地球科学进展 ›› 2016, Vol. 31 ›› Issue (1): 43 -58.

上一篇    下一篇

表生环境中镁同位素的地球化学循环
董爱国( ), 朱祥坤 *( )   
  1. 中国地质科学院地质研究所 国土资源部同位素地质重点实验室/大陆动力学国家重点实验室,北京 100037
  • 收稿日期:2015-08-30 修回日期:2015-11-16 出版日期:2016-01-20
  • 通讯作者: 朱祥坤 E-mail:aiguo.dong@cags.ac.cn;xiangkun@cags.ac.cn
  • 基金资助:
    *国家自然科学基金项目"辽东裂谷带菱镁矿镁同位素特征及其对矿床成因的制约"(编号:41203004);国土资源部行业专项基金项目"Fe,Mg同位素在辽东裂谷带菱镁矿及硼镁铁矿中的应用研究"(编号:201211074)资助

Mg Isotope Geochemical Cycle in Supergene Environment

Aiguo Dong( ), Xiangkun Zhu( )   

  1. MLR Key Laboratory of Isotope Geology, State Key Laboratory of Continental Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2015-08-30 Revised:2015-11-16 Online:2016-01-20 Published:2016-01-10

近些年表生环境中镁同位素分馏取得了一系列重要研究进展,这些新认识为深入理解表生环境中镁同位素地球化学循环奠定了基础.表生环境中镁同位素的地球化学循环主要涉及风化,河流搬运,碳酸盐沉淀,水岩反应等重要地质过程.风化过程中镁同位素发生显著分馏,硅酸盐风化产物中富集重的镁同位素,轻的镁同位素易进入水体.河流搬运过程中,镁同位素不发生分馏,但外源输入可能影响水体的镁同位素组成.河水汇入海洋后,碳酸盐沉淀过程可导致轻的镁同位素以碳酸盐的形式从海水中移出.在海底高温水岩反应过程中,海水中绝大多数的镁(80%~87%)都进入岩石,循环后的热液可能富集轻的镁同位素.海底低温水岩反应过程中海水的镁可以进入岩石并形成次生矿物,此过程的镁同位素分馏主要与次生矿物的形成有关.此外,海水中的镁易与黏土矿物发生交换反应,此过程黏土矿物倾向于吸附轻的镁同位素.总之,在表生环境中上地壳的镁(26Mg约为-0.22‰)经历风化作用,河流搬运,海洋贮存,最终以碳酸盐岩(26Mg一般小于-1‰)或与玄武岩发生反应的形式重新回到岩石圈.

Mg isotope fractionation in the supergene environment have been obtained many important advances in recent years, and these new knowledge supply the clues for further understanding Mg isotope geochemical cycle in the supergene environment. Mg isotope geochemical cycle in the supergene environment involves some important geological processes, such as weathering, river transportation, carbonate sedimentation and water-rock reaction. Mg isotope fractionates dramatically in weathering process. Silicate weathering products enrich in 26Mg (secondary clay minerals prefer to combine with 26Mg) and 24Mg prefer to be into the aqueous phase. Although there is not significant Mg isotope fractionation during river transportation, Mg isotope of river water could still be affected by the supplement of external sources. Most magnesium from river water are transported into the ocean, and then the carbonate precipitation prefers to remove 24Mg from ocean as carbonate minerals. Submarine low temperature waterrock reaction could transport less magnesium from ocean into the rocks during secondary mineral formation, which is associated with Mg isotope fractionation. However, most of magnesium (80%~87%) in seawater prefer to combine with the rock in high temperature waterrock reaction and recirculated hydrothermal fluid may be enriched in 24Mg. In brief, magnesium from upper crust (δ26Mg about -0.22‰) experiences weathering and transports by river water to ocean in the supergene environment. The magnesium in ocean could recycle into the rocks by the process of carbonate precipitation (δ26Mg is less than -1‰) or reacting with submarine basalt to form secondary mineral.

