地球科学进展 ›› 2010, Vol. 25 ›› Issue (11): 1237 -1247. doi: 10.11867/j.issn.1001-8166.2010.11.1237

观测数据应用 上一篇    下一篇

大孔径闪烁仪观测数据在陆面模式验证中的应用初探
李远, 孙睿 *, 刘绍民, 徐自为, 白洁   
  1. 北京师范大学地理学与遥感科学学院, 遥感科学国家重点实验室, 北京 100875
  • 收稿日期:2010-03-16 修回日期:2010-07-14 出版日期:2010-11-10
  • 通讯作者: 孙睿(1970-),男,甘肃通渭人,教授,主要从事植被生产力与地表通量的遥感应用研究.  E-mail:sunrui@bnu.edu.cn
  • 基金资助:

    公益性行业(气象)科研专项“大尺度水热通量观测系统的研制与应用研究”(编号:GYHY200706046);国家自然科学基金项目“遥感数据与植被生态系统碳循环模型的同化研究”(编号:40971221);欧盟FP7 CEOP-AEGIS项目“Coordinated Asia-European long-term observing system of Qinhai-Tibet plateau hydro-meteorological processes and the Asian-monsoon systEm with ground satellite image data and numerical  simulations”(编号:FP7-ENV2007-1 Grant no.212921)资助.

A Preliminary Study of the Validation of Land Surface Models with Large Aperture Scintillometer Data

Li Yuan, Sun Rui, Liu Shaomin, Xu Ziwei, Bai Jie   

  1. State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China
  • Received:2010-03-16 Revised:2010-07-14 Online:2010-11-10 Published:2010-11-10

将大孔径闪烁仪(LAS)观测数据应用在陆面模式验证中对更好地认识和描述陆面过程在气候变化中的作用有着重要意义。以中国北方2个LAS观测站——密云和阿柔为例,分别设定一个公里尺度(1 km2)的研究区域,采用陆面模式SiB2,综合利用站点观测数据、实地调查数据及卫星遥感数据,对陆面过程进行了模拟,并利用LAS和涡动相关仪(EC)观测的显热通量对模拟结果进行了评估,结果表明:SiB2模式能够对阿柔和密云显热通量的总体情况、日变化情况及季节变化情况进行较好的模拟;利用LAS显热通量进行较大尺度模拟验证,能够在很大程度上避免EC能量不闭合及其观测尺度与模式模拟尺度不匹配在验证中所造成的偏差,验证效果更好。

The application of large aperture scintillometer observations to the validation of land surface models has important significances in better understanding and describing the influences of land surface processes on climate change. With  observational data from stations, field survey data, and remote sensing data, the land surface processes of Miyun and Arou, two typical flux observation stations in northern China, were simulated by SiB2 model at the spatial scale of 1km2. The simulation was validated by the sensible heat fluxes obtained by Large Aperture Scintillometer (LAS) and Eddy Covariance measurement (EC). The results showed that: ①SiB2 has given a good simulation of the sensible heat flux as well as its diurnal variation and seasonal variation; ②The validation of large scale simulation by LAS can avoid the disadvantage of EC, such as energy disclosure and spatial scale differences with model simulation, and could give better results.

中图分类号: 

