Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (2): 295-305    DOI: 10.11867/j.issn.1001-8166.2014.02.0295
黑河生态水文遥感试验     
联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究*
李大治1, 2, 3, 晋锐1, 3, *, 车涛1, 3, 高莹4, 耶楠5, 王树果1, 3
1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000; 2. 中国科学院大学,北京 100049; 3.中国科学院寒旱所黑河遥感试验研究站,甘肃 兰州 730000; 4.Monash University, Department of Civil Engineering, Australia, Melbourne 3800; 5. 南京大学地理信息科学系,南京 210093
Soil Moisture Retrieval from Airborne PLMR and MODIS Productsinthe ZhangyeOasisof MiddleStream ofHeihe River Basin, China
Dazhi Li1, 2, 3, Rui Jin1, 3, *, Tao Che1, 3, Jeffrey Walker4, Ying Gao4, Nan Ye5, Shuguo Wang1, 3
1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3.Heihe Remote Sensing Experimental Research Station, CAREERI, CAS,Lanzhou 730000, China; 4.Monash University, Department of Civil Engineering, Melbourne 3800, Australia; 5.Nanjing University, Department ofGeographical Information Science, Nanjing 210093,China
 全文: PDF(12451 KB)   HTML
摘要:

土壤水分是气候、水文学研究中的重要变量,微波遥感是获取区域地表土壤水分的重要手段,而L波段更是微波土壤水分反演的最优波段。依托HiWATER黑河中游绿洲试验区的地面观测及机载PLMR微波辐射计亮温数据,利用微波辐射传输模型L-MEB,并将MODIS地表温度产品(MOD11A1)和叶面积指数产品(MYD15A2)作为模型及反演中的先验辅助信息,借助LM优化算法,通过PLMR双极化多角度的亮温观测,针对土壤水分、植被含水量(VWC)和地表粗糙度这3个主要参数,分别进行土壤水分单参数反演、土壤水分与VWC或粗糙度的双参数反演以及这3个参数的同时反演。通过对不同反演方法的比较可以得出结论,多源辅助数据及PLMR双极化、多角度信息的应用可以显著降低反演的不确定性,提高土壤水分反演精度。证明在合理的模型参数和反演策略下,SMOS的L-MEB模型和产品算法可以达到0.04 cm3/cm3的反演精度,另外无线传感器网络可以在遥感产品真实性检验中起到重要作用。

关键词: MODISPLMR微波辐射计绿洲农田土壤水分反演HiWATER    
Abstract:

Soil moisture is one of important variables in the climate and hydrology research. Remote sensing can map the soil moisture distribution at regional or global scale. Microwave remote sensing now has been the main method to retrieve soil moisture information, especially using satellite-based passive microwave radiometer. L-band is most suitable for the microwave remote sensing of soil moisture due to its longer wavelength. ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite uses MIRAS (Microwave Imaging Radiometer by Aperture Synthesis) to get multi-angle and dualpolarized brightness temperatures of land surface at L-band. SMOS aims to get global surface soil moisture through radiative transfer model (L-MEB) and multiparameter retrieval method. SMOS Level 2 surface soil moisture algorithm uses an iterative method to minimize a cost function formulated by difference between modeled and measured brightness temperature.PLMR (Polarimetric L-band Multibeam Radiometer) is an airborne simulator of SMOS MIRAS that can measure passive microwave radiation of land surface at L-band (1.4 GHz) dual polarization and in three different angles(7°,21.5° and 38.5°).This paper uses airborne PLMR radiometer data combined with MODIS LST (MOD11A1) and LAI (MOD15A2) products to retrieve surface soil moisture in the artificial oasis experimental area of HiWATER by L-MEB radiative transfer model and LM (Levenberg-Marquardt) optimization algorithm. The three retrieving strategies are tested, including single, two and three parameters selected from soil moisture, vegetation water content and surface roughness. The comparison analysis shows the multi-angle and dual-polarized PLMR brightness temperatures combined with prior information from operational remote sensing products can obviously reduce the uncertainty of retrieval process and improve the retrieval accuracy. This paper proves that with reasonable model parameters and retrieval method, the L-MEB model can achieve 0.04 cm3/cm3 accuracy requirement for soil moisture retrieval. This paper also reveals the importance of using wireless sensor network in the verification of remote sensing products.