中图分类号: 

图1 自然界不同储库的镁同位素组成(修改自文献 [ 38 ])
Fig 1. Mg isotopic composition in natural reservoir (modified from reference [ 38 ])
图2 不同风化剖面中镁同位素组成
(a)为辉绿岩风化剖面,数据来源于文献 [ 11 ];(b)为过度风化的玄武岩剖面,数据来源于文献 [ 9 ];(c)为洛川黄土剖面,数据来源于文献 [ 79 ]
Fig 2 Mg isotopic composition in weathering profiles.
(a)Represents the diabase weathering profile, data source from reference [ 11 ]; (b) represents the intense weathering profile of the basalt, data source from reference [ 9 ]; (c)represents Luochuan loess profile, data source from reference [ 79 ]
图3 碳酸盐沉淀过程中镁同位素分馏的理论估算和实验测定(修改自参考文献 [ 88 ])
Fig 3 Theoretical estimation and experimental determination of Mg isotope fractionation in carbonate precipitation (modified from reference [ 88 ])
图4 生物成因碳酸盐的镁同位素组成(修改自参考文献 [ 74 ])
Fig.4 Mg isotope composition of biogenic carbonates (modified from reference [ 74 ])
图5 海水镁同位素平衡示意图(镁的输送总量基于参考文献 [ 100 ])
Fig 5 A schematic Mg ocean isotope budget (Mg flux from reference [ 100 ])
图6 表生环境中镁同位素地球化学循环示意图
Fig 6 A schematic Mg isotope cycle in supergene environment
[1] Liu Yingjun, Cao Liming, Li Zhaolin,et al.Elementary Geochemistry[M].Beijing: Geological Publishing House, 1987.
[刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 地质出版社, 1987.]
[2] Zhao Qiyuan.Marine Geochemistry[M].Beijing: Geological Publishing House, 1989.
[赵其渊. 海洋地球化学[M].北京: 地质出版社, 1989.]
[3] Galy A, Belshaw N S, Halicz L, et al.High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J].International Journal of Mass Spectrometry,2001, 208(1): 89-98.
[4] Galy A, Young E D, Ash R D, et al.The formation of chondrules at high gas pressures in the solar nebula[J].Science,2000, 290(5 497): 1 751-1 753.
[5] Wang S J, Teng F Z, Bea F.Magnesium isotopic systematics of metapelite in the deep crust and implications for granite petrogenesis[J].Geochemical Perspectives Letters,2015,(1):75-83,doi:10.7185/geochemlet.1508.
[6] Tipper E T, Lemarchand E, Hindshaw R S, et al. Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream[J].Chemical Geology,2012,312/313: 80-92.
[7] Wimpenny J, Burton K W, James R H, et al.The behaviour of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland[J].Earth and Planetary Science Letters,2011, 304(1): 260-269.
[8] Liu X M, Teng F Z, Rudnick R L, et al.Massive magnesium depletion and isotope fractionation in weathered basalts[J]. Geochimica et Cosmochimica Acta,2014, 135(7): 336-349.
[9] Huang K J, Teng F Z, Wei G J, et al. Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China[J].Earth and Planetary Science Letters,2012, 359/360(1): 73-83.
[10] Pogge von Strandmann P A E P, Opfergelt S, Lai Y J, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters,2012, 339/340(4): 11-23.
[11] Teng F Z, Li W Y, Rudnick R L, et al.Contrasting lithium and magnesium isotope fractionation during continental weathering[J].Earth and Planetary Science Letters,2010, 300(1): 63-71.
[12] Brenot A, Cloquet C, Vigier N, et al. Magnesium isotope systematics of the lithologically varied Moselle River Basin, France[J]. Geochimica et Cosmochimica Acta,2008, 72(20): 5 070-5 089.
[13] Lee S W, Ryu J S, Lee K S.Magnesium isotope geochemistry in the Han River, South Korea[J]. Chemical Geology,2014, 364(1): 9-19.
