ryerson T B, Trainer M, Holloway J S, et al. Observations of ozone formation in power plant plumes and implications for ozone control strategies[J].Science,2001, 292: 719-723. [3] Avino P, Manigrasso M. Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer[J].Atmospheric Environment,2008, 42: 4 138-4 148. [4] Sitaras I E, Siskos P A. The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case Study[J].Environmental Chemistry Letters, 2008, 6: 59-69. [5] Wang T, Ding A, Gao J, et al. Strong ozone production in urban plumes from Beijing, China[J].Geophysical Research Letters,2006, 33, L21806, doi: 10.1029/2006GL027689. [6] Ma Yilin, Zhang Yuanhang. The study on pollution of atmospheric photochemical oxidants in Beijing[J]. Research of Environmental Science, 2000, 13(1):14-17.[马一琳, 张远航. 北京市大气光化学氧化剂污染研究[J]. 环境科学研究, 2000, 13(1):14-17.] [7] Chan C K, Yao X. Air pollution in Mega cities in China[J].Atmospheric Environment,2008, 42(1): 1-42. [8] Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosol, climate, and the hydrological cycle[J].Science,2001, 294: 2 119-2 124. [9] Rosenfeld D. Aerosols, clouds, and climate[J].Science, 2006, 312: 1 323-1 324. [10] Bréon F M.How do aerosol affect cloudiness and climate?[J].Science, 2006, 313:623-624. [11] Zhang Xiaoye. Aerosol over China and their climate effect[J].Advances in Earth Science, 2007, 22(1): 12-16.[张小曳. 中国大气气溶胶及其气候效应研究[J]. 地球科学进展, 2007, 22(1): 12-16.] [12] Duan Jing, Mao Jietai. Progress in researches on interaction between aerosol and cloud[J].Advances in Earth Science, 2008, 23(3): 252-261.[段靖, 毛节泰. 气溶胶与云相互作用的研究进展[J]. 地球科学进展, 2008, 23(3): 252-261.] [13] Sitch S, Cox P M, Collins W J, et al. Indirect radiative forcing of climate change through ozone effects on the land-carbon Sink[J].Nature,2007, 448:791-795. [14] Cox R A. Chemical kinetics and atmospheric chemistry: Role of data evaluation[J].Chemical Reviews,2003, 103: 4 533-4 548. [15] Wennberg P O, Hanisco T F, Jaeglé L, et al. Hydrogen radical, nitrogen radical, and the production of O3 in the upper troposphere[J].Science,1998, 279: 49-53. [16] Kley D, Kleimann M, Sanderman H, et al. Photochemical Oxidants: State of the science[J].Environmental Pollution, 1999, 100: 19-42. [17] Jenkin M E, Clemitshaw K C. Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer[J].Atmospheric Environment,2000, 34: 2 499-2 527. [18] Lelieveld J, Butler T M, Crowley J N, et al. Atmospheric oxidation capacity sustained by a tropical forest[J].Nature,2008, 452: 737-740. [19] Jia Long, Ge Maofa, Xu Yongfu, et al. Advances in atmospheric ozone chemistry[J].Progress in Chemistry, 2006, 18(11): 1 565-1 574.[贾龙, 葛茂发, 徐永福,等.大气臭氧化学研究进展[J]. 化学进展, 2006, 18(11): 1 565-1 574.] [20] Lewis A C, Carslaw N, Marriott P J, et al. A larger pool of Ozone-forming carbon compounds in urban atmospheres[J].Nature, 2000, 405: 778-781. [21] Hewitt A N. Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observation[J].Journal of Atmospheric Chemistry, 1991, 12: 181-194. [22] Anglada J M, Aplincourt P, Bofill J M, et al. Atmospheric formation of OH radicals and H2O2 from alkene ozonolysis under humid conditions[J].ChemPhyChem,2002, 2: 215-221. [23] Perner D, Platt U. Detection of nitrous-acid in the atmosphere by differential optical absorption[J]. Geophysical Research Letters,1979, 6: 917-920. [24] Lammel G, Cape J N. Nitrous acid and nitrite in the atmosphere[J].Chemical Society Reviews,1996, 25(5): 361-369. [25] Kleffmann J. Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer[J].ChemPhyChem, 2007, 8: 1 137-1 144. [26] Kamboures M A, Jonathan D R, Miller Y, et al. Complexes of HNO3 and NO3- with NO2 and N2O4, and their potential role in atmospheric HONO formation[J].Physical Chemistry Chemical Physics, 2008, 10:6 019-6 032. [27] Li S, Matthews J, Sinha A. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O[J].Science, 2008, 319:1 657-1 660. [28] Grassian V H. Chemical reaction of nitrogen oxides on the surface of oxide, carbonate, soot, and mineral dust particles: Implications for the chemical balance of the troposphere[J].The Journal of Physical Chemistry:A, 2002,106: 860-877. [29] Finlayson-Pitts B J, Wingen L M, Summer A L, et al. The heterogeneous hydrolysis of NO2 in laboratory systems and in Outdoor and indoor atmospheres: An integrated mechanism[J].Physical Chemistry Chemical Physics,2003, 5: 223-242. [30] Ammann M, Kalberer M, Jost D T, et al. Heterogeneous production of nitrous acid on soot in polluted air masses[J].Nature,1998, 395: 157-160. [31] Zhou X L, Huang G, Civerolo K, et al. Summertime observation of HONO, HCHO, and O3 at the summit of whiteface mountain, New York[J].Journal of Geophysical Research,2007, 112, D08311, doi:10.1029/2006JD007256. [32] Su H, Cheng Y F, Shao M, et al. Nitrous Acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China[J].Journal of Geophysical Research, 2008, 113, D14312, doi:10.1029/2007JD009060. [33] Akimoto H, Takagi H, Sakamaki F. Photoenhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapor: Extra radical source in smog chamber experiments[J].International Journal of Chemical Kinetics,1987, 19:539-551. [34] Ramazan K A, Syomin D, Finlayson-Pitts B J. The photochemical production of HONO during the heterogeneous hydrolysis of NO2[J].Physical Chemistry Chemical Physics,2004, 6:3 836-3 843. [35] Stemmler K, Ammann M, Donders C,et al. Photosensitized reduction of nitrogen dioxide on humic Acid as a source of nitrous Acid[J]. Nature,2006, 440: 195-198. [36] Ndour M, D′ Anna B, George C, et al. Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations[J].Geophysical Research Letters, 2008, 35, L05812, doi:10.1029/2007GL032006. [37] Gustafsson R J,Kyriakou G, Lambert R M. The molecular mechanism of tropospheric nitrous acid production on mineral dust surfaces[J].ChemPhyChem,2008, 9:1 390-1 393. [38] Ravishankara A R. Heterogeneous and multiphase chemistry in the troposphere[J].Science, 1997, 276:1 058-1 065. [39] Andreae M O, Crutzen P J. Atmospheric aerosol: Biogeochemical sources and role in atmospheric chemistry[J].Science, 1997, 276: 1 052-1 058. [40] de Reus M, Dentener F, Thomas A, et al. Airborne observation of dust aerosol over the north Atlantic ocean during ACE2: Indications for heterogeneous ozone destruction[J].Journal of Geophysical Research, 2000, 105: 15 263-15 275. [41] Bonasoni P, Cristofanelli P, Calzolari F, et al. Aerosol-ozone correlations during dust transport episodes[J].Atmospheric Chemistry and Physics, 2004,4:1 201-1 215. [42] Michel A E, Usher C R, Grassian V H. Heterogeneous and catalytic uptake of ozone on mineral oxides and dust: A knudsen cell investigation[J].Geophysical Research Letters,2002, 29,doi: 10.1029/2002GL014896. [43] Michel A E, Usher C R, Grassian V H. Reactive uptake of ozone on mineral oxides and mineral dust[J]. Atmospheric Environment,2003, 37: 3 201-3 211. [44] Mogili P K, Kleiber P D, Young M A, et al. Heterogeneous uptake of ozone on reactive components of mineral dust aerosol: An environmental aerosol reaction chamber study[J].The Journal of Physical Chemistry A, 2006, 110: 13 799-13 807. [45] Ullerstam M, Vogt R, Langer S, et al. The kinetics and mechanism of SO2 oxidation by O3 on mineral dust[J].Physical Chemistry Chemical Physics,2002,4:4 694-4 699. [46] Li L, Chen Z M, Zhang Y H, et al. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate[J].Atmospheric Chemistry and Physics, 2006, 6: 2 453-2 464. [47] Chen Z M, Jie C Y, Li S, et al. Heterogeneous reactions of methacrolein and methyl vinyl ketone: Kinetics and mechanisms of uptake and ozonolysis on silicon dioxide[J].Journal of Geophysical Research,2009(in press).[48] Ge M F, Tong S R, Wang W G, et al. Kinetics and Mechanisms of SO2 Oxidation by O3 on the Surface of Aluminum Oxide Particles[M]. Aerosols: Chemistry, Environmental Impact and Health Effects, Nova Science Publishers,2009. [49] Foster K L, Plastridge R A, Bottenheim J W, et al. The role of Br2 and BrCl in surface ozone destruction at polar sunrise[J].Science, 2001, 291:471-474. [50] Abbatt J P D, Waschewsky G C G. Heterogeneous interactions of HOBr, HNO3, O3, and NO2 with deliquescent NaCl aerosols at room temperature[J].The Journal of Physical Chemistry A,1998, 102:3 719-3 725.[51] Oum K W, Lakin M J, DeHaan D O, et al. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt Particles[J].Science, 1998, 279: 74-77. [52] Sadanaga Y, Hirokawa J, Akimoto H. Formation of molecular chlorine in dark condition: Heterogeneous reaction of ozone with sea salt in the present of ferric ion[J].Geophysical Research Letters, 2001, 28: 4 433-4 436. [53] Brown M A, Newberg J T, Krisch M J, et al. Reactive uptake of ozone on solid potassium iodide[J].The Journal of Physical Chemistry C,2008, 112: 5 520-5 525. [54] Ackerman A S, Toon O B, Stevens D E, et al. Reduction of tropical cloudiness by soot[J].Science,2000, 288: 1 042-1 047. [55] Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297: 2 250-2 253. [56] Hansen J, Nazarenko L. Soot climate forcing via snow and Ice Albedos[J].Proceedings of the National Academy of Sciences of the United States of America,2003, 101: 423-428. [57] McConnell J R, Edwards R, Kok G L, et al. 20th-Century industrial black carbon emissions altered arctic climate forcing[J].Science, 2007, 317: 1 381-1 384. [58] Smith D M, Chughtai A R. Reaction kinetics of ozone at low concentrations with n-Hexane soot[J].Journal of Geophysical Research,1996, 101: 19 607-19 620. [59] Smith D M, Chughtai A R. Photochemical effects in the heterogeneous reaction of soot with ozone at low concentration[J].Journal of Atmospheric Chemistry,1997, 26: 77-91. [60] Chughtai A R, Kin J M, Smith D M. The effect of temperature and humidity on the reaction of ozone with combustion soot: Implications for reactivity near the tropopause[J].Journal of Atmospheric Chemistry,2003, 45: 231-243. [61] Kamm S, Möhler O, Naumann K-H, et al. The heterogeneous reaction of ozone with soot aerosol[J].Atmospheric Environment,1999, 33: 4 651-4 661. [62] Disselkamp R S, Carpenter M A, Cowin J P, et al. Ozone loss in soot aerosols[J].Journal of Geophysical Research,2000, 105: 9 767-9 771. [63] Longfellow C A, Ravishankara A R, Hanson D R. Reactive and nonreactive uptake on hydrocarbon soot: HNO3, O3 and N2O5[J].Journal of Geophysical Research,2000, 105: 24 345-24 350. [64] Lelièvre S, Bedjanian Y, Pouvesle N, et al. Heterogeneous reaction of ozone with hydrocarbon flame soot[J].Physical Chemistry Chemical Physics, 2004, 6:1 181-1 191. [65] Dubowski Y, Vieceli J, Tobias D J, et al. Interaction of gas-phase ozone at 296 K with unsaturated self-assembled monolayers: A new look at an old system[J].The Journal of