地球科学进展 ›› 2011, Vol. 26 ›› Issue (7): 787 -794. doi: 10.11867/j.issn.1001-8166.2011.07.0787

新科学新技术新方法 上一篇    

2010年玉树Ms 7.1地震前后大气物理化学遥感信息
崔月菊 1,杜建国 1,陈志 1,李静 1,2,谢超 1,周晓成 1,刘雷 1   
  1. 1.中国地震局地震预测研究所地震流体研究室,北京100036;
    2. 防灾科技学院地震科学系,河北燕郊065201
  • 收稿日期:2011-01-12 修回日期:2011-04-27 出版日期:2011-07-10
  • 通讯作者: 崔月菊 E-mail:cehuicuiyueju@126.com
  • 基金资助:

    中国地震局地震预测研究所基本科研业务费项目(玉树地震应急项目和一般项目)(编号:02092436)资助.

Remote Sensing Signals of Atmospheric Physics and Chemistry Related to 2010 Yushu  Ms  7.1 Earthquake

Cui Yueju 1, Du Jianguo 1, Chen Zhi 1, Li Jing 1,2, Xie Chao 1, Zhou Xiaocheng 1, Liu Lei 1   

  1. 1.Institute of Earthquake Science, China Earthquake Administration, Beijing100036, China;
    2.Institute of Disaster Prevention, Yanjiao065201, China
  • Received:2011-01-12 Revised:2011-04-27 Online:2011-07-10 Published:2011-07-10

利用高分辨率卫星遥感数据反演了地表温度、水汽、CO总量和CH4体积分数的时空变化,讨论了这种变化与2010年4月14日青海玉树Ms 7.1地震以及地震断裂带的关系。利用MODIS L1B数据反演的玉树地震前后的温度数据表明,在主震前亮温和地表温度出现高值,高值异常高于震前几年的同期平均温度并沿NW向断裂带分布;这与测量的玉树地区气温在3~4月高于震前10年的同期平均温度的现象一致。利用AIRS数据提取的水汽总量、CO总量和CH4体积分数数据表明,水汽总量在主震后高于前2年平均值,CO总量在地震前后也有升高变化。反演结果和地震地质资料表明在大地震前后的这些参数异常变化可能是地球深部物质运动和地下气体沿断裂带逸散引起的。研究结果表明利用高分辨率卫星遥感数据获取地表温度、湿度和大气微量组分含量的时空变化信息在地震监测、预测方面有很好的应用前景。

The temporal and spatial variations of surface temperature, vapor total column, CO total column and CH4 volume mixing ratio were retrieved by high-resolution satellite remote sensing data. The relationships between these variations and 14 April 2010 Yushu  Ms 7.1 earthquake in Qinghai Province, Northwestern China and seismic ruptures were discussed. Brightness and surface temperature retrieved using MODIS L1B data associated with Yushu Earthquake shows that the values of brightness and surface temperature were higher along the NW fault zones than in the un-faulted areas before the main shock; the higher values of surface temperature were larger than the corresponding daily mean values of ten years before, which is similar to the phenomena that measured values of air temperature before the Yushu Earthquake were higher than the corresponding daily average of last ten years. Vapor total column, CO total column and CH4 volume mixing ratio retrieved using AIRS shows that the values of vapor total column were higher than the average of last two years after the main event and CO total column also increased before and after the earthquake. Our results indicated that the variations associated with large earthquake maybe caused by the movement of deeper-earth material and degassing along faults during earthquake generation, which can be applied into monitoring and prediction of  earthquake.

中图分类号: 