[14] Pogge von Strandmann P A E, Porcelli D, James R H, et al. Chemical weathering processes in the Great Artesian Basin: Evidence from lithium and silicon isotopes[J].Earth and Planetary Science Letters,2014, 406(9): 24-36.
[15] Tipper E T, Calmels D, Gaillardet J, et al.Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering[J]. Earth and Planetary Science Letters,2012, 333(6): 35-45.
[16] Tipper E T, Galy A, Bickle M J.Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1 057-1 075.
[17] Huang K J, Teng F Z, Elsenouy A, et al.Magnesium isotopic variations in loess: Origins and implications[J].Earth and Planetary Science Letters,2013,374: 60-70,doi:10.1061/jepsl.2013.05.010.
[18] Xiao Y, Teng F Z, Zhang H F, et al.Large magnesium isotope fractionation in peridotite xenoliths from eastern North China craton: Product of melt-rock interaction[J].Geochimica et Cosmochimica Acta,2013, 115(5): 241-261.
[19] Yang W, Teng F Z, Zhang H F, et al.Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle[J].Chemical Geology,2012, 328(11): 185-194.
[20] Geske A, Zorlu J, Richter D, et al. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites[J]. Chemical Geology,2012,332/333:45-64.
[21] Blttler C L, Miller N R, Higgins J A. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments[J]. Earth and Planetary Science Letters,2015, 419:32-42.
[22] Jacobson A D, Zhang Z, Lundstrom C, et al.Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota[J]. Earth and Planetary Science Letters,2010, 297(3): 446-452.
[23] Mavromatis V, Meister P, Oelkers E H.Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin[J]. Chemical Geology, 2014,385(7): 84-91.
[24] Fantle M S, Higgins J.The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg[J]. Geochimica et Cosmochimica Acta,2014, 142:458-481,doi:10.1016/jgca.2014.07.025.
[25] Higgins J, Schrag D.Constraining magnesium cycling in marine sediments using Magnesium isotopes[J].Geochimica et Cosmochimica Acta,2010, 74(17): 5 039-5 053.
[26] Ling M X, Liu Y L, Williams I S, et al.Formation of the world's largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids[J].Scientific Reports,2013, 3: 1 776,doi:10.1038/srep01776.
[27] Sun J, Zhu X, Chen Y, et al.Is the Bayan Obo ore deposit a micrite mound? A comparison with the Sailinhudong micrite mound[J]. International Geology Review,2014, 56(14): 1-12.
[28] Walter B F, Immenhauser A, Geske A, et al.Exploration of hydrothermal carbonate Magnesium isotope signatures as tracers for continental fluid aquifers, Schwarzwald mining district, SW Germany[J].Chemical Geology,2015, 400: 87-105,doi:10.1016/j.chemgeo.2015.02.009.
[29] Black J R, Epstein E, Rains W D, et al. Magnesium-isotope fractionation during plant growth[J]. Environmental Science & Technology,2008, 42(21): 7 831-7 836.
[30] Galy A, Yoffe O, Janney P E, et al.Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J].Journal of Analytical Atomic Spectrometry,2003, 18(11): 1 352-1 356.
[31] Zhu Xiangkun, He Xuexian, Yang Chun, et al.Inhomogeneity of the Mg isotope reference standard SRM98[J].Acta Geoscientica Sinica,2005, 26(B9): 12-14.
[朱祥坤, 何学贤, 杨淳,等. Mg 同位素标准参考物质 SRM980 的同位素不均一性研究[J]. 地球学报, 2005, 26(B9): 12-14.]
[32] Young E D, Galy A.The isotope geochemistry and cosmochemistry of magnesium[J].Reviews in Mineralogy and Geochemistry,2004, 55(1): 197-230.
[33] He Xuexian, Li Shizhen, Tang Suohan.Advances in the study of Mg isotopes application[J].Acta Petrologica et Mineralogica,2008, 27(5): 472-476.
[何学贤, 李世珍, 唐索寒. Mg 同位素应用研究进展[J]. 岩石矿物学杂志, 2008, 27(5): 472-476.]