[1] Sun Shufen. The Physical, Biochemical Mechanisms and Parameterization Model of Land Surface Processes[M]. Beijing: Meteorological Press, 2005. [孙菽芬. 陆面过程的物理、生化机理和参数化模型[M]. 北京: 气象出版社, 2005.]
[2] Manabe S. Climate and ocean circulation: 1. The atmospheric circulation and the hydrology of the Earth′s surface[J].Monthly Weather Review,1969, 97(11): 805-939.
[3] Manabe S, Smagorinsky J, Strickler R F. Simulated climatology of a general circulation model with a hydrological cycle[J]. Monthly Weather Review,1965, 93(12): 769-798.
[4] Dickenson R E, Henderson-Sellers A, Kennedy P J, et al. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model[R]. NCAR Tech. Note, TN-275 + STR, 1986.
[5] Sellers P J, Mintz Y, Sud Y C, et al. A Simple Biosphere Model (SiB) for use within general circulation models[J].Journal of the Atmospheric Sciences,1986, 43(6): 505-531.
[6] Deardorff J W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation[J]. Journal of Geophysical Research,1978, 83(C4): 1 889-1 903.
[7] Bonan G B. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model[J]. Journal of Geophysical Research,1995, 100(D2): 2 817-2 831.
[8] Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. PartI: Model formulation[J].Journal of Climate,1996, 9(4): 676-705.
[9] Dai Y J, Zeng X B, Dickinson R E, et al. The common land model[J].Bulletin of the American Meteorological Society,2003, 84(8): 1 013-1 023.
[10] Xu Ziwei, Liu Shaomin, Gong Lijuan, et al. A study on the data processing and quality assessment of the eddy covariance system[J].Advances in Earth Science,2008, 23(4): 357-370.[徐自为,刘绍民,宫丽娟,等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展,2008, 23(4): 357-370.]
[11] Yang K, Chen Y Y, Qin J. Some practical notes on the land surface modeling in the Tibetan plateau[J].Hydrology and Earth System Science,2009, 13(5): 687-701.
[12] Colello G D, Sellers P J, Berry J A. Modeling of energy, water and CO2 flux in a temperate grassland ecosystem with SiB2: May-October 1987[J].Journal of the Atmospheric Sciences,1998, 55(7): 1 141-1 169.
[13] Prihodko L, Denning A S, Hanan N P, et al. Sensitivity, uncertainty and time dependence of parameters in a complex land surface model[J].Agricultural and Forest Meteorology,2008, 148(2): 268-287.
[14] Wang Jiemin, Wang Weizhen, Liu Shaomin, et al. The problems of surface energy balance closure—An overview and case study[J].Advances in Earth Science,2009, 24(7): 705-713. [王介民,王维真,刘绍民,等. 近地层能量平衡闭合问题——综述及个例分析[J]. 地球科学进展,2009,24(7):705-713.]
[15] Lu Li, Liu Shaomin, Xu Ziwei, et al. Results from measurements of large aperture scintillometer over different surfaces[J]. Journal of Applied Meteorological Science,2009, 20(2): 171-178. [卢俐,刘绍民,徐自为,等. 不同下垫面大孔径闪烁仪观测数据处理与分析[J]. 应用气象学报,2009, 20(2): 171-178.]
[16] Kleissl J, Hong S, Hendrickx J M H. New Mexico scintillometer network: Supporting remote sensing and hydrologic and meteorological models[J].Bulletin of the American Meteorological Society,2009, 90(2): 207-218.
[17] Wang Weizhen, Xu Ziwei, Liu Shaomin, et al. The characteristics of heat and water vapor fluxes over different surfaces in the Heihe river basin[J].Advances in Earth Science,2009, 24(7): 714-723. [王维真,徐自为,刘绍民,等. 黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展,2009, 24(7): 714-723.]
[18] Sellers P J, Los S O, Tucker C J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. PartII: The generation of global field of terrestrial biophysical parameters from[J].Journal of Climate,1996, 9(4): 706-737.
[19] Randall D A, Dazlich D A, Zhang C, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. PartIII: The greening of the Colorado state university general circulation model[J].Journal of Climate,1996, 9(4): 738-763.
[20] Sen O L, Shuttleworth W J, Yang Z L. Comparative evaluation of BATS2, BATS, and SiB2 with amazon data[J].Journal of Hydrometeorology,2000, 1(2): 135-153.
[21] Hanan N P, Berry J A, Verma S B, et al. Testing a model of CO2, water and energy exchange in Great plains tallgrass prairie and wheat ecosystems[J].Agricultural and Forest Meteorology,2005, 131(3/4): 162-179.
[22] Gao Zhiqiu, Bian Lingen, Cheng Yanjie, et al. Modeling of energy budget using Simple Biosphere model version2(SiB2) over Tibetan Naqu prairie[J].Journal of Applied Meteorological Science,2002, 13(2): 129-141. [高志球,卞林根,程彦杰,等. 利用生物圈模型SiB2模拟青藏高原那曲草原近地面层能量收支[J]. 应用气象学报,2002, 13(2): 129-141.]
[23] Watanabe T, Kondo J. The influence of canopy structure and density upon the mixing length within and above vegetation[J]. Journal of the Meteorological Society of Japan,1990, 68(2): 227-235.
[24] Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric Physics[M]. Beijing: Beijing University Press, 2003.[盛裴轩,毛节泰,李建国,等. 大气物理学[M]. 北京: 北京大学出版社, 2003.]
[25] Yang Kun,Wang Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J].Science in China (Series D),2008, 38(2): 243-250.[阳坤,王介民. 一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J]. 中国科学: D辑,2008, 38(2): 243-250.]
[26] Bai Jie, Liu Shaomin, Ding Xiaoping, et al. Study on the processing method of large aperture scintillometer observation data[J]. Advances in Earth Science,2010,25(11):1 148-1 165.[白洁,刘绍民,丁晓萍,等. 大孔径闪烁仪观测数据的处理方法研究[J]. 地球科学进展,2010,25(11):1 148-1 165.]
[27] Shuang Xi, Liu Shaomin, Xu Ziwei, et al. Investigation of spatial representativeness for surface flux measurements in the Heihe river basin[J].Advances in Earth Science,2009, 24(7): 724-733.[双喜,刘绍民,徐自为,等. 黑河流域观测通量的空间代表性研究[J]. 地球科学进展,2009, 24(7): 724-733.]
[28] Gong Lijuan, Liu Shaomin, Shuang Xi, et al. Investigation of spatial representativeness for surface flux measurements with eddy covariance system and large aperture scintillometer[J].Plateau Meteorology,2009, 28(2): 246-257.[宫丽娟,刘绍民,双喜,等. 涡动相关仪和大孔径闪烁仪观测通量的空间代表性[J]. 高原气象,2009, 28(2): 16-27.]
[29] Waters R, Allen R, Tasumi M, et al. SEBAL-Advanced training and users manual[R]. The Idaho Department of Water Resources, 2002.

