地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1236

研究论文 上一篇    下一篇

六盘山地区下白垩统红色绿色泥岩地球化学特征及气候环境
张文防,戴 霜*,刘海娇,陈世强,张永全,张莉莉,张 瑞,汪禄波   
  1. 兰州大学西部环境教育部重点实验室&西部环境与气候变化研究院,甘肃 兰州 730000
  • 收稿日期:2011-10-25 修回日期:2012-05-25 出版日期:2012-11-10
  • 通讯作者: 戴霜(1967-),男,甘肃陇南人,教授,主要从事中生代构造与环境变化方面研究. E-mail:daisher@lzu.edu.cn
  • 基金资助:

    国家自然科学基金项目“陇中盆地白垩系磁性地层年代与古地磁数据”(编号:40972025)和“我国内陆干旱区山系—盆地环境系统的多尺度形成演化”(编号:41021091)资助.

The Geochemistry of the Early Cretaceous Red and Green Mudstones, Liupanshan Group, Liupanshan Area and Its Implications on the Climate

Zhang Wenfang, Dai Shuang, Liu Haijiao, Chen Shiqiang, Zhang Yongquan, Zhang Lili, Zhang Rui, Wang Lubo   

  1. Key Laboratory of Western China’s Environmental Systems, Ministry of Education of China & Research School of Arid Environment and Climate Change, Lanzhou University, Lanzhou〓730000, China
  • Received:2011-10-25 Revised:2012-05-25 Online:2012-11-10 Published:2012-11-10

白垩纪是距今最近的“温室地球”时期,研究其气候演变对认识现今气候环境格局形成及演变具有重要意义。通过对六盘山地区下白垩统六盘山群李洼峡组中段红色、绿色泥岩的元素地球化学特征研究,发现2种泥岩中大部分元素变异趋势相似;化学风化指数(CIA)相当(红色泥岩平均为66.3%,绿色泥岩平均为65.5%),反映中—低化学风化强度;ACNK图解显示源岩单一。利用CaCO3质量百分含量,(CaO+Na2O+K2O)/Al2O3,TFeO/Mn,Ti/Sr,Rb/Sr,Sr/Ba比值等指标分析显示泥岩颜色差异与气候背景有关,红色泥岩形成时气候较为稳定,表现为相对湿润且氧化的环境,而绿色泥岩形成时气候波动较大,表现为相对干旱且还原的环境。

Cretaceous is a typical “greenhouse” period close to the present day. Therefore, it is of great significance to carry out research on its climate change for understanding today’s pattern of climate and environment. In this study, analysis of the elements geochemistry of the Early Cretaceous red and green mudstones of the middle segment of Liwaxia formation, Liupanshan Group in the Liupanshan basin, shows that a majority of the elements are almost concordantly varied between two kinds of mudstones when compared with that of the global average shale. In addition, the Chemical Index of Alteration (CIA) are slightly low (CIA averaged for red and green mudstone is 66.3% and 65.5%, respectively), indicating that both their weathering degree are approximately in lowintermediate level. The result of the A-CN-K diagram plot suggests that both their original rock was the same (largely Hercynian granite). The color differences between the two kinds of mudstones are predominately controlled by the climate change. The variation of the proxies such as CaCO3(wt%), (CaO+Na2O+K2O)/Al2O3, TFeO/Mn, Ti/Sr, Rb/Sr and Sr/Ba proposes that the red mudstone form in the relative wet and oxidation circumstances, whereas the green mudstone in the relative dry and reduction.

中图分类号: 

[1]Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235:1 156-1 167.

[2]Stoll H M, Schrag D P. Evidence for glacial control of rapid sea level changes in the early Cretaceous[J]. Science, 1996, 272: 1 771-1 774.

[3]Gerta K. Cretaceous climate, volcanism, impacts, and biotic effects[J]. Cretaceous Research,2008, 29: 754-771.

[4]Gradstein F M, Ogg J G, Smith A G. A Geologic TimeScale 2004[M]. Cambridge: Cambridge University Press, 2004:355-358.

[5]Crowley T J, Kim K Y. Comparison of long-term greenhouse projections with the geologic record[J]. Geophysical Research Letters,1995, 22: 933-936.