[34] Fan Bailing, Tao Faxiang, Zhao Zhiqi.Advance of geochemical applications of Magnesium isotope in marine and Earth surface environments[J].Bulletin of Mineralogy, Petrology and Geochemistry,2013, 32(1):114-120.
[范百龄, 陶发祥, 赵志琦. 地表及海洋环境的镁同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(1):114-120.]
[35] Ge Lu, Jiang Shaoyong.Recent advances in research on Magnesium isotope geochemistry[J]. Acta Petrologica et Mineralogica,2008, 27(4): 367-374.
[葛璐, 蒋少涌. 镁同位素地球化学研究进展[J]. 岩石矿物学杂志, 2008, 27(4): 367-374.]
[36] Huang Fang.Non-traditional stable isotope fractionation at high temperatures[J].Acta Petrologica Sinica,2011, 27(2): 365-382.
[黄方. 高温下非传统稳定同位素分馏[J]. 岩石学报, 2011, 27(2): 365-382.]
[37] Ke Shan, Liu Shengyao, Li Wanghua, et al.Advances and application in Magnesium isotope geochemistry[J]. Acta Petrologica Sinica,2011,27(2): 383-397.
[柯珊, 刘盛遨, 李王晔,等.镁同位素地球化学研究新进展及其应用[J]. 岩石学报, 2011, 27(2): 383-397.]
[38] Zhu Xiangkun, Wang Yue, Yan Bin, et al.Developments of Non-traditional stable isotope geochemistry[J].Bulletin of Mineralogy, Petrology and Geochemistry,2013, 32(6): 651-688.
[朱祥坤, 王跃, 闫斌, 等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 32(6): 651-688.]
[39] Bourdon B, Tipper E T, Fitoussi C, et al.Chondritic Mg isotope composition of the Earth[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5 069-5 083.
[40] Huang F, Glessner J, Ianno A, et al.Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS[J]. Chemical Geology, 2009, 268(1): 15-23.
[41]Teng F Z, Li W Y, Ke S, et al. Magnesium isotopic composition of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta,2010, 74(14): 4 150-4 166.
[42] Teng F Z, Wadhwa M, Helz R T.Investigation of Magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle[J]. Earth and Planetary Science Letters,2007, 261(1): 84-92.
[43] Wiechert U, Halliday A N.Non-chondritic magnesium and the origins of the inner terrestrial planets[J]. Earth and Planetary Science Letters,2007, 256(3/4): 360-371.
[44] Yang W, Teng F Z, Zhang H F.Chondritic magnesium isotopic composition of the terrestrial mantle: A case study of peridotite xenoliths from the North China craton[J]. Earth and Planetary Science Letters,2009, 288(3/4): 475-482.
[45] Wombacher F, Eisenhauer A, Böhm F, et al.Magnesium stable isotope fractionation in marine biogenic calcite and aragonite[J]. Geochimica et Cosmochimica Acta,2011, 75(19): 5 797-5 818.
[46] Yoshimura T, Tanimizu M, Inoue M, et al.Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral[J]. Analytical and Bioanalytical Chemistry, 2011,401(9):2 755-2 769.
[47] Hippler D, Buhl D, Witbaard R, et al.Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates[J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6 134-6 146.
[48] Chang V T C, Williams R, Makishima A, et al. Mg and Ca isotope fractionation during CaCO3 biomineralisation[J].Biochemical and Biophysical Research Communications,2004, 323(1): 79-85.
[49] Poggt von Strandmann P A E. Precise magnesium isotope measurements in core top planktic and benthic foraminifera[J].Geochemistry Geophysics Geosystems,2008, 9(12): Q12015.
[50] Ra K, Kitagawa H.Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(7): 817-821.
[51] Ra K, Kitagawa H, Shiraiwa Y.Mg isotopes in chlorophyll-a and coccoliths of cultured coccolithophores (Emiliania huxleyi) by MC-ICP-MS[J]. Marine Chemistry, 2010, 122(1): 130-137.
