地球科学进展 ›› 2000, Vol. 15 ›› Issue (3): 307 -312. doi: 10.11867/j.issn.1001-8166.2000.03.0307

综述与评述 上一篇    下一篇

海底热液系统高温流体的稀土元素组成及其控制因素
丁振举 ①②,刘丛强 ,姚书振 ,周宗桂   
  1. (①中国科学院地球化学研究所,贵州 贵阳 550002)
    (②中国地质大学资源学院,湖北 武汉 430074)
  • 收稿日期:1999-06-21 修回日期:1999-11-11 出版日期:2000-06-01
  • 通讯作者: 丁振举,男,1965年10月出生于山东,博士,从事矿床学、地球化学的科研和教学工作。
  • 基金资助:

    国家杰出青年科学家基金项目:“流体—岩石反应体系中稀土元素(和钇)的地球化学”(编号:49625304)和国家“九五”攀登计划预选项
    目:“地质流体作用与成矿效应研究”(95-预-39)资助。

RARE EARTH ELEMENTS COMPOSITIONS OF HIGH-TEMPERATURE HYDROTHERMAL FLUIDS IN SEA FLOOR AND CONTROL FACTORS

DING Zhenju ①②, LIU Congqiang , YAO Shuzhen , ZHOU Zonggui   

  1. (①Institute of Geochemistry,Chinese Academy of Sciences,Guiyang550002China)
    (②China University of Geosciences,Wuhan 430074,China)
  • Received:1999-06-21 Revised:1999-11-11 Online:2000-06-01 Published:2000-06-01

研究稀土元素在流体中的地球化学行为及其控制因素,对利用稀土示踪与流体有关的地球化学过程具有重要意义。海底高温流体稀土组成研究表明,不同背景、岩性热液系统喷口流体的稀土含量差别较大,与海水之间可达几个数量级,但配分模式却非常类似,即普遍具有LREE富集、高的正Eu异常特征。流体的稀土组成与岩石或矿物的蚀变程度、结构构造有关,同时受流体的温压、pH值、Eh值、络合介质种类等因素的影响,其配分模式是流体循环、迁移过程中络合、吸附、矿物沉淀等不同因素共同作用而再次调整的结果。正Eu异常作为高温流体的特征标志,可以用来示踪与高温流体有关的地球化学作用过程,同时Y/Ho比值、负Ce异常可以用来示踪与流体/海水混合有关的化学过程。

It is very important to study the behavior and control factors of rare earth elements in fluids for applying them to tracing of the geochemical processes. The REE compositions of the vent fluid show wide contents in concentration but similar on the REE distribution patterns among different seafloor hydrothermal system with various setting and rocks. The distribution patterns common possess high positive Eu anomalies and enriched LREE. The composition of the fluids is related to alteration and texture of rock or mineral and is controlled by environment conditions such as temperature, pressure, pH, Eh,complexing agents. The distribution patterns of high temperature fluids are the results of sorption,complexation, and mineral deposit process and the REE patterns were adjusted and redistributed during fluid circulation and migration. Some REE' s parameters such as Eu, Ce anomalies and Y/Ho ratios can be used to study processes concerning fluid. For example, the positive Eu anomalies, negative Ce anomalies and Y/Ho ratios as mark of involving high-temperature fluid and sea water may be used to trace geochemical processes concerning on mixing.

中图分类号: 

