地球科学进展 ›› 2016, Vol. 31 ›› Issue (1): 59 -65.

上一篇    下一篇

张渤地震带高光谱气体地球化学特征
崔月菊 1( ), 杜建国 1, 李营 1, 刘雷 1, 周晓成 1, 陈扬 2, 陈志 1, 韩晓昆 3   
  1. 1.中国地震局地震预测重点实验室(中国地震局地震预测研究所),北京 100036
    2.中国国土资源航空物探遥感中心,北京 100083
    3.中国科学院地理科学与资源研究所 北京 100101
  • 出版日期:2016-01-20

Gas Geochemical Characteristics of the Zhang-Bo Seismic Zone Extracted from Hyper-spectral Data

Yueju Cui 1( ), Jianguo Du 1, Ying Li 1, Lei Liu 1, Xiaocheng Zhou 1, Yang Chen 2, Zhi Chen 1, Xiaokun Han 3   

  1. 1. CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Science), China Earthquake Administration, Beijing 100036, China
    2. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China
    3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • Online:2016-01-20 Published:2016-01-10
  • About author:

    First author: Cui Yueju(1985-), female, Luquan City, Hebei Province, Research Assistant. Research area include applied geochemistry. E-mail: cehuicuiyueju@126.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Contribution of C-bearing gas emission from solid Earth before and after the great Wenchuan earthquake in Western Sichuan to the atmosphere"(No.41403099);The Basic Research Project of Institute of Earthquake Science, CEA "Characteristics of hyper-spectrum gas geochemistry along the Longmenshan Fault"(No.2015IES0402)

利用卫星高光谱数据分析了张家口--渤海(张渤)地震带CO和CH4总量的时,空变化特征及其影响因素.时间上,该地区CO总量存在明显的周期性季节变化,但是CH4总量的周期性季节变化不明显.空间上,研究区南部CO和CH4总量高于北部地区;由西向东气体总量增大,在平原和山区交界的地方变化明显.CO和CH4总量背景趋势时间上受气候和气象变化影响,空间上主要受控于区域地形地貌,地质背景,构造和地震活动及地壳厚度等.研究结果不仅为研究区地震地球化学测量提供了新的科学资料,而且对地震异常判识,断裂带分段活动性研究具有重要意义.

The affecting factors on gas geochemical characteristics extracted from hyper-spectral data in the Zhangjiakou-Bohai seismic zone were discussed. Temporal and spatial variations of total column CO and CH4 were analyzed based on the satellite hyper-spectral data. Temporally, the total column CO in the study area showed obviously seasonal variation, while CH4 didn't. Spatially, values of total column CO and CH4 in the southern part of the study area were higher than thoes in the northern part. Both total column CO and CH4 increased from western to eastern, and showed the largest changing rate over the piedmont fault zone at the junction of plain and mountains. The temporal variations of total CO and CH4 backgrounds could be attributed to the effects of climate and weather. The spatial variations of total CO and CH4 backgrounds may be controlled by the regional topography, geology, seismic activities, crustal thickness and so on. The results not only provide new scientific data for monitoring earthquake, but also have an important significance to the study of earthquake anomaly identification and segmentation seismic activity of fault zone.

中图分类号: 