[52] Ra K, Kitagawa H, Shiraiwa Y.Mg isotopes and Mg/Ca values of coccoliths from cultured specimens of the species Emiliania huxleyi and Gephyrocapsa oceanica[J]. Marine Micropaleontology, 2010, 77(3/4): 119-124.
[53] Saenger C, Wang Z, Gaetani G, et al. The influence of temperature and vital effects on magnesium isotope variability in Porites and Astrangia corals[J].Chemical Geology,2013,360/361: 105-117.
[54] Planchon F, Poulain C, Langlet D, et al.Mg-isotopic fractionation in the manila clam (Ruditapes philippinarum): New insights into Mg incorporation pathway and calcification process of bivalves[J]. Geochimica et Cosmochimica Acta,2013, 121(6): 374-397.
[55] Chang V T C, Makishima A, Belshaw N S, et al. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry,2003, 18(4): 296-301.
[56] Galy A, Bar-Matthews M, Halicz L, et al.Mg isotopic composition of carbonate: Insight from speleothem formation[J].Earth and Planetary Science Letters,2002, 201(1): 105-115.
[57] Sun Jian, Fang Nan, Li Shizhen, et al.Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J].Acta Petrologica Sinica,2012,28(9): 2 890-2 902.
[孙剑, 房楠, 李世珍,等. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2012, 28(9): 2 890-2 902.]
[58] Azmy K, Lavoie D, Wang Z, et al.Magnesium-isotope and REE compositions of Lower Ordovician carbonates from eastern Laurentia: Implications for the origin of dolomites and limestones[J].Chemical Geology,2013,356: 64-75,doi:10.1016/j.chemgeo.2013.07.015.
[59] Lavoie D, Jackson S, Girard I.Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of Canada[J]. Sedimentary Geology,2014, 305(5): 58-68.
[60] Geske A, Goldstein R, Mavromatis V, et al.The magnesium isotope (δ26Mg) signature of dolomites[J].Geochimica et Cosmochimica Acta,2015,149(11): 131-151.
[61] Immenhauser A, Buhl D, Richter D, et al.Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave-Field study and experiments[J]. Geochimica et Cosmochimica Acta,2010, 74(15): 4 346-4 364.
[62] Buhl D, Immenhauser A, Smeulders G, et al.Time series δ26Mg analysis in speleothem calcite: Kinetic versus equilibrium fractionation, comparison with other proxies and implications for palaeoclimate research[J]. Chemical Geology,2007, 244(3): 715-729.
[63] Tipper E, Galy A, Gaillardet J, et al.The magnesium isotope budget of the modern ocean: Constraints from riverine Magnesium isotope ratios[J].Earth and Planetary Science Letters,2006, 250(1/2): 241-253.
[64] Foster G, von Strandmann P P, Rae J. Boron and Magnesium isotopic composition of seawater[J].Geochemistry Geophysics Geosystems,2010, 11(8):253-274.
[65] Ling M X, Sedaghatpour F, Teng F Z, et al.Homogeneous Magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2011, 25(19): 2 828-2 836.
[66] von Strandmann P A E P, Burton K W, James R H, et al. The influence of weathering processes on riverine Magnesium isotopes in a basaltic terrain[J]. Earth and Planetary Science Letters, 2008, 276(1/2): 187-197.
[67] Wimpenny J, Colla C A, Yin Q, et al.Investigating the Behaviour of Mg isotopes during the formation of clay minerals[J]. Geochimica et Cosmochimica Acta,2014, 128(3): 178-194.
[68] Ma L, Teng F Z, Jin L, et al.Magnesium isotope fractionation during shale weathering in the Shale Hills critical zone observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation[J].Chemical Geology,2015, 397: 37-50,doi:10.1016/j.chemgeo.2015.01.010.
[69] Black J R, Yin Q, Rustad J R, et al.Magnesium isotopic equilibrium in chlorophylls[J]. Journal of the American Chemical Society, 2007, 129(28): 8 690-8 691.