[6]Herman A B, Spicer R A. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean[J].Nature, 1996, 380: 330-333.

[7]Dai Shuang, Huang Yongbo, Zhao Jie, et al. The climate change during 128.11-119.05 Ma recorded by the susceptibility of the sediments of Liupanshan Group[J].Earth Science Frontiers,2010,17(3):242-248.[戴霜,黄永波,赵杰,等.六盘山群沉积物磁化率记录的早白垩世气候变化[J].地学前缘,2010,17(3):242-248.]

[8]Kong Li, Dai Shuang, Liu Xue, et al. Climate changes during 128.10-115.30 Ma recorded by colors of sediments in the Liupanshan Basin along Huoshizhai section[J]. Journal of Lanzhou University (Natural Sciences), 2010, 46(5):44-49.[孔立,戴霜,刘学,等.六盘山群火石寨剖面沉积物色度记录的128.10-115.30气候变化[J].兰州大学学报:自然科学版,2010,46(5):44-49.]

[9]Zhang Mingzhen, Dai Shuang, Zhang Yongquan, et al. Early Cretaceous Palynological assemblage and its environmental significance in the sediments of Liupanshan Group (Sikouzi Section) , Liupanshan Region, central China[J]. Arid Land Geography,2012,35(1):99-108.[张明震,戴霜,张永全,等.六盘山地区寺口子剖面早白垩世晚期的孢粉组合及其环境意义[J].干旱区地理,2012,35(1):99-108.]

[10]Sun Zhiming, Yang Zhenyu, Yang Tianshui, et al. New Early Cretaceous palaeoseomagnetic results from the Haiyuan area and its tectonic implications[J]. Chinese Journal of Geophysics,2001, 44(5):678-686.[孙知明,杨振宇,杨天水,等.海原地区早白垩世古地磁结果及其构造意义[J].地球物理学报,2001, 44(5):678-686.]

[11]Yin Hongfu. The Palaeobiogeography of China[M].Beijing:China University of Geosciences Press, 1988: 250-267.[殷鸿福.中国古生物地理学[M].武汉:中国地质大学出版社,1988: 250-267.]

[12]Qi Hua. The Ostracods of lower Liupanshan Group, Guyuan, Ningxia[C]∥The Collection of the Theses of Paleontology,1987,18:74-147.[齐骅.宁夏固原六盘山群下部的介形类化[C]∥地层古生物论文集.1987,18:74-147.]

[13]Li Jianguo, Du Baoan. Palynofloras from the Liupanshan Group (Cretaceous) at Anguo Town of Pingliang,Gansu[J]. Acta Palaeontologica Sinica,2006,45(4):498-513.[李建国,杜宝安.甘肃平凉安国镇白垩系六盘山群的孢粉植物群[J].古生物学报,2006,45(4): 498-513.]

[14]Li Zhaosheng. Early Cr Etaceous Sporo-Pollen Assemblages from Liupanshan of Ningxia and their bearing on Paleo-Vegetation and Paleo-Climatology[J]. Acta Palaeontologica Sinica,1983,22(5):517-526.[刘兆生.宁夏六盘山地区早白垩世孢粉组合及其古植被、古气候的意义[J].古生物学报,1983,22(5): 517-526.]

[15]Dai Shuang, Zhu Qiang, Hu Hongfei,et al. Magnetostratigraphy of the Liupanshan Group, Central China[J].Journal of Stratigraphy,2009,3(2):188-92.[戴霜,朱强,胡鸿飞,等.六盘山群磁性地层年代[J].地层学杂志,2009,33(2):188-192.]

[16]Wedepohl K H. Environmental influences on the chemical composition of shales and clays[C]∥Ahrens L H, Press F, Runcorn S K, et al,eds. Physics and Chemistry of the Earth. Pergamon, Oxford, UK, 1971:307-331.

[17]Wedepohl K H.The composition of the upper Earth’s crust and the natural cycles of selected metals[C]∥Merian E  ed. Metals and Their Compounds in the Natural Environment.VCH,Weinheim,Germany,1991:3-17.