Key words: HiWATER.    PLMR radiometer    Oasis farmland    Soil moisture retrieval    MODIS
收稿日期: 2013-12-18 出版日期: 2014-02-10
:  P237  
基金资助:

[HT6SS][ZK(]国家自然科学基金重大研究计划项目“黑河流域生态—水文过程综合遥感观测试验:综合集成与航空微波遥感”(编号:91125001); 中国科学院西部行动计划(三期)项目“黑河流域生态—水文遥感产品生产算法研究与应用试验”(编号:KZCX2-XB3-15)资助.

通讯作者: 晋锐(1979-),女,山西临汾人,副研究员,主要从事水文遥感、微波遥感、数据同化及无线传感器网络研究.     E-mail: jinrui@lzb.ac.cn
作者简介: 李大治(1989-),男,山西运城人,硕士研究生,主要从事微波遥感研究. E-mail:lidazhi@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究*[J]. 地球科学进展, 2014, 29(2): 295-305.

Dazhi Li,Rui Jin,*,Tao Che,Jeffrey Walker,Ying Gao,Nan Ye,Shuguo Wang,. Soil Moisture Retrieval from Airborne PLMR and MODIS Productsinthe ZhangyeOasisof MiddleStream ofHeihe River Basin, China. Advances in Earth Science, 2014, 29(2): 295-305.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.02.0295        http://www.adearth.ac.cn/CN/Y2014/V29/I2/295

