Please wait a minute...
img img
高级检索
地球科学进展  2011, Vol. 26 Issue (2): 224-234    DOI: 10.11867/j.issn.1001-8166.2011.02.0224
研究论文     
MODIS气溶胶光学厚度在长江三角洲地区适用性分析
郑有飞1,董自鹏2,吴荣军2,李占清3,4,江洪5,6
1.江苏省大气环境监测与污染控制高技术研究重点实验室,江苏南京210044; 2.南京信息工程大学环境科学与工程学院,江苏南京210044; 3.中国科学院大气物理研究所,北京100029;4.马里兰大学大气与海洋科学学院,马里兰20782; 5.南京大学国际地球系统科学研究所,江苏南京210093; 6.浙江林学院国际空间生态与生态系统生态研究中心,浙江杭州311300
Validation of Modis Aerosol Optical Thickness Retrieval Over Yangtze Delta Region of China
Zheng Youfei1, Dong Zipeng2, Wu Rongjun2, Li Zhanqing3,4, Jiang Hong5,6
1.Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing210044, China; 2.Department of Environmental Science and Engineering,Nanjing University of Information Science and Technology, Nanjing210044, China;
3.Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing100029, China;
4.Department of Atmospheric and Oceanic Science,University of Maryland,College Park,Maryland,MD20782,USA;
5.International Institute for Earth System Science, Nanjing University, Nanjing210093, China;
6.International Research Center of SpatialEcology & Ecosystem Ecology, Zhejiang Forestry University, Hangzhou311300, China
 全文: PDF(2676 KB)  
摘要:

利用太湖、浙江林学院和千岛湖站点AERONET数据对MODIS气溶胶光学厚度适用性进行验证表明,长江三角洲地区MODIS气溶胶光学厚度反演精度具有较大的地域差异,太湖站点显著偏高,达到MODIS精度设计范围(±0.05±0.15τ)的数据仅占30.0%左右,不具有显著适用性,地表反射率估计不足是造成太湖MODIS反演误差的主要原因。浙江林学院站点整体偏低,AQUA/MODIS和TERRA/MODIS主要误差分别来源于对气溶胶单次散射反照率和对地表反射率的估计不足,两颗卫星分别有81.8%和53.3%的数据满足MODIS设计精度,具有较好的适用性。千岛湖站点MODIS/AOT显著偏低,MODIS 极大地高估了气溶胶单次散射反照率,然而缺乏2.0级数据对其进行有力的验证。目前,长江三角洲地区 MODIS 产品存在较大的误差订正空间, 对气溶胶模式进行进一步的精细划分以及根据具体的地表状况拓展更准确的卫星反演算法,是MODIS产品广泛应用的必要前提。 

关键词: MODISAERONET气溶胶光学厚度验证    
Abstract:

This paper presents a comparison of aerosol optical thickness (AOT) retrieved from MODIS (both terra and aqua) collections  with in situ groundbased data at three Aerosol Robotic Network (AERONET) sites over Yangtze Delta region from 2007 to 2009. The validation results show that the performances of the MODIS AOT retrievals have significant regional differences. MODIS is found to overestimate AOT observably at Taihu site, with only about 30% of retrieval data falling within the expected uncertainty. The systematic biases are mainly due to incorrect assumptions in the surface reflectance. There is a poor MODIS retrieval in this region. On the other hand, AQUA and TERRA MODIS derived AOTs are negatively biased at Zhejiang Forestry University (ZFU) site with 81.8% and 53.3% of retrieval data falling in the expected uncertainty, and the dominant sources of MODIS aerosol retrieval errors are aerosol models and surface reflectance estimations, respectively. The MODIS algorithm can deal well with this area. For Qiandaohu site, the MODIS data are significantly underestimated due to the overestimation of aerosol single scattering albedo. Unfortunately, there is no sufficient level 2.0 AERONET data to take a more reliable validation at this site. The analysis in this paper indicates the need for systematic modification of the MODIS algorithm over Yangtze delta region of China. 

Key words: MODIS    Aeronet    AOT    Validation
收稿日期: 2010-04-07 出版日期: 2011-02-10
ZTFLH:  P407  
基金资助:

国家重点基础研究发展计划项目“中国大气气溶胶及其效应研究”第五课题组“气溶胶直接辐射效应”(编号:2006CB403705)资助.

通信作者: 郑有飞     E-mail: zhengyf@nuist.edu.cn
作者简介: 郑有飞 (1959-),男,江苏无锡人,教授,主要从事环境气候变化和农业气象研究. E-mail:zhengyf@nuist.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郑有飞,董自鹏,吴荣军,李占清,江洪. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2): 224-234.

Zheng Youfei, Dong Zipeng, Wu Rongjun, Li Zhanqing, Jiang Hong. Validation of Modis Aerosol Optical Thickness Retrieval Over Yangtze Delta Region of China. Advances in Earth Science, 2011, 26(2): 224-234.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2011.02.0224        http://www.adearth.ac.cn/CN/Y2011/V26/I2/224