[18]Feng R, Kerrich R. Geochemistry of fine grained clastic sediments in the archean Abitibi greenstone belt. Cananda: Implications for the provenance and tectonic setting[J]. Geochimica et Cosmochimica Acta, 1990,54:1 061-1 081.

[19]Gu X X.Geochemical characteristics of the Triassic ththys-turbidites in the northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting[J]. Geochimica et Cosmochimica Acta, 1994,58:4 615-4 631.

[JP2][20]Kong Li. Measurement and Paleoclimatic Significance of Color and Clay Minerals of Sediments of Liupanshan Group[D].Lanzhou:Lanzhou University,2010.[孔立.六盘山群沉积物色度和粘土矿物测量及古气候意义[D].兰州:兰州大学,2010.][JP]

[21]Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299:715-717.

[22]McLennan S M. Weathering and global denudation[J].Journal of Geology,1993,101:295-303.

[23]Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA and its applications in the Neoproterozoic clastic rocks[J].Earth Science Frontiers,2003,10(4):539-544.[冯连君,储雪蕾,张启锐,等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J].地学前缘,2003,10(4):539-544.]

[24]Fedo C M, Nesbitt H W. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosoles, with implications for palaeoweathering conditions and provenance[J]. Geology, 1995,23:921-924.

[25]Fedo C M, Young G M. Potassic and Sodic metasomatism in the Southern province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada[J]. Precambrian Research, 1997,84:17-36.

[26]Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta,1980, 44:1 659-1 666.

[27]Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta,1984, 48:1 523-1 534.

[28]Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. Journal of Geology, 1989, 97:129-147.

[29]Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie Quebec, Canada[J]. Cosmochimica et Cosmochimica Acta, 2000, 64: 2 199-2 220.

[30]Nesbitt H W, Young G M. Effects of chemical weathering and sorting on the petrogenesis of silieiclastic sediments, with implications for provenance studies[J]. Journal of Geology, 1996, 104:525-542.

[31]Liu Junwei. The Early Cretaceous Deposit and Tectonic Evolution of Liupanshan Basin[D]. Lanzhou:Lanzhou University,2010.[刘俊伟.早白垩世六盘山盆地沉积—构造演化[D].兰州:兰州大学,2010.]

[32]Cai Yuanfeng, Hu Xiaoxiao, Li Xiang, et al. Origin of the red colour in a red limestone from the Vispi Quarry section (central Italy): A high-resolution transmission electron microscopy analysis[J]. Cretaceous Research,2012,38:97-102.

[33]Arthur M A. Origin of upper cretaceous multicolored claystones of the western Atlantic[C]∥Tucholke P R, Vogt P R, et al, eds. Initial Reports of the Deep Sea Drilling Project 43, Washington, DC:U. S. Government Printing Office,1979:417-420.

[34]Dean E W, Arthur M A, Stow A V. Origin and geochemistry of Cretaceous deep-sea black shales and multicolored claystones, with emphasis on Southern Angola Basin[C]∥Hay W W, Sibuet J C , et al, eds. Initial Reports of the Deep Sea Drilling Project 43, Washington, DC:U. S. Government Printing Office, 1984:819-844.

[35]Jakobsson M, Lovlie R, Al-Hanbali H, et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology[J]. Geology,2000,28(1): 23-26.

[36]Jiang Shaoyong, Luba Jansa, Petr Skupien, et al. Geochemistry of intercalated red and gray pelagic shales from the Mazak Formation of Cenomanian age in Czech Republic[J].Episodes, 2009,32(1):3-12.

[37]Cai Yuanfeng, Li Xiang, Hu Xiumian, et al. Paleoclimatic approach to the origin of the coloring of Turonian pelagic limestones from the Vispi Quarry section (Cretaceous, central Italy)[J]. Cretaceous Research,2009,30(5):1 205-1 216.

[38]Fang Xiaomin, Li Jijun, Zhu Junjie, et al. A 30 million year record of the carbonate content of the Linxia Basin and its climate implications[M]∥Expert Committee of the Tibet Project ed. Studies of Evolvement Environmental Transition and Ecological System of Tibetan Plateau. Beijing: Science Press,1995:55-65.[方小敏,李吉均,朱俊杰,等.临夏盆地约30 Ma以来CaCO3含量变化与气候演变[M].青藏项目专家委员会.青藏高原形成演化、环境变迁与生态系统研究.北京:科学出版社,1995:55-65.]