Physical Chemistry A, 2004, 108: 10 473-10 485. [66] de Gouw J A, Lovejoy E R. Reactive uptake of ozone by liquid organic compounds[J].Geophysical Research Letters,1998, 25: 931-934. [67] Thornberry T, Abbatt J P D. Heterogeneous reaction of ozone with liquid unsaturated Fatty acids: Detailed kinetics and gas-phase product studies[J].Physical Chemistry Chemical Physics,2004, 6: 84-93. [68] Hearn J D, Smith G D. Kinetics and product studies for ozonolysis reactions of organic particles using aerosol CIMS[J].The Journal of Physical Chemistry:A,2004, 108: 10 019-10 029. [69] Park J, Gomez A L, Walser M L, et al. Ozonolysis and photolysis of alkene-terminated self-assembled monolayers on quartz nanoparticles: Implications for photochemical aging of organic aerosol particles[J].Physical Chemistry Chemical Physics,2006, 8: 2 506-2 512. [70] Jammoul A, Gligorovski S, George C, et al. Photosensitized Heterogeneous chemistry of ozone on organic films[J].The Journal of Physical Chemistry A,2008, 112: 1 268-1 276. [71] Zahardis J, Geddes S, Petrucci G A. The ozonolysis of primary aliphatic amines in fine particles[J].Atmospheric Chemistry and Physics,2008, 8: 1 181-1 194. [72] Fan Z, Kamens R M, Zhang J, et al. Ozone-nitrogen dioxide-NPAH heterogeneous soot particle reactions and modeling NPAH in the atmosphere[J].Environmental Science & Technology,1996, 30: 2 821-2 827. [73] Pöschl U, Letzel T, Schauer C, et al. Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo\[a\]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications[J].The Journal of Physical Chemistry A,2001, 105:4 029-4 041. [74] Perraudin E,Budzinski H, Villenave E. Identification and quantification of ozonation products of anthracene and phenanthrene adsorbed on silica particles[J].Atmospheric Environment,2007, 41: 6 005-6 017. [75] Perraudin E, Budzinski H, Villenave E. Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles[J].Journal of Atmospheric Chemistry,2007, 56: 57-82. [76] Wu P M, Okada K. Nature of coarse nitrate particles in the atmosphere-A single particle approach[J].Atmospheric Environment,1994, 28: 2 053-2 060. [77] Lee S H, Murphy D M, Thomas D S, et al. Chemical components of single particles measured with particle analysis by laser mass spectrometry (PALMS) during the atlanta superSite project: Focus on organic/Sulfate, lead, soot, and mineral dust[J].Journal of Ceophysical Research Atmospheres, 2002, 107, 4003, doi:10.1029/2000JD000011. [78] Galy Lacaux C, Carmichael G R, Song C H. Heterogeneous processes involving nitrogenous compounds and saharan dust inferred from measurements and model calculations[J].Journal of Geophysical Research, 2001, 106: 12 559-12 578. [79] Hanke M, Umann B, Uecker J, et al. Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionization mass spectrometry during the MINATROC field campaign 2000 on monte cimone[J].Atmospheric Chemistry and Physics,2003, 3: 417-436. [80] Underwood G M, Li P, Al-Abadleh H, et al. A Knudsen cell study of the heterogeneous reactivity of nitric Acid on Oxide and mineral dust particles[J].The Journal of Physical Chemistry A, 2001, 105: 6 609-6 620. [81] Johnson E R, Sciegienka J, Carlos-Cuellar, et al. Heterogeneous uptake of gaseous nitric acid on dolomite (CaMg(CO3)2) and calcite (CaCO3) particles: A knudsen cell study using multiple, single and fractional particle layers[J].The Journal of Physical Chemistry A, 2005, 109: 6 901-6 911. [82] Goodman A L, Bernard E T, Grassian V H. Spectroscopic study of nitric acid uptake kinetics in the presence of adsorbed