[1] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[2] 朱明佳, 赵谦益, 刘绍民, 徐同仁. 农田下垫面观测通量的变化特征及其气候学足迹分析[J]. 地球科学进展, 2013, 28(12): 1313-1325.
[3] 徐自为,黄勇彬,刘绍民. 大孔径闪烁仪观测方法的研究[J]. 地球科学进展, 2010, 25(11): 1139-1147.
[4] 蔡旭晖,朱明佳,刘绍民,徐自为. 大孔径闪烁仪的通量印痕分析与应用[J]. 地球科学进展, 2010, 25(11): 1166-1174.
[5] 郑宁,张劲松,孟平,黄辉,高峻,贾长荣,任迎丰. 基于闪烁仪观测低丘山地人工混交林通量印痕与源区分布[J]. 地球科学进展, 2010, 25(11): 1175-1186.
[6] 朱治林, 孙晓敏, 贾媛媛, 温学发, 张仁华, 袁国富, 唐新斋. 基于大孔径闪烁仪(LAS)测定农田显热通量的不确定性分析[J]. 地球科学进展, 2010, 25(11): 1199-1207.
[7] 王维真,徐自为,李新,王介民,张智慧. 大孔径闪烁仪在黑河流域的应用分析研究[J]. 地球科学进展, 2010, 25(11): 1208-1216.
[8] 艾力·买买提明,何清,霍文,刘新春. 塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J]. 地球科学进展, 2010, 25(11): 1228-1236.
[9] 刘雅妮,辛晓洲,柳钦火,周春艳. 基于多尺度遥感数据估算地表通量的方法及其验证分析[J]. 地球科学进展, 2010, 25(11): 1261-1272.
[10] 白洁,刘绍民,丁晓萍,卢俐. 大孔径闪烁仪观测数据的处理方法研究[J]. 地球科学进展, 2010, 25(11): 1148-1165.
[11] 白洁,刘绍民,丁晓萍. 海河流域不同下垫面上大孔径闪烁仪观测显热通量的时空特征分析[J]. 地球科学进展, 2010, 25(11): 1187-1198.
[12] 卢俐,刘绍民,徐自为,白洁,王介民. 大孔径闪烁仪和涡动相关仪观测显热通量之间的尺度关系[J]. 地球科学进展, 2010, 25(11): 1273-1282.
[13] 张劲松,孟平,郑宁,黄辉,高峻. 大孔径闪烁仪法测算低丘山地人工混交林显热通量的可行性分析[J]. 地球科学进展, 2010, 25(11): 1283-1290.
[14] 涂钢,支克广,支平,付光极,王建平. 大气折射指数的结构参数与北方5~9月降雨的强相关现象[J]. 地球科学进展, 2010, 25(11): 1291-1295.
[15] 双喜,刘绍民,徐自为,王维真. 黑河流域观测通量的空间代表性研究[J]. 地球科学进展, 2009, 24(7): 724-733.
阅读次数
全文


摘要