[70] Bolou-Bi E B, Poszwa A, Leyval C, et al. Experimental determination of Magnesium isotope fractionation during higher plant growth[J]. Geochimica et Cosmochimica Acta, 2010, 74(9): 2 523-2 537.
[71] Liu S A, Teng F Z, He Y, et al.Investigation of Magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust[J]. Earth and Planetary Science Letters,2010, 297(3/4): 646-654.
[72] Opfergelt S, Georg R, Delvaux B, et al.Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe[J].Earth and Planetary Science Letters,2012, 341:176-185.
[73] Shirokova L S, Mavromatis V, Bundeleva I A, et al.Using Mg isotopes to trace cyanobacterially mediated Magnesium carbonate precipitation in alkaline lakes[J]. Aquatic Geochemistry,2013, 19(1): 1-24.
[74] Saenger C, Wang Z.Magnesium isotope fractionation in biogenic and abiogenic carbonates: Implications for paleoenvironmental proxies[J].Quaternary Science Reviews,2014, 90(474): 1-21.
[75] Chen Jun, Wang Henian.Geochemistry[M]. Beijing: Science Press, 2004.
[陈骏, 王鹤年. 地球化学[M]. 北京:科学出版社, 2004.]
[76] Schauble E A.First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium (2+) crystals[J]. Geochimica et Cosmochimica Acta, 2011, 75: 844-869.
[77] Ryu J S, Jacobson A D, Holmden C, et al.The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg geochemistry of granite weathering at pH = 1 and T= 25℃: Power-law processes and the relative reactivity of minerals[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6 004-6 026.
[78] Wimpenny J, Gíslason S R, James R H, et al.The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J]. Geochimica et Cosmochimica Acta, 2010, 74(18):5 259-5 279.
[79] Wimpenny J, Yin Q Z, Tollstrup D, et al.Using Mg isotope ratios to trace Cenozoic weathering changes: A case study from the Chinese Loess Plateau[J]. Chemical Geology, 2014, (376): 31-43.
[80] Li W Y, Teng F Z, Ke S, et al.Heterogeneous Magnesium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 867-6 884.
[81] Lara M C, Buss H L,Pogge von Strandmann P A, et al. Controls on the Mg cycle in the Tropics: Insights from a case study at the Luquillo critical zone observatory[J]. Procedia Earth and Planetary Science,2014, 10: 200-203,doi:10.1016/j.proeps.2014.08.019.
[82] Black J R, Yin Q-z, Casey W H.An experimental study of Magnesium-isotope fractionation in chlorophyll-a photosynthesis[J]. Geochimica et Cosmochimica Acta,2006, 70(16): 4 072-4 079.
[83] Bolou-Bi E B, Vigier N, Poszwa A, et al. Effects of biogeochemical processes on Magnesium isotope variations in a forested catchment in the Vosges Mountains (France)[J]. Geochimica et Cosmochimica Acta, 2012, 87: 341-355.
[84] Pinilla C, Blanchard M, Balan E, et al.Equilibrium Magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics[J].Geochimica et Cosmochimica Acta, 2015, 163: 126-139,doi:10.1016/j.gca.2015.04.008.
[85] Saulnier S, Rollion-Bard C, Vigier N, et al.Mg isotope fractionation during calcite precipitation: An experimental study[J]. Geochimica et Cosmochimica Acta, 2012, 91(5): 75-91.
[86] Mavromatis V, Gautier Q, Bosc O, et al.Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J].Geochimica et Cosmochimica Acta,2013, 114(4): 188-203.
[87] Li W, Chakraborty S, Beard B L, et al.Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions[J]. Earth and Planetary Science Letters, 2012, 333(6): 304-316.
[88] Rustad J R, Casey W H, Yin Q Z, et al.Isotopic fractionation of Mg2+, Ca2+, and Fe2+ with carbonate minerals[J]. Geochimica et Cosmochimica Acta,2010, 74(22): 6 301-6 323.
