地球科学进展 ›› 2009, Vol. 24 ›› Issue (7): 724 -733. doi: 10.11867/j.issn.1001-8166.2009.07.0724

能水平衡观测与模拟 上一篇    下一篇

黑河流域观测通量的空间代表性研究
双 喜 1,刘绍民 1*,徐自为 1,王维真 2   
  1. 1.北京师范大学遥感科学国家重点实验室,地理学与遥感科学学院,北京  100875;2.中国科学院寒区旱区环境与工程研究所,甘肃  兰州  730000
  • 收稿日期:2009-03-12 修回日期:2009-06-11 出版日期:2009-06-10
  • 通讯作者: 刘绍民(1967-),男,浙江绍兴人,教授,主要从事陆面过程观测与遥感应用研究. E-mail:smliu@bnu.edu.cn
  • 基金资助:

     国家重点基础研究发展计划项目“陆表生态环境要素主被动遥感协同反演理论与方法”(编号:2007CB714401);公益性行业(气象)科研专项“大尺度水热通量观测系统的研制与应用研究”(编号:GYHY200706046);中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09)资助.

Investigation of Spatial Representativeness for Surface Flux Measurements in the Heihe River Basin

Shuang Xi 1,Liu Shaomin 1,Xu Ziwei 1,Wang Weizhen 2   

  1. 1.State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing  100875,China;
    2.Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou  730000,China
  • Received:2009-03-12 Revised:2009-06-11 Online:2009-06-10 Published:2009-07-10

地表湍流通量包括显热通量和潜热通量,它的准确测定对天气气候预报、农业节水和水资源管理等意义重大。目前应用较为广泛的通量测量技术有涡动相关仪(EC)和大孔径闪烁仪(LAS),前者是单点观测,观测范围通常只有几百米;后者近年来得到长足的发展,可以观测从几百米到十几公里尺度上的区域湍流通量。建立了EC和LAS通量解析足迹模型,详细介绍了足迹模型的理论依据和建立方法,并对二者模型的异同进行了阐释。在黑河流域遥感—地面观测同步试验中,以高寒与干旱区伴生的黑河流域为试验区,包括寒区水文试验、森林水文试验和干旱区水文试验,使用足迹模型分别分析了临泽草地站、阿柔冻融观测站的EC、LAS观测通量的源区,结合风向变化规律,对二者通量观测差异进行分析解释;分析了盈科灌区绿洲站、大野口关滩森林站的EC观测数据,以及阿柔冻融观测站的EC、LAS观测数据,选择具有代表性的月份,进行观测站点的空间代表性分析。结果表明:对通量观测站点进行空间代表性分析是十分必要的,可得到观测站点通量源区的时空变化特征,同时足迹模型在通量观测数据的分析中有很大的实用价值,可为今后通量观测数据的应用提供参考。

It is very important to determine the land surface fluxes, including sensible heat fluxes and latent heat fluxes, for the issues involving many aspects of climate, agriculture, and water resources management. Nowadays, the Eddy Covariance system (EC) and the Large Aperture Scintillometer (LAS) are the main instruments measuring surface fluxes. The former is point observation and can observe hundreds of meters and the latter can observe area average fluxes in the scale of hundreds of meters to ten kilometers. In order to analyze the source area, we develop Eulerian analytical footprint models for the EC and LAS. Detailed descriptions of the theory basis and methods of the two models are given, and their differences are discussed. Simultaneous remote sensing and ground-based experiment was being carried out in the Heihe River Basin, its observing major components of water cycle were in three experiment areas, i.e., cold region, forest, and arid region hydrology experiment areas. This paper shows some outcomes of the flux footprint models application in A′Rou freeze/thaw observation station, Yingke irrigated oasis station, Dayekou Guantan forest station and Linze grassland station. The representatinve one day or one month is selected. The analysis of the source area and spatial representativeness of the EC and LAS is given. The difference of observing flux is discussed. In the end,it reveals that reasonable source area of LAS and EC can be derived from their flux footprint models and the footprint model is an effective and practical tool.