图1 张渤地震带地震构造略图(地震目录参考中国地震信息网)
Fig.1 Seismic-tectonic sketch map of the Zhangjiakou-Bohai seismic zone(the earthquake data from China Seismic Information)
图2 2014年各个像元CO和CH 4总量随月份变化图
Fig.2 Variations of total column CO and CH 4 over every pixel with months in 2014
图3 2011--2014年CO总量月平均值变化图
Fig. 3 Variations of monthly average values of the total column CO from 2011 to 2014
图4 2011--2014年CO和CH 4总量随经度的变化图
(a)和(b)是40°~41°N;(c)和(d)是39°~40°N
Fig.4 Variations of total column CO and CH 4 over the pixels on different longitude from 2011 to 2014
(a)and (b)on 40°~41°N; (c)and(d)on 39°~40°N)
[1] Ma Wentao, Xu Xiwei, Yu Guihua, et al.The relationship between seismic activity and fault activity in Beijing region[J]. Seismology and Geology, 2004, 26(2): 293-304.
[马文涛,徐锡伟,于贵华,等. 首都圈地区的地震活动性与断裂的关系[J]. 地震地质,2004,26(2): 293-304.]
[2] Li Layue, Xing Chengqi, Wu Anxu, et al.Fault activities based on fault fault-crossing observation in the capital circle region of China and its relationship with earthquakes[J]. Earthquake Research in China, 2012, 28(2): 167-178.
[李腊月,邢成起,武安绪,等.首都圈断层活动及其与地震关系探讨[J]. 中国地震,2012,28(2): 167-178.]
[3] Zhang Wei, Wang Jiyi, E Xiuman. Hydrochemical Principles and Methods of Earthquake Prediction[M]. Beijing: Seismological Press, 1988.
[张炜,王吉易,鄂秀满. 水文地球化学预报地震的原理与方法[M]. 北京: 地震出版社,1988.]
[4] Du J, Si X, Chen Y, et al.Geochemical anomalies connected with great earthquakes in China[G]∥Stefánssonó, ed. Geochemistry Research Advances. New York: Nova Science Publishers, Inc., 2008: 57-92.
[5] Zhou Xiaocheng, Du Jianguo, Chen Zhi, et al.Advance review of seismic geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4):340-346.
[周晓成,杜建国,陈志,等. 地震地球化学研究进展[J]. 矿物岩石地球化学通报,2012,31(4): 340-346.]
[6] Cui Y J, Du J G, Zhang D H, et al.Anomalies of total column CO and O3 associated with great earthquakes in recent years[J]. Natural Hazards and Earth System Sciences, 2013, 13(10): 2 513-2 519.
[7] Cui Yueju, Li Jing, Wang Yanyan, et al.Application of gas remote sensing technique in earthquake monitoring[J]. Advances in Earth Science,2015, 30(2): 284-294.
[崔月菊,李静,王燕艳,等. 遥感气体探测技术在地震监测中的应用[J]. 地球科学进展,2015,30(2): 284-294.]
[8] Wang Chengmin.Well-Network for Earthquake Prediction in China[M]. Beijing: Seismological Press, 1990.
[汪成民. 中国地震地下水动态观测网[M]. 北京: 地震出版社,1990.]
[9] Che Yongtai, Liu Chenglong, Yu Jinzi, et al.Underground fluid anomaly and macro anomaly of Ms 8.0 Wenchuan Earthquake and opinions about earthquake prediction[J]. Seismology and Geology,2008, 30(4): 828-838.
[车用太,刘成龙,鱼金子,等. 汶川Ms 8.0地震的地下流体与宏观异常及地震预测问题的思考[J]. 地震地质,2008,30(4):828-838.]
[10] Liu Yaowei, Ren Hongwei.Preliminary analysis of the characteristics of post-seismic effect of radon after the Wenchuan 8.0 earthquake[J]. Earthquake, 2009, 29(1): 121-131.
[刘耀炜,任宏微.汶川8.0级地震氡观测值震后效应特征初步分析[J].地震,2009,29(1):121-131.]
[11] Tronin A A.Remote sensing and earthquakes: A review[J]. Physics and Chemistry of the Earth,2006, 31(4/9): 138-142.
[12] Singh R P, Kumar S J, Zlotnicki J, et al.Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J]. Applied Geochemistry, 2010, 25(4): 580-585.
[13] Cui Yueju, Du Jianguo, Zhou Xiaocheng, et al.Geochemical anomaly of CO remote sensing associated with Baja California Mw 7.2 earthquake in Mexico[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011,30(4):458-464.
[崔月菊,杜建国,周晓成,等.墨西哥下加利福尼亚Mw 7.2地震前后CO遥感地球化学异常[J]. 矿物岩石地球化学通报,2011,30(4):458-464.]