[1]Kaufman Y J, Tanre D, Boucher O. A satellite view of aerosols in climate system[J].Nature,2002, 419: 215-223.
[2]King M D, Reynold Greenstone. A Guide to NASA′s Earth Science Enterprise and the Earth Observing System[Z].EOS Reference Handbook, 1999.
[3]Remer L A, Kaufman Y J, Tanre D,et al. The MODIS aerosol algorithm, products and validation[J]. Atmospheric Science, 2005, 62: 947-973.
[4]Chu D A, Kaufman Y J, Ichoku C,et al. Validation of MODIS aerosol optical depth retrieval over land[J].Geophysical Research Letter,2002, 29(12),10.1029/2001GL0 13205.
[5]Levy R C, Remer L A, Tanre D,et al. Evaluation of the ModerateResolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE[J].Journal of Geophysical Research,2003,108(8594), 13, doi:10.1029/2002 JD002460.
[6]Mao Jietai, Li Chengcai, Zhang Junhua, et al. The comparison of remote sensing aerosol optical depth from MODIS data and ground sun photo meter observations[J].Quarterly Journal of Applied Meteorology,2002, 13:127-135.[毛节泰,李成才,张军华,等. MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比[J]. 应用气象学报,2002,13:127-135.]
[7]Li Chengcai, Mao Jietai, Lau Kai,et al. Characteristics of distribution and seasonal variation of aerosol optical depth in eastern China with MODIS products[J].Chinese Science Bulletin,2003, 48(22): 2 488-2 495.
[8]Xia Xiang′ao. Significant overestimation of global aerosol optical thickness by MODIS over land[J]. Chinese Science Bulletin,2006, 51(23):2 905-2 912.
[9]Shen Yanbo, Wang Biao, Shi Guangyu. Aerosol optical depth and dusty weather over eastern China seas in spring of 2006[J].Advances in Earth Science,2008, 23(3):290-298.[申彦波,王标,石广玉. 2006年春季我国东部海域气溶胶光学厚度与沙尘天气[J]. 地球科学进展, 2008, 23(3):290-298.]
[10]He Qianshan, Li Chengcai, Tang Xu,et al. Validation of MODIS derived aerosol optical depth over the Yangtze River delta in China[J].Remote Sensing of Environment, 2010, 114:1 649-1 661.
[11]Holben B N, Eck T F, Slutsker I,et al. AERONET—A federated instrument network and data archive for aerosol characterization[J].Remote Sensing of Environment, 1998, 66:1-16.
[12]Nakajima T,Tonna G, Rao R, et al. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions[J].Applied Optics,1996,35: 2 672-2 686.
[13]Dubovik O, King M D.A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements[J].Geophysical Research,2000,105:1 072-1 087.
[14]Eck T F, Holben B N, Dubovik O, et al. Wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols[J].Geophysical Research, 1999, 104, 31:333-350.
[15]Xia Xiangao, Li Zhanqing, Holben B,et al. Aerosol optical properties and radiative effects in the Yangtze delta region of China[J].Journal of Geophysical Research,2007,112, D22S12, doi:10.1029/2007JD008859
[16]Pan Liang, Che Huizheng, Geng Fuhai, et al. Aerosol optical properties based on ground measurements over the chinese Yangtze delta region[J].Atmospheric Environment,2010, 44:2 587-2 596.
[17]Kaufman Y J, Tanré D, Remer L A. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J].Geophysical Research Letters,1997, 102(17): 51-67.
[18]Kaufman Y J, Wald A E, Remer L A,et al. The MODIS 2.1 mm channel correlation with visible reflectance for use in remote sensing of aerosol[J].IEEE Transactions on Geoscience and Remote Sensing,1997, 35: 1 286-1 298.
[19]Cai Qiming, Yang Ping. Effects of suspended particles in Taihu Lake on albedo and absorptiom[J]. Oceanologia et Limnologia Sinica,1999, 22(5): 458-466.蔡启铭,杨平.太湖悬浮质对湖面反照率及水体光吸收的影响[J].海洋与湖沼, 1999, 22(5): 458-466.]
[20]Wang Lili, Xin Jinyuan, Wang Yuesi. Evaluation of the MODIS aerosol optical depth retrieval over different ecosystems in China during EAST-AIRE[J].Atmospheric Environment,2007, 41(33): 7 138-7 149.
[21]Mi Wen, Li Zhanqing, Xia Xiangao. Evaluation of the moderate resolution imaging spectroradiometer aerosol products at two Aerosol Robotic network stations in China[J].Journal of Geophysical Research,2007, 112,D22S08,doi:10.1029/2007JD-008474.

[1] 方迎波, 占文凤, 黄帆, 高伦, 全金玲, 邹照旭. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.
[2] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究*[J]. 地球科学进展, 2014, 29(2): 295-305.
[3] 张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述[J]. 地球科学进展, 2012, 27(12): 1295-1307.
[4] 崔月菊,杜建国,陈志,李静,谢超,周晓成,刘雷. 2010年玉树Ms 7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794.
[5] 丛丕福,曲丽梅,韩庚辰,杨新梅,王臣立. 辽东湾海水透明度的遥感估算模型[J]. 地球科学进展, 2011, 26(3): 295-299.
[6] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[7] 李远, 孙睿, 刘绍民, 徐自为, 白洁. 大孔径闪烁仪观测数据在陆面模式验证中的应用初探[J]. 地球科学进展, 2010, 25(11): 1237-1247.
[8] 柴琳娜,屈永华,张立新,梁顺林,王锦地. 基于自回归神经网络的时间序列叶面积指数估算[J]. 地球科学进展, 2009, 24(7): 756-768.
[9] 严燕儿,赵斌,郭海强,吴千红. 生态系统碳通量估算中耦合涡度协方差与遥感技术研究进展[J]. 地球科学进展, 2008, 23(8): 884-894.
[10] 申彦波,王标,石广玉. 2006年春季我国东部海域气溶胶光学厚度与沙尘天气[J]. 地球科学进展, 2008, 23(3): 290-298.
[11] 郭广猛,曹云刚,龚建明. 使用MODIS和MOPITT卫星数据监测震前异常[J]. 地球科学进展, 2006, 21(7): 695-698.
[12] 贾立,M.Menenti. 利用MODIS fAPAR傅立叶时间序列分析研究植被光合作用活动对净辐射和降雨的响应:青藏高原个例研究[J]. 地球科学进展, 2006, 21(12): 1254-1259.