中图分类号: 

[1] Wang Jiemin, Wang Weizhen, Ao Yinhuan, et al. Turbulence flux measurements under complicated conditions[J].Advances in Earth Science, 2007,8(8):791-797.[王介民,王维真,奥银焕,等.复杂条件下湍流通量的观测与分析[J].地球科学进展,2007,8(8):791-797.]
[2] Lu Li,Liu Shaomin,Sun Minzhang,et al. Advances in the study of areal surface fluxes with large aperture scintillometer[J].Advances in Earth Science,2005, 20(9):932-938.[卢俐,刘绍民,孙敏章,等. 大孔径闪烁仪研究区域地表通量的进展[J]. 地球科学进展,2005, 20(9):932-938.]
[3] Gong Lijuan, Liu Shaomin, Shuang Xi, et al. Investigation of spatial representativeness for surface flux measurements with eddy covariance system and large aperture scintillometer[J].Plateau Meteorology, 2009, 28(2):246-257.[宫丽娟,刘绍民,双喜, 等.涡动相关仪和大孔径闪烁仪观测通量的空间代表性研究[J]. 高原气象, 2009, 28(2):246-257.]
[4] Schmid H P. Experimental design for flux measurements: Matching the scales of observations and fluxes[J].Agricultural and Forest Meteorology,1997,87:179-200.
[5] Gash J H C. A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements[J].Boundary-Layer Meteorology,1986, 35: 409-414.
[6] Schmid H P, Oke T R. A model to estimate the source area contributing to turbulent exchange in the surfacelayer over patchy terrain[J].Quarterly Journal of the Royal Meteorology Society, 1990, 116: 965-988.
[7] Schimd H P. Source area for scalar and scalar flux[J].Boundary  Layer Meteorology,1994,67: 293-318.
[8] Horst T W, Weil J C. Footprint estimation for scalar flux measurements in the atmospheric surface-layer[J].Boundary-Layer Meteorology, 1992, 59: 279-296.
[9] Göckede M,Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modeling for the characterization of complex sites[J].Agricultural and Forest Meteorology, 2004, 127: 175-188.
[10] Rebmann C, Göckede M, Foken T, et al. Quality analysis applied on eddy covariance measurement at complex forest sites using footprint modeling[J].Theoretical and Applied Climatology,2005,80:121-141.
[11] Chu Lianghai, Liu Wenzhao, Zhu Yuanjun, et al. Spatial representation of flux data in gully region on the Loess plateau[J].Advances in Earth Science, 2009, 24(2):211-218.[楚良海,刘文兆,朱元骏,等. 黄土高原沟壑区通量数据空间代表性研究[J].地球科学进展,2009,24(2):211-218.]
[12] Peng Guliang, Liu Shaomin, Cai Xuhui, et al. Footprint analysis of turbulent flux measurement over heterogeneous surface[J].Chinese Journal of Atmospheric Sciences,2008,32(5):1 064-1 070.[彭谷亮,刘绍民,蔡旭晖,等.非均匀下垫面湍流通量观测的印痕分析[J].大气科学,2008,32(5):1 064-1 070.]
[13] Liu Shaomin, Hu Guang, Lu Li, et al. Estimation of regional evapotranspiration by TM/ETM+ Data over heterogeneous surfaces[J].Photogrammetric Engineering & Remote Sensing, 2007, 10(73):1 169-1 178.
[14] Li Xin,Ma Mingguo,Wang Jian,et al.Simultaneous remote sensing and groundbased experiment in the Heihe river basin: Scientific objectives and experiment design[J].Advances in Earth Science,2008,23(9):897-914.[李新,马明国,王建,等.黑河流域遥感—地面观测同步试验:科学目标与试验方案[J].地球科学进展, 2008,23(9):897-914.]
[15] Xu Ziwei,Liu Shaomin,Gong Lijuan, et al. Processing and quality assessment of eddy covariance system data[J].Advances in Earth Science, 2008,23(4):357-370.[徐自为,刘绍民,宫丽娟,等.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展,2008,23(4):357-370.]
[16] Lu Li,Liu Shaomin, Xu Ziwei, et al. Results from measurements of large aperture scintillometer over different surfaces[J].Journal of Applied Meteorological Science,2009, 20(2):171-178.[卢俐,刘绍民,徐自为,等.不同下垫面大孔径闪烁仪观测数据处理与分析[J].应用气象学报, 2009, 20(2):171-178.]
[17] Pasquill F, Smith F B. Atmospheric Diffusion[M]. England: West Sussex Press, 1983:142.
[18] Kormann R, Meixner F X. An analytic footprint model for neutral stratification[J].Boundary-Layer Meteorology, 2001, 99: 207-224.
[19] Schimd H P. Footprint modeling for vegetation atmosphere exchang studies:A review and perspective[J]. Agriculture and Forst Meteorology,2002,113: 159-183.
[20] Schimd H P. Spatial representativeness and the location bias of flux footprints over inhomogeneous areas[J].Agricultural and Forest Meteorology,1999,93:195-209.
[21] Wang T, Ochs G R, Clifford S F. A saturation-resistant optical scintillometer to measure C2n[J].Journal of Optical Society of America, 1978,68(3):334-338.
[22] Meijninger W M L, Hartogensis O K, Kohsiek W. Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-Flevoland field experiment[J].Boundary-Layer Meteorology, 2002,105: 37-62.
[23] Kljun N, Rotach M W, Schmid H P. A three-dimensional backward lagrangian footprint model for a wide range of boundary-layer stratifications[J].Boundary-Layer Meteorology, 2002, 103: 205-226.
[24] Kljun N, Calanca P, Rotach M, et al. A simple parameterization for flux footprint predictions[J].Boundary-Layer Meteorology,2004,112: 503-523.
[25] Thomson D J. Criteria for the selection of stochastic models of particle trajectories in turbulent flow[J].Journal of Fluid Mechanics,1987,180: 529-556.