water[J].The Journal of Physical Chemistry:A, 2001, 105: 6 443-6 457. [83] Hanisch F, Crowley J N. The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual Mineral and Clay Mineral Components[J].Physical Chemistry Chemical Physics,2001, 3: 2 474-2 482. [84] Cwiertny D M, Baltrusaitis J, Hunter G J, et al. Characterization and acid-mobilization study of Iron-Containing mineral dust source materials[J].Journal of Geophysical Research Atmospheres, 2008, 113, D05202, doi:10.1029/2007JD009332. [85] Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial pacific ocean[J].Nature, 1996, 383: 495-501. [86] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science,2005, 308: 67-71. [87] Mochida M, Finlayson-Pitts B J. FTIR studies of the reaction of gaseous NO with HNO3 on porous glass: Implications for conversion of HNO3 to photochemically active NOx in the atmosphere[J].The Journal of Physical Chemistry A, 2000,104: 9 705-9 711. [88] Rivera-Figueroa A M, Sumner A L, Finlayson-Pitts B J. Laboratory studies of potential mechanisms of renoxification of tropospheric nitric acid[J].Environmental Science & Technology,2003, 34: 548-554. [89] Saliba N A, Mochida M, Finlayson-Pitts B J. Laboratory studies of sources of HONO in polluted urban atmospheres[J]. Geophysical Research Letters, 2000, 27: 3 229-3 232. [90] Syomin D, Ramazan K A, Finlayson-Pitts B J. The photochemical production of HONO during the heterogeneous hydrolysis of NO2[J].Physical Chemistry Chemical Physics, 2004, 6: 3 836-3 843. [91] Ramazan K A, Wingen L M, Miller Y, et al. New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: Key role of molecular nitric acid and its complexes[J].The Journal of Physical Chemistry:A,2006, 110: 6 886-6 897. [92] Gard E E, Kleeman M J, Gross D S, et al. Direct observation of heterogeneous chemistry in the atmosphere[J].Science, 1998, 279: 1 184-1 187. [93] Fenter F F, Caloz F, Rossi M J. Kinetics of nitric acid uptake by salt[J].The Journal of Physical Chemistry,1994, 98: 9 801-9 810. [94] Allen H C, Laux J M, Vogt R, et al. Water-induced reorganization of ultrathin nitrate films on NaCl: Implications for the tropospheric chemistry of sea salt particles[J].The Journal of Physical Chemistry,1996, 100: 6 371-6 375. [95] Laux J M, Fister T F, Finlayson-Pitts B J, et al. X-ray photoelectron spectroscopy studies of the effects of water vapor on Ultrathin nitrate layers on NaCl[J].The Journal of Physical Chemistry,1996, 100: 19 891-19 897. [96] Vogt R, Elliott C, Allen H C, et al. Some new laboratory approaches to studying tropospheric heterogeneous reactions[J].Atmospheric Environment,1996, 30:1 729-1 739. [97] Davies J A, Cox R A. Kinetics of the heterogeneous reaction of HNO3 with NaCl: Effect of water vapor[J].The Journal of Physical Chemistry: A,1998, 102: 7 631-7 642. [98] Ghosal S, Hemminger J C. Effect of water on the HNO3 pressure Dependence of the reaction between gas-phase HNO3 and NaCl surfaces[J].The Journal of Physical Chemistry:A, 1999, 103: 4 777-4 781. [99] Ghosal S, Hemminger J C. Surface adsorbed water on NaCl and its effect on nitric acid reactivity with NaCl powders[J].The Journal of Physical Chemistry: B,2004, 108: 14 102-14 108. [100] Kondo Y, Toon O B, Irie H, et al. Uptake of reactive nitrogen on cirrus cloud particles in the upper traposphere and lowermost Stratosphere[J].Geophysical Research Letters,2003, 30, 1154, doi:10.1029/2002GL016539. [101] Ziereis H, Minikin A, Hchlager H, et al. Uptake of reactive nitrogen on cirrus cloud particles during INCA[J].Geophysical Research