〔1〕Henderson P. General geochemical properties and abundances of rare earth elements〔A〕. In: Hendersion P, ed. Rare Earth Element Geochemistry〔C〕. Amsterdam: Elsevier, 1984. 1~32.
〔2〕Fleet A J. Aqueous and sedimentary geochemistry of the rare earth elements〔A〕. In: Hendersion P, ed. Rare Earth Element Geochemistry〔C〕. Amsterdam: Elsevier, 1984. 343~373.
〔3〕Taylor S R, McLcnnan S M. The Continental Crust: Its Composition and Evolution〔M〕. Oxford: Blackwell Scientific Press, 1985.
〔4〕Guichard F, Church T M, Treuil M,et al. Rare earth in barite: distribution and effects on aqueous partitioning〔J〕.Geochimica et Cosmochimica Acta, 1979, 43(7): 983~997.
〔5〕Excey R A. Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems〔J〕. Earth Plant Sci Lett, 1980, 48(1): 97~110.
〔6〕Joliff B L, Papike J J, Laul J C. Mineral recorders of pegmatite internal evolution: REE contents of tourmaline from the Bob Ingersoll pegmatite, South Dakota〔J〕.Geochimica Cosmochimica Acta, 1987, 51(8): 2 225~2232.
〔7〕Fryer B J, Taylor R P. Rare-earth element distributions in uraninites: implications for ore genesis〔J〕. Chemical Geology, 1987, 63(1/2): 101~108.
〔8〕Bach W, Irber W. Rare earth element mobility in the oceanic lower sheeted dyke complex: evidence from geochemical data and leaching experiments〔J〕. Chemical Geology, 1998,151(2): 309~326.
〔9〕Bau M, Usui A, Pracejus B,et al. Geochemistry of low-temperature water-rock interaction: evidence from nature waters, andesite, and iron-oxyhydroxide precipitates at Nishiki-numa iron-spring, Hokkaaido, Japan〔J〕. Chemical Geology, 1998, 151(1): 293~307.
〔10〕Pagel M, Pimte G, Rotach-Toulhoat N. The rare earth elements in natural uranium oxides. Gebrudetr Borntrager Stuttgart, Monogr〔J〕. Series on Mineral Deposits, 1987,27: 81~85.
〔11〕Terakado Y, Masuda A. The coprecipitation of rare earth elements with calcite and aragonite〔J〕. Chemical Geology,1988, 69(1/2): 103~110.
〔12〕Michard A, Albarede F, Michard G,et al. Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N)〔J〕. Nature,1983, 303(5920): 795~797.
〔13〕Michard A, Albarede F. The REE content of some hydrothermal fluids〔J〕. Chemical Geology, 1986, 55(1/2): 51~60.
〔14〕Michard A. Rare earth element systematics in hydrothermal fluids〔J〕. Geochimica et Cosmochimica Acta, 1989, 53(3):745~750.
〔15〕Campbell A C. Chemistry of hot springs on the Mid-Atlantic Ridge〔J〕. Nature, 1988, 335(6189/6190): 514~519.
〔16〕Klinkhammer G P, Elderfield H, Mitra A. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges〔J〕. Geochimica et Cosmochimica Acta, 1994, 58(23): 5 105~5 113.
〔17〕Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium〔J〕. Chemical Geology,1991, 93(3/4): 219~230.
〔18〕Piepgras D J,Wasserburg G J. Strontium and neodymium isotopes in hot spring on the East Pacific Rise and Guaymas Basin〔J〕. Earth Planet Sci Leet, 1985, 72(4): 341~356.
〔19〕Hass J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures〔J〕.Geochimica et Cosmochimica Acta, 1995, 59(21): 4 329~4 350.
〔20〕Sverjensky D A. Europium equilibria in aqueous solution〔J〕.Earth Planet Sci Lett, 1984, 67(1): 70~78.
〔21〕James R H, Elderfield H. Chemistry of ore-forming fluids and mineral formation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge〔J〕. Geology, 1996, 24(12): 1 147~1 150.
〔22〕Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N mid-Atlantic Ridge〔J〕. Geochimica et Cosmochimica Acta,1995, 59(17): 3 511~3 524.
〔23〕Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids 〔J〕. Contrib Mineral Petrol, 1995, 119: 213~223.
〔24〕Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones〔J〕. Geochemical Journal, 1991, 25(1):31~44.
〔25〕Douvlle E, Bienvenu P, Charlou J L,et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems〔J〕. Geochimica et Cosmochimica Acta, 1999, 63(5): 627~643.
〔26〕Bau M, Dulski. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and Y/Ho ratio of Proterozoic seawater〔J〕. Chemical Geology, 1999,155(1): 77~90.

[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[3] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[4] 董桂玉,陈洪德,何幼斌,秦志勇,罗进雄,辛长静. 陆源碎屑与碳酸盐混合沉积研究中的几点思考[J]. 地球科学进展, 2007, 22(9): 931-939.
[5] 陈忠,丘学林,颜文,杨惠宁,古森昌,陈木宏. 天然矿物自然铝的研究进展[J]. 地球科学进展, 2003, 18(4): 545-550.
[6] 张兴春. 国外铁氧化物铜—金矿床的特征及其研究现状[J]. 地球科学进展, 2003, 18(4): 551-560.
[7] 江茂生,沙庆安. 碳酸盐与陆源碎屑混合沉积体系研究进展[J]. 地球科学进展, 1995, 10(6): 551-554.
阅读次数
全文


摘要