[14] Barnet C D, Goldberg M, McMillin L, et al. Remote sounding of trace gases with the EOS/AIRS instrument[C]∥Huang H L A, Bloom H J, eds. Atmospheric and Environmental Remote Sensing Data Processing and Utilization: An End-to-End System Perspective. Bellingham, WA: Proceeding of SPIE, 2004, 5548: 300-312.
[15] Aumann H H, Chahine M T, Gautier C, et al.AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 253-264.
[16] Pagano T S, Aumann H H, Hagan D E, et al.Prelaunch and in-flight radiometric calibration of the Atmospheric Infrared Sounder (AIRS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 265-273.
[17] Susskind J, Barnet C D, Blaisdell J M.Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds[J]. IEEE Transactions on Geoscience and Remote Sensing,2003, 41(2): 390-409.
[18] Qin Yu, Zhao Chunsheng.Principle of Atmospheric Chemistry[M]. Beijing: China Meteorological Press, 2003:168-170.
[秦瑜,赵春生.大气化学基础[M]. 北京:气象出版社,2003:168-170.]
[19] Houghton J T, Ding Y, Griggs D J, et al.Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change(IPCC) Working Group I Third Assessment Report[R]. New York: Cambridge University Press, 2001.
[20] Lin Y, Zhao C, Peng L, et al.A new method to calculate monthly CO emissions using MOPITT satellite data[J]. Chinese Science Bulletin, 2007, 52(18): 2 551-2 558.
[21] Weinstock B, Niki H.Carbon monoxide balance in nature[J].Science, 1972, 176(32): 290-292.
[22] Zhou Lingxi, Tang Jie, Ernst M, et al.Continuous measurement of baseline atmospheric carbon monoxide in western China[J]. Environmental Science, 2001, 22(3): 1-5.
[周凌晞,汤洁,Ernst M,等.中国西部本底大气中CO的连续测量[J]. 环境科学,2001,22(3): 1-5.]
[23] Klussman R W.Soil Gas and Related Methods for Natural Resource Exploration[M]. New York: John Wiley, 1993.
[24] Wang Yongxian.Carbon monoxide pollution in Tongling City in 2010[J]. Technology Information, 2011,(24):371.
[王永贤. 2010年铜陵市一氧化碳污染状况[J]. 科技信息,2011,(24): 371.]
[25] Li Desheng.Geological and technical features of Bo-Hai oil and gas-bearing basin[J]. Acta Petrolei Sinica, 1980,1(1): 6-18.
[李德生. 渤海湾含油气盆地的地质和构造特征[J]. 石油学报,1980,1(1): 6-18.]
[26] Toutain J P, Baubron J C.Gas geochemistry and seismtectonics: A review[J]. Tectonophysics, 1999, 304(1): 12 227.
[27] Luo Yan, Chong Jiajun, Ni Sidao, et al.Molo depth and sedimentary thickness in Capital region[J]. Chinese Journal of Geophysics, 2008, 51(4): 1 135-1 145.
[罗艳,崇加军,倪四道,等. 首都圈莫霍面起伏及沉积厚度[J]. 地球物理学报,2008,51(4): 1 135-1 145.]
[28] Wang Jun, Liu Qiyuan, Chen Jiuhui, et al.The crustal thickness and Poisson's ratio beneath the Capital Circle region[J].Chinese Journal of Geophysics, 2009, 52(1):57-66.
[王竣,刘启元,陈九辉,等. 首都圈地区的地壳厚度及泊松比[J]. 地球物理学报,2009,52(1):57-66.]
[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[4] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[5] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[6] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[7] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[8] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[9] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[10] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[11] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[12] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[13] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[14] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[15] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
阅读次数
全文


摘要