[39]Chen Jing’an, Wan Guojiang, Huang Ronggui. Recent Climatic changes and the chemical records in Chenghai Lake[J].Marine Geology & Quaternary Geology,2000,20(1):39-42.[陈敬安,万国江,黄荣贵.程海近代气候变化的化学记录[J].海洋地质与第四纪地质,2000,20(1):39-42.]

[40]Wen Qizhong. Geochemistry of Loess, China[M].Beijing: Science Press,1989:115-145.[文启忠.中国黄土地球化学[M].北京:科学出版社,1989:115-145.]

[41]Zhang Jinliang, Zhang Xin. The element geochemical features of ancient oceanic sedimentary environments in the Silurian Period in the Tarim Basin[J].Periodical of Ocean University of China,2006, 36(2):200-208.[张金亮,张鑫.塔里木盆地志留系古海洋沉积环境的元素地球化学特征[J].中国海洋大学学报,2006,36(2):200-208.]

[42]Wang Suiji, Huang Xingzhen, Tuo Jincai, et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang Depression[J]. Acta Sedimentologica Sinica,1997,15(1):65-70.[王随继,黄杏珍,妥进才,等.泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J].沉积学报,1997,15(1):65-70.]

[43]Chen Jun, Wang Yongjin, Chen Chang,et al. Rb and Sr geochemical characterization of the Chinese Loess and its implications for pelaeomonsoon climate[J]. Acta Geological Sinica,2001,75(2):259-266.[陈骏,汪永进,陈旸,等.中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J].地质学报, 2001,75(2):259-266.]

[44][JP2]Ye He,Zhang Kexin,Ji Junliang.Major and trace elements characters of the sediments and palaeoclimate evolvement during about 23.1-5.0 Ma in Xunhua Basin, Qinghai[J].Earth Science—Journal of China University of Geosciences,2010,35(5):811-820.[叶荷,张克信,季军良,等.青海循化盆地23.1~5.0 Ma沉积地层中常量、微量元素组成特征及其古气候演变[J].地球科学——中国地质大学学报,2010,35(5):811-820.][JP]

[45]Zhao Zhenhua. Trace Element Geochemical Principle[M].Beijing: Sciences Press, 1997.[赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.]

[46]Anderson N J, Rippey B, Gibson C E. A comparison of sedimentary and diatom-inferred phosphorus profiles: Implications for defining pre-disturbance nutrient conditions[J].Hydrobiologia,1993, 253: 357-366.

[47]Wang Yong, Yang Xiangdong, Shen Ji, et al. A 0.1 ka-year record of environmental evolution in Hongjiannao Lake, Shaanxi Province[J].Journal of Lake Sciences,2004,16(2):105-112.[汪勇,羊向东,沈吉,等.陕西红碱淖近百年来环境变化的湖泊沉积记录[J].湖泊科学, 2004, 16(2): 105-112.]

[1] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[2] 蒋俊霞,杨丽薇,李振朝,高晓清. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019, 34(10): 1038-1049.
[3] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[4] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[5] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[6] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[7] 刘贤赵, 张勇, 宿庆, 田艳林, 王庆, 全斌. 陆生植物氮同位素组成与气候环境变化研究进展[J]. 地球科学进展, 2014, 29(2): 216-226.
[8] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[9] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[10] 梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.
[11] 邹立尧,国世友,牛宁. 三江平原1960—2004年农业气候环境年代际变化[J]. 地球科学进展, 2010, 25(8): 844-850.
[12] 郑度,姚檀栋. 青藏高原隆升及其环境效应[J]. 地球科学进展, 2006, 21(5): 451-458.
[13] 刘启明, 王世杰, 欧阳自远. 高分辨率气候环境变化研究中的石笋微层[J]. 地球科学进展, 2002, 17(3): 396-401.
[14] 丁振举,刘丛强,姚书振,周宗桂. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展, 2000, 15(3): 307-312.
[15] 杨学明,杨晓勇,M.J.Le Bas. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 1998, 13(5): 457-466.
阅读次数
全文


摘要