[1]Fu B, Awata Y, Du J, et al. Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China[J].Tectonophysics,2005, 407: 43-63.
[2]Chen Zhengwei, Yang Panxin, Li Zhimin, et al. Characteristics of Ms7.1 Yushu earthquake fault and surface rupture[J].Quaternary Sciences,2010, 30(3): 625-629.[陈正位,杨攀新,李智敏,等.玉树7.1级地震断裂特征与地震地表破裂带[J]. 第四纪研究,2010,30(3): 625-629.]
[3]Wang Chengmin, Li Xuanhu. Applications of fracture-gas measurement to the earthquake studies in China[J]. Earthquake Research in China,1991,7(2): 19-30.[汪成民, 李宣瑚. 我国断层气测量在地震科学研究中的应用现状[J].中国地震, 1991,7(2):19-30.]
[4]Qiang Zuji, Du Letian. Earth degassing, forest fire and seismic activities[J].Earth Science Frontiers,2001, 8(2): 236-245.[强祖基, 杜乐天. 地球排气与森林火灾和地震活动[J]. 地学前缘, 2001, 8(2): 236-245.]
[5]Weinlich F H, Faber E, Bou[AKs~]ková A, et al. Seismically induced variations in Mariánské Lázně fault gas composition in the NW Bohemian swarm quake region, Czech Republic—A continuous gas monitoring[J].Tectonophysics, 2006, 421(1/2): 89-110.
[6]Dogan T, Mori T, Tsunomori,et al. Soil H2 and CO2 surveys at several active faults in Japan[J].Pure and Applied Geophysics,2007, 164: 2 449-2 463.
[7]Du J, Si X, Chen Y,et al. Geochemical anomalies connected with great earthquakes in China[C]Stefánsson ed. Geochemistry Research Advances. New York: Nova Science Publishers, Inc., 2008:57-92.
[8]Walia V, Yang T F, Hong W L, et al. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Applied Radiation and Isotopes, 2009, 67: 1 855-1 863.
[9]Li Ying, Du Jianguo, Wang Fukuan,et al. Geochemical characteristics of soil gas in Yanqing-Huaillai Basin, North China[J].Acta Seismologica Sinica,2009, 31(1): 82-91.[李营,杜建国,王富宽,等. 延怀盆地土壤气体地球化学特征[J]. 地震学报,2009,31(1): 82-91.]
[10]Zhou X, Du J, Chen Z,et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China[J].Geochemical Transactions, 2010, 11(5),doi:10.1186/1467-4866-11-5.
[11]Tronin A A. Satellite thermal survey—A new tool for the studies of seismoactive regions[J].International Journal of Remote Sensing,1996,17(8):1 439-1 455.
[12]Tronin A A, Biagi P F, Molchanov O A,et al. Temperature variations related to earthquakes from simultaneous observation at the ground stations and by satellites in Kamchatka area[J].Physics and Chemistry of the Earth,2004, 29(4/9): 501-506.
[13]Tronin A A. Remote sensing and earthquakes: A review[J].Physics and Chemistry of the Earth,2006,31(4/9): 138-142.
[14]Qiang Z, Xu X, Dian C. Thermal infrared anomaly precursors of impending earthquakes[J].Pure Applied Geophysics,1997, 149: 159-171.
[15]Qiang Z, Lin C, Li L,et al. Atellitic thermal infrared brightness temperature anomaly image—Short-term and impending earthquake precursors[J].Science in China (Series D),1999, 42(3): 313-324.[16]Liu Defu, Kang Chunli. Radiation anomalism before Sumatra Island M8.7 earthquake[J].Recent Developments in World Seismolog,2005, 313(1): 37-39.[刘德富,康春丽. 苏门答腊岛8.7级大地震前的辐射异常现象[J]. 国际地震动态,2005,313(1): 37-39.]
[17]Singh R P, Mehdi W, Gautam R,et al. Precursory signals using satellite and ground data associated with the Wenchuan earthquake of 12 May 2008[J].International Journal of Remote Sensing,2010,31(13):3 341-3 354.
[18]Dey S, Sarkar S, Singh R P. Anomalous changes in column water vapor after Gujarat earthquake[J]. Advances in Space Research,2004, 33(3): 274-278.
[19]Pulinets S, Dunajecka M. Specific variations of air temperature and relative humidity around the time of Michoacan earthquake M 8.1 Sept.19,1985 as a possible indicator of interaction between tectonic plates[J]. Tectonophysics,2007, 431(1/4): 221-230.
[20]Tronin A A, Hayakawa M, Molchanov O A. Thermal IR satellite data application for earthquake research in Japan and China[J].Journal of Geodynamics,2002, 33: 519-534.
[21]Ouzounov D, Liu D F, Kang C L, et al. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes[J].Tectonophysics,2007, 431: 211-220.