[1] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[2] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[3] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[4] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[5] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[6] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[7] 冯起,苏永红,司建华,常宗强,席海洋,郭瑞,陈丽娟,霍红,秦燕燕. 黑河流域生态水文样带调查[J]. 地球科学进展, 2013, 28(2): 187-196.
[8] 朱明佳, 赵谦益, 刘绍民, 徐同仁. 农田下垫面观测通量的变化特征及其气候学足迹分析[J]. 地球科学进展, 2013, 28(12): 1313-1325.
[9] 焦其顺,朱忠礼,刘绍民,晋锐,杜帆. 宇宙射线快中子法在农田土壤水分测量中的研究与应用[J]. 地球科学进展, 2013, 28(10): 1136-1143.
[10] 颉耀文,王学强,汪桂生,余林. 基于网格化模型的黑河流域中游历史时期耕地分布模拟[J]. 地球科学进展, 2013, 28(1): 71-78.
[11] 晋 锐,李 新,阎保平,罗万明,李秀红,郭建文,马明国,亢 健,张艳林. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9): 993-1005.
[12] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.
[13] 李新, 程国栋, 康尔泗, 徐中民, 南卓铜, 周剑, 韩旭军, 王书功. 数字黑河的思考与实践3:模型集成[J]. 地球科学进展, 2010, 25(8): 851-865.
[14] 李新, 程国栋, 马明国, 肖青, 晋锐, 冉有华, 赵文智, 冯起, 陈仁升, 胡泽勇, 盖迎春. 数字黑河的思考与实践4:流域观测系统[J]. 地球科学进展, 2010, 25(8): 866-876.
[15] 李新,程国栋,吴立宗. 数字黑河的思考与实践1:为流域科学服务的数字流域[J]. 地球科学进展, 2010, 25(3): 297-305.
阅读次数
全文


摘要