[89] Wang Z, Hu P, Gaetani G, et al.Experimental calibration of Mg isotope fractionation between aragonite and seawater[J]. Geochimica et Cosmochimica Acta,2013,102(2): 113-123.
[90] Li W, Beard B L, Li C, et al.Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J]. Geochimica et Cosmochimica Acta,2015, 157(3): 164-181.
[91] Pearce C R, Saldi G D, Schott J, et al.Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: Evidence from Mg isotopes[J]. Geochimica et Cosmochimica Acta,2012, 92(9): 170-183.
[92] Mavromatis V, Pearce C R, Shirokova L S, et al.Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria[J]. Geochimica et Cosmochimica Acta, 2012,76(1): 161-174.
[93] Mavromatis V, Schmidt M, Botz R, et al. Experimental quantification of the effect of Mg on calcite-aqueous fluid oxygen isotope fractionation[J]. Chemical Geology,2012,310/311(3): 97-105.
[94] Urey H C.The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society,1947, 562:562-581.
[95] DePaolo D J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions[J]. Geochimica et Cosmochimica Acta,2011, 75(4): 1 039-1 056.
[96] Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 191-224.
[97] De Villiers S, Dickson J, Ellam R.The composition of the continental river weathering flux deduced from seawater Mg isotopes[J]. Chemical Geology,2005,216(1):133-142.
[98] Huang J, Ke S, Gao Y, et al.Magnesium isotopic compositions of altered oceanic basalts and gabbros from IODP site 1256 at the East Pacific Rise[J].Lithos,2015,231:53-61.
[99] Beinlich A, Mavromatis V, Austrheim H, et al.Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration--Implications for the global Mg-cycle[J]. Earth and Planetary Science Letters,2014,392:166-176,doi:10.1016/j.epsl.2014.02.028.
[100] Holland H D.Sea level, sediments and the composition of seawater[J].American Journal of Science,2005,305(3): 220-239.
[101] Wang S J, Teng F Z, Li S G, et al.Magnesium isotopic systematics of mafic rocks during continental subduction[J]. Geochimica et Cosmochimica Acta,2014,143: 34-48,doi:10.1016/j.gca.2014.03.029.
[102] Dauphas N, Teng F Z, Arndt N T.Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: Mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine[J]. Geochimica et Cosmochimica Acta, 2010,74(11):3 274-3 291.
[103] Zhang H M, Li S G.Deep carbon recycling and isotope tracing: Review and prospect[J].Science in China (Series D),2012,55(12):1 929-1 941.
[104] Liu C, Wang Z, Raub T D, et al.Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume[J]. Earth and Planetary Science Letters, 2014, 404:22-32,doi:10.1016/j.epsl.2014.06.039.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[3] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[4] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[5] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[6] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[7] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[8] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[9] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[10] 张文防,戴霜,刘海娇,陈世强,张永全,张莉莉,张瑞,汪禄波. 六盘山地区下白垩统红色绿色泥岩地球化学特征及气候环境[J]. 地球科学进展, 2012, 27(11): 1236-1244.
[11] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
[12] 李新荣,张元明,赵允格. 生物土壤结皮研究:进展、前沿与展望[J]. 地球科学进展, 2009, 24(1): 11-24.
[13] 吴丰昌,郑建,潘响亮,黎文,邓秋静,莫昌琍,朱静,刘碧君,劭树勋,郭建阳. 锑的环境生物地球化学循环与效应研究展望[J]. 地球科学进展, 2008, 23(4): 350-356.
[14] 洪斌. 微生物对砷的地球化学行为的影响——暨地下水砷污染机制的最新研究进展[J]. 地球科学进展, 2006, 21(1): 77-82.
[15] 侯立军;刘敏;许世远;欧冬妮;刘巧梅;刘华林;蒋海燕. 潮滩生态系统中生源要素氮的生物地球化学过程研究综述[J]. 地球科学进展, 2004, 19(5): 774-781.
阅读次数
全文


摘要