[1]Stoll H, Ziveri P. Coccolithophorid-based geochemical paleoproxies[M]∥Thierstein H, Young J, eds. Coccolithophores from Molecular Processes to Global Impact. Berlin Heidelberg: Springer Verlag, 2004: 529-558. [2]Bard E. Comparison of alkenone estimates with other paleotemperture proxies[J].Geochemistry Geophysics Geosystem,2001, 2(1): 20000GC000050. [3]Jasper J, Hayes J. A model of carbon isotope record of CO2 levels during the Late Quaternary[J]. Nature,1990, 347: 462-464. [4]Lorens R. Sr,Cd,Mn,and Co distribution coefficeents in calcite as a function of calcite precipitation rate[J]. Geochimica et Cosmochimica Acta,1981, 45:553-561. [5]Tesoriero A, Pankow J. Solid solution partitioning of Sr2+,Ba2+,and Cd2+ to calcite[J].Geochimica et Cosmochimica Acta,1996, 60: 1 053-1 063. [6]Stoll H,Schrag D. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate[J].Geochemistry Geophysics Geosystem,2000, 1(5): 1999GC000015. [7]Murray J, Barber R, Roman M, et al. Physical and biological controls on carbon cycling in the equatorial Pacific[J].Science,1994, 266: 58-65. [8]Stoll H, Rosenthal Y, Falkowski P, et al. Climate proxies from Sr/Ca of coccolith calcite: Calibrations from continuous culture of Emiliania huxleyi[J]. Geochimica et Cosmochimica Acta, 2002, 66: 927-936. [9]Stoll H, Klaas C, Probert I, et al. Calcification rate and temperature effects on Sr partitioning in coccoliths of multiple species of coccolith ophorids in culture[J]. Global and Planetary Change, 2002, 34: 153-171. [10]Fink C, Baumann K, Groeneveld J, et al. Strontium/Calcium ratio, carbon and oxygen stable isotopes in coccolith carbonate from different grain-size fractions in South Atlantic surface sediments[J]. Geobios, 2010, 43: 151-164. [11]Stoll H, Encinar J, Alonso J, et al. A first look at paleotemperature prospects from Mg in coccolith carbonate: Cleaning techniques and culture measurements[J]. Geochemistry Geophysics Geosystem, 2000, 2: 2000GC000144. [12]Ra K, Kitagawa H, Shiraiwa Y. Mg isotopes and Mg/Ca values of coccoliths from cultured specimens of the species Emiliania huxleyi and Gephyrocapsa oceanic[J]. Marine Micropaleontology, 2010, 77: 119-124. [13]Minoletti F, Gardin S, Nicot E, et al. Mise au point d′un protocole expe′rimental de se′paration granulome′trique d′assemblages de nannofossiles calcaires: Application pale′oe′cologiques et ge′ochimiques[J]. Bulletin de la Societe Geologigue de France,2001, 172: 437-446. [14]Minoletti F, Hermoso M, Gressier V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry[J]. Nature Protocols, 2009, 4: 14-24. [15]Stoll H, Shimizu N, Arevalos A, et al. Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths[J].Geochemistry Geophysics Geosystem, 2007, 8: 2006GC1546. [16]Stoll H, Ziveri P. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity[J].Marine Micropaleontology, 2002, 46: 209-221. [17]Halloran P, Rust N, Rickaby R. Isolating coccoliths from sediment for geochemical analysis[J]. Geochemistry Geophysics Geosystem, 2009, 10: 2008GC002228. [18]Waite A, Gibbs S, Diester-Haass L, et al. A top-down and bottom-up comparison of paleoproductivity proxies: Calcareous nannofossil Sr/Ca ratios and benthic foraminiferal accumulation rates[J]. Geochemistry Geophysics Geosystem, 2007, 9: 2007GC001812. [19]Emiliani C. Mineralogical and chemical composition of the tests of certain pelagic foraminifera[J].Micropaleontology,1955,1(4): 377-380. [20]Rickaby R, Schrag D, Zondervan I,et al. Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi[J].Global Biogeochemical,2002, 16(1):1 006. [21]Terzaghi K, Peck R, Mesri G. Soil Mechanics in Engineering Practice (3rd ed)[M]. New York: Wiley-Interscience, 1996. [22]Stoll H, Bains S. Coccolith Sr/Ca records of productivity during the Paleocene-Eocenethermal maximum from the Weddell Sea[J]. Paleoceanography,2003, 18(2):1 029. [23]Stoll H, Shimizu N, Archer D. Coccolithophore productivity response to greenhouse event of the Paleocene-Eocene Thermal Maximum[J].Earth and Planetary Science Letters, 2007, 258: 192-206. [24]Bralowei T J, Kelly D C, Thomas D J, et al. Comment on “Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea” by Heather M. Stoll and Santo Bains[J]. Paleoceanography, 2004, 19:PA1014. [25]Thomas E, Shackleton N. The latest Paleocene benthic foraminiferal extinction and stable isotope anomalies, in correlation of the Early Paleogene in northwest Europe[M]∥Knox R,Corfield R, Dunay R, eds.London: Specifications Publication, 1996,101:401-441. [26]Bralower T. Evidence of surface wateroligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage datafrom Ocean Drilling Program Site 690, Maud Rise, Weddell Sea[J].Paleoceanography, 2002, 17(2):1 023, doi:10.1029/2001PA000662. [27]Stoll H M, Bains S. Reply to comment by Timothy J, Bralower D, Clay Kelly, and Deborah J. Thomas on “Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea”[J]. Paleoceanography, 2004, 19:PA1015. [28]Gibbs S, Bralower T, Bown P, et al. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients[J]. Geology, 2006, 34: 233-236. [29]Young J. Functions of Coccoliths[M]∥Winter A, Siesser W, eds. Coccolithophores. London:Cambridge University Press, 1994: 63-82. [30]Aubry M. Late Paleocene Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records[M]. New York: Columbia University Press, 1998:158-203. |