Letters,2004, 31, L05115, doi:10.1029/2003GL018794. [102] Popp P J, Gao R S, Marcy T P, et al. Nitric acid uptake on subtropical cirrus cloud particles[J].Journal of Geophysical Research, 2004, 109, D06302, doi:10.1029/2003JD004255. [103] Voigt C, Schlager H, Ziereis H, et al. Nitric acid in cirrus clouds[J].Geophysical Research Letters,2006, 33, L05803, doi:10.1029/2005GL025159. [104] Zondlo M A, Barone S B, Tolbert M A. Uptake of HNO3 on ice under upper tropospheric conditions[J].Geophysical Research Letters,1997,24:1 391-1 394. [105] Hynes R G, Fernandez M A, Cox R A. Uptake of HNO3 on water-ice and coadsorption of HNO3 and HCl in the temperature range 210-235K[J].Journal of Geophysical Research(Atmospheres),2002, 107, 4797, doi:10.1029/2001JD001557. [106] Choi W, Leu M-T. Nitric acid uptake and decomposition on black carbon (soot) surfaces: Its implications for the upper troposphere and lower stratosphere[J]. The Journal of Physical Chemistry A,1998, 102: 7 618-7 630. [107] Muñoz M S S, Rossi M J. Heterogeneous reactions of HNO3 with flame soot generated under different combustion conditions: Reaction mechanism and kinetics[J].Physical Chemistry Chemical Physics,2002, 4: 5 110-5 118. [108] Valdez M P, Bales R C, Stanley D A, et al. Gaseous deposition to snow 1. experimental study of SO2 and NO2 deposition[J].Journal of Geophysical Research,1987, 92: 9 779-9 787. [109] Gunz D W, Hoffmann M R. Field investigations on the snow chemistry in central and southern california-1. Inorganic ions and hydrogen peroxide[J].Atmospheric Environment,1990, 24A: 1 661-1 671. [110] Mitra S K, Barth S, Pruppacher H R. A laboratory study on the scavenging of SO2 by snow crystals[J].Atmospheric Environment,1990, 24A: 2 307-2 312. [111] Conklin M H, Sommerfeld R A, Laird S K, et al. Sulfur dioxide reactions on ice surfaces: Implications for dry deposition to snow[J].Atmospheric Environment,1993, 27A: 159-166. [112] Chu L, Diao G, Chu L T. Heterogeneous interaction of SO2 on H2O2-ice films at 190~210K[J].The Journal of Physical Chemistry A,2000, 104: 7 565-7 573. [113] Clegg S M, Abbatt J P D. Oxidation of SO2 by H2O2 on ice surfaces at 228K: A sink for SO2 in ice clouds[J].Atmospheric Chemistry and Physics,2001, 1: 73-78. [114] Cape J N, Hargreaves K J, Storeton-West R, et al. Nitrite in orographic cloud as an indicator of nitrous acid in rural air[J].Atmospheric Environment,1992, 26A(13): 2 301-2 307. [115] Bongartz A, Kames J, Schurath U, et al. Experimental determination of HONO mass accommodation coefficients using two different Techniques[J].Journal of Atmospheric Chemistry,1994, 18: 149-169. [116] Hirokawa J, Kato T, Mafune F. Uptake of gas-phase nitrous Acid by pH-controlled aqueous solution studied by a wetted wall flow tube[J].The Journal of Physical Chemistry:A,2008, 112:12 143-12 150. [117] Zhang R Y, Leu M-T, Keyser L F. Heterogeneous chemistry of HONO on liquid sulfuric acid: A new mechanism of chlorine activation on stratospheric sulfate aerosols[J].The Journal of Physical Chemistry,1996, 100: 339-345. [118] Fenter F F, Rossi M J. Heterogeneous kinetics of HONO on H2SO4 solutions and on ice: Activation of HCl[J].The Journal of Physical Chemistry,1996, 100: 13 765-13 775. [119] Harrison R M, Collins G. Measurements of reaction coefficients of NO2 and HONO on aerosol particles[J].Journal of Atmospheric Chemistry,1998, 30: 397-406. [120] Baker J, Ashbourn S F M, Cox R A. Heterogeneous reactivity of nitrous acid on submicron sulfuric acid aerosol[J]. Physical Chemistry Chemical Physics,1999:1 683-1 690. |