[1]Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews,2010, 99(3): 125-161.
[2]Kim Jongyoun, Hogue T S. Improving spatial soil moisture representation through integration of AMSR-E and MODIS products[J].IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 446-460.
[3]Schmugge T, Gloersen P, Wilheit T, et al. Remote sensing of soil moisture with microwave radiometers[J]. Journal of Geophysical Research, 1974, 79(2): 317-323.
[4]Robinson D A, Campbell C S, Hopmans J W, et al. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review[J]. Vadose Zone Journal, 2008, 7(1): 358-389.
[5]Li Xiaowen. Retrospect, prospect and innovation in quantitative remote sensing[J].Journal of He’nan University(Natural Science), 2005, 35(4): 49-56.[李小文. 定量遥感的发展与创新[J]. 河南大学学报:自然科学版, 2005, 35(4): 49-56.]
[6]Kerr Y H, Waldteufel P, Wigneron J P, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687.
[7]De Rosnay P, Calvet J C, Kerr Y, et al. SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing[J]. Remote Sensing of Environment, 2006, 102(3): 377-389.
[8]Panciera R, Walker J P, Kalma J D, et al. The NAFE’05/CoSMOS data set: Toward SMOS soil moisture retrieval, downscaling, and assimilation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3): 736-745.
[9]Merlin O, Walker J P, Kalma J D, et al. The NAFE’06 data set: Towards soil moisture retrieval at intermediate resolution[J]. Advances in Water Resources, 2008, 31(11): 1 444-1 455.
[10]Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground based experiment in the Heihe River Basin: Scientific objectives and experiment design[J]. Advances in Earth Science, 2008, 23 (9): 897-914.[李新, 马明国, 王建, 等. 黑河流域遥感—地面观测同步试验: 科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.]
[11]Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012,27(5): 481-498.[李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.]
[12]Li X, Cheng G, Liu S, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1 145-1 160.
[13]Zhong B, Ma P, Nie A, et al. Land cover mapping using time series HJ-1/CCD data[J].Science in China(Series D), 2014, in press.
[14]Peischla S, Yea N, Walker J P, et al. Soil moisture retrieval from multi-incidence angle observations at L-band[C]∥19th International Congress on Modelling and Simulation. Perth, Australia, 2011.
[15]Liu Chao, Lu Ling, Hu Xiaoli. Comparison analysis on digital soil texture mapping in an area of Zhangye, Heihe River Basin[J]. Remote Sensing Technology and Application,2011, 26(2): 177-185.[刘超, 卢玲, 胡晓利. 数字土壤质地制图方法比较——以黑河张掖地区为例[J]. 遥感技术与应用, 2011, 26(2): 177-185.]
[16]Jin Rui, Li Xin, Yan Baoping, et al. Introduction of eco-hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(9):993-1 005.[晋锐, 李新, 阎保平, 等. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9):993-1 005.]
[17]Jin Rui, Li Xin, Yan Baoping,et al. A nested eco-hydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China[J].IEEE Geoscience and Remote Sensing Letters, 2014, submitted.
[18]Kang Jian, Li Xin, Jin Rui, et al.Hybrid optimal design of eco-hydrological wireless sensor network in the middle reach of Heihe River Basin[J].International Journal of Applied Earth Observation and Geoinformation, 2014, preparing.
[19]Panciera R, Merlin O, Young R, et al. The Hydraprobe Data Acquisition System (HDAS): User Guide[Z]. 2006.
[20]Wigneron J P, Kerr Y, Waldteufel P, et al. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields[J]. Remote Sensing of Environment, 2007, 107(4): 639-655.
[21]Wigneron J P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1 697-1 707.
[22]Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research: Oceans(1978-2012), 1982, 87(C13): 11 229-11 237.
[23]Wigneron J P, Pardé M, Waldteufel P, et al. Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(2): 416-425.
[24]Wang J R, Schmugge T J, Gould W I, et al. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields[J]. Geophysical Research Letters, 1982, 9(4): 416-419.
[25]Jackson T J, Schmugge T J. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 1991, 36(3): 203-212.
[26]Van de Griend A A, Wigneron J P. The b-factor as a function of frequency and canopy type at H-polarization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 786-794.
[27]Wang J R, Choudhury B J. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency[J]. Journal of Geophysical Research: Oceans (1978-2012), 1981, 86(C6): 5 277-5 282.
[28]Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing—Active and Passive[M]. Norwood, MA: Addison-Wesley Publishing Company, 1986.
[29]Dobson M C, Ulaby F T, Hallikainen M T, et al. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985,(1): 35-46.
[30]Njoku E G, Jackson T J, Lakshmi V, et al. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 215-229.
[31]Escorihuela M J, Kerr Y H, de Rosnay P, et al. A simple model of the bare soil microwave emission at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 1 978-1 987.
[32]Choudhury B J, Schmugge T J, Mo T. A parameterization of effective soil temperature for microwave emission[J]. Journal of Geophysical Research: Oceans (1978-2012), 1982, 87(C2): 1 301-1 304.
[33]Holmes T R H, De Rosnay P, De Jeu R, et al. A new parameterization of the effective temperature for L band radiometry[J]. Geophysical Research Letters, 2006, 33(7):1-4.
[34]Pardé M, Wigneron J P, Waldteufel P, et al. N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1 168-1 178.
[1] 方迎波, 占文凤, 黄帆, 高伦, 全金玲, 邹照旭. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.
[2] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[3] 崔月菊,杜建国,陈志,李静,谢超,周晓成,刘雷. 2010年玉树Ms 7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794.
[4] 丛丕福,曲丽梅,韩庚辰,杨新梅,王臣立. 辽东湾海水透明度的遥感估算模型[J]. 地球科学进展, 2011, 26(3): 295-299.
[5] 郑有飞,董自鹏,吴荣军,李占清,江洪. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2): 224-234.
[6] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[7] 柴琳娜,屈永华,张立新,梁顺林,王锦地. 基于自回归神经网络的时间序列叶面积指数估算[J]. 地球科学进展, 2009, 24(7): 756-768.
[8] 严燕儿,赵斌,郭海强,吴千红. 生态系统碳通量估算中耦合涡度协方差与遥感技术研究进展[J]. 地球科学进展, 2008, 23(8): 884-894.
[9] 申彦波,王标,石广玉. 2006年春季我国东部海域气溶胶光学厚度与沙尘天气[J]. 地球科学进展, 2008, 23(3): 290-298.
[10] 郭广猛,曹云刚,龚建明. 使用MODIS和MOPITT卫星数据监测震前异常[J]. 地球科学进展, 2006, 21(7): 695-698.
[11] 贾立,M.Menenti. 利用MODIS fAPAR傅立叶时间序列分析研究植被光合作用活动对净辐射和降雨的响应:青藏高原个例研究[J]. 地球科学进展, 2006, 21(12): 1254-1259.