[22]Yao Qinglin, Qiang Zuji, Wang Yiping. CO release from the Tibetan Plateau before earthquake and increasing temperature anomaly showing in thermal infrared images of satellite[J].Advances in Earth Science,2005, 20(5): 505-510.[姚清林,强祖基,王弋平.青藏高原地震前CO的排放与卫星热红外增温异常[J]. 地球科学进展,2005,20(5): 505-510.]
[23]Singh R P, Kumar S J, Zlotnicki J,et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J].Applied Geochemistry,2010, 25: 580-585.
[24]Guo Guangmeng, Cao Yungang, Gong Jianming. Monitoring anomaly before earthquake with MODIS and MOPITT data[J].Advances in Earth Science,2006, 2(7): 695-698.[郭广猛,曹云刚,龚建明.使用MODIS和MOPITT卫星数据监测震前异常[J]. 地球科学进展,2006,2(7): 695-698.]
[25]Zhou Rongjun, Wen Xueze, Cai Changxing,et al. Recent earthquakes and assessment of seism tendency on the Ganzi-Yushu fault zone[J].Seismology and Geology,1997, 19(2): 115-124.[周荣军,闻学泽,蔡长星,等. 甘孜—玉树断裂带的近代地震与未来地震趋势估计[J]. 地震地质,1997,19(2): 115-124.]
[26]Liu Fang, Cheng Wanzheng, Ran Maonong. A new data source of satellite thermal infrared remote sensing information:EOS/MODIS data[J].Recent Developments in World Seismolog,2003, 8: 1-6.[刘放,程万正,冉茂农. 一种新的卫星热红外遥感信息数据源:EOS/MODIS数据[J]. 国际地震动态,2003,8: 1-6.]
[27]Kaufman Y J, Gao B C. Remote sensing of water vapor in the near IR from EOS/MODIS[J].IEEE Transactions Remote Sensing,1992, 30(5): 871-884.
[28]Mao Kebiao. A Study of Methods for Land Surface Temperature Retrieval from MODIS Data[D]. Nanjing: Nanjing University, 2004.[毛克彪. 用于MODIS数据的地表温度反演方法研究[D]. 南京:南京大学,2004.]
[29]Aumann H H, Chahine M T, Gautier C,et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system[J].IEEE Transactions on Geoscience and Remote Sensing,2003, 41: 253-264.
[30]Won Y I.README Document for AIRS Level-3 Version 5 Standard Products: Daily (AIRH3STD, AIRX3STD, AIRS3STD) 8-days (AIRH3ST8, AIRX3ST8, AIRS3ST8) & Monthly (AIRH3STM, AIRX3STM, AIRS3STM)[R]. Georgios Britaolakis,2008.
[31]Cui Lihua. Study on Anomaly of Remote Sensing Information and Mechanism before the Wenchuan Earthquake[D]. Tangshan: Hebei Polytechnic University,2009.[崔丽华. 汶川地震前的遥感信息异常及其机理研究[D].唐山:河北理工大学,2009.]
[32]Kang Chunli, Chen Zhengwei, Chen Lize,et al. Analysis on the satellite infrared anomaly feature before west to Kunlun Mountain pass M8.1 earthquake[J].Northwestern Seismological Journal,2003, 25(1): 12-15.[康春丽,陈正位,陈立泽,等. 昆仑山口西8.1级地震的卫星热红外前兆特征分析[J]. 西北地震学报,2003,25(1): 12-15.]
[33]Chen H, Parnell J, Gong Z. Largescale seismic thermal anomaly linked to hot fluid expulsion from a deep aquifer[J].Journal Geochemical Exploration,2006, 89(1/3): 53-56.
[34]Lu Zhenquan, Qiang Zuji, Wu Bihao. A tentative interpretation of the formation of high temperature anomaly in Satellitebased Thermal Infrared Scanning Images (STISI) of the South China Sea before earthquake[J].Acta Geoscientia Sinica,2002, 23(1): 42-46.
[卢振权,强祖基,吴必豪.南海临震前卫星热红外增温异常原因初探[J]. 地球学报,2002,23(1): 42-46.]

[1] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[2] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[3] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[4] 毛经伦, 祝意青. 地面重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展, 2018, 33(3): 236-247.
[5] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[6] 周晓成, 石宏宇, 陈超, 曾令华, 孙凤霞, 李静, 陈志, 吕超甲, 黄丹, 杜建国. 汶川 M S8.0地震破裂带土壤气中H 2浓度时空变化[J]. 地球科学进展, 2017, 32(8): 818-827.
[7] 王根, 张华, 杨寅. 高光谱大气红外探测器AIRS资料质量控制研究进展[J]. 地球科学进展, 2017, 32(2): 139-150.
[8] 方迎波, 占文凤, 黄帆, 高伦, 全金玲, 邹照旭. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.
[9] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[10] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[11] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[12] 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
[13] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[14] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究 *[J]. 地球科学进展, 2014, 29(2): 295-305.
[15] 魏晓琛, 李琦, 邢会林, 李霞颖, 宋然然. 地下流体注入诱发地震机理及其对CO 2地下封存工程的启示[J]. 地球科学进展, 2014, 29(11): 1226-1241.
阅读次数
全文


摘要