Please wait a minute...
img img
高级检索
地球科学进展  2012, Vol. 27 Issue (2): 217-223    DOI: 10.11867/j.issn.1001-8166.2012.02.0217
IODP研究     
颗石藻元素地球化学研究进展
梁丹,刘传联
同济大学海洋地质国家重点实验室,上海 200092
Advances in Element Geochemistry Analysis of  Coccolith
Liang Dan, Liu Chuanlian
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
 全文: PDF(1333 KB)  
摘要:

颗石藻元素地球化学研究在古海洋学研究中有着重要意义。目前开始研究的主要有Sr/Ca和Mg/Ca比值。研究发现,颗石的Sr/Ca比值主要受颗石藻生长和钙化速度控制,其次受温度影响;而Mg/Ca比值主要与温度有关,属种间受影响程度有差别。样品清洗和单种分离是颗石藻元素地球化学分析的重点和难点。倒置显微镜挑出单种颗石是目前最为方便且准确的分析方法。颗石Sr/Ca比值可以用来反映古生产力,Mg/Ca比值可以用来重建古温度。

关键词: 颗石藻元素地球化学Mg/Ca、Sr/Ca古海洋学    
Abstract:

Element geochemistry of coccoliths is very meaningful in paleoceanographic study, e.g.,Sr/Ca and Mg/Ca ratios. This paper summarizes previous studiesof coccolith Sr/Ca and Mg/Ca. According to previous studies, coccolith Sr/Ca ratio is mainly controlled by growth rates and calcification rates, secondly by temperature. While coccolith Mg/Ca ratio is influenced by temperature, but temperature relation differs among species. It is criticalto clean samples and separate monospecific coccoliths. Ion probe method is the most convenient and accurate analytical method. Coccolith Sr/Ca ratio can be used to indicatepaleoproductivity, and Mg/Ca to reconstruct paleotemperature. Element geochemistry has a great potential in paleoceanography and paleoclimatology. This paper also introduces the principle and analytical method of coccolith Sr/Ca and Mg/Ca in detail.

Key words: Coccolith    Element geochemistry    Mg/Ca    Sr/Ca    Paleoceanography
收稿日期: 2011-12-28 出版日期: 2012-02-10
:  P736.2  
基金资助:

国家自然科学基金项目“南海现代颗石藻及其环境响应”(编号:40876023)资助.

通讯作者: 梁丹(1986-),女,安徽马鞍山人,博士研究生,主要从事古海洋学研究.       E-mail: liangdan861012@163.com
作者简介: 梁丹(1986-),女,安徽马鞍山人,博士研究生,主要从事古海洋学研究. E-mail:liangdan861012@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.

Liang Dan, Liu Chuanlian. Advances in Element Geochemistry Analysis of  Coccolith. Advances in Earth Science, 2012, 27(2): 217-223.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.02.0217        http://www.adearth.ac.cn/CN/Y2012/V27/I2/217

[1]Stoll H, Ziveri P. Coccolithophorid-based geochemical paleoproxies[M]Thierstein H, Young J, eds. Coccolithophores from Molecular Processes to Global Impact. Berlin Heidelberg: Springer Verlag, 2004: 529-558.
[2]Bard E. Comparison of alkenone estimates with other paleotemperture proxies[J].Geochemistry Geophysics Geosystem,2001, 2(1): 20000GC000050.
[3]Jasper J, Hayes J. A model of carbon isotope record of CO2 levels during the Late Quaternary[J]. Nature,1990, 347: 462-464.
[4]Lorens R. Sr,Cd,Mn,and Co distribution coefficeents in calcite as a function of calcite precipitation rate[J]. Geochimica et Cosmochimica Acta,1981, 45:553-561.
[5]Tesoriero A, Pankow J. Solid solution partitioning of Sr2+,Ba2+,and Cd2+ to calcite[J].Geochimica et Cosmochimica Acta,1996, 60: 1 053-1 063.
[6]Stoll H,Schrag D. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate[J].Geochemistry Geophysics Geosystem,2000, 1(5): 1999GC000015.
[7]Murray J, Barber R, Roman M, et al. Physical and biological controls on carbon cycling in the equatorial Pacific[J].Science,1994, 266: 58-65.
[8]Stoll H, Rosenthal Y, Falkowski P, et al. Climate proxies from Sr/Ca of coccolith calcite: Calibrations from continuous culture of Emiliania huxleyi[J]. Geochimica et Cosmochimica Acta, 2002, 66: 927-936.
[9]Stoll H, Klaas C, Probert I, et al. Calcification rate and temperature effects on Sr partitioning in coccoliths of multiple species of coccolith ophorids in culture[J]. Global and Planetary Change, 2002, 34: 153-171.
[10]Fink C, Baumann K, Groeneveld J, et al. Strontium/Calcium ratio, carbon and oxygen stable isotopes in coccolith carbonate from different grain-size fractions in South Atlantic surface sediments[J]. Geobios, 2010, 43: 151-164.
[11]Stoll H, Encinar J, Alonso J, et al. A first look at paleotemperature prospects from Mg in coccolith carbonate: Cleaning techniques and culture measurements[J]. Geochemistry Geophysics Geosystem, 2000, 2: 2000GC000144.
[12]Ra K, Kitagawa H, Shiraiwa Y. Mg isotopes and Mg/Ca values of coccoliths from cultured specimens of the species Emiliania huxleyi and Gephyrocapsa oceanic[J]. Marine Micropaleontology, 2010, 77: 119-124.
[13]Minoletti F, Gardin S, Nicot E, et al. Mise au point d′un protocole expe′rimental de se′paration granulome′trique d′assemblages de nannofossiles calcaires: Application pale′oe′cologiques et ge′ochimiques[J]. Bulletin de la Societe Geologigue de France,2001, 172: 437-446.
[14]Minoletti F, Hermoso M, Gressier V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry[J]. Nature Protocols, 2009, 4: 14-24.
[15]Stoll H, Shimizu N, Arevalos A, et al. Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths[J].Geochemistry Geophysics Geosystem, 2007, 8: 2006GC1546.
[16]Stoll H, Ziveri P. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity[J].Marine Micropaleontology, 2002, 46: 209-221.
[17]Halloran P, Rust N, Rickaby R. Isolating coccoliths from sediment for geochemical analysis[J]. Geochemistry Geophysics Geosystem, 2009, 10: 2008GC002228.
[18]Waite A, Gibbs S, Diester-Haass L, et al. A top-down and bottom-up comparison of paleoproductivity proxies: Calcareous nannofossil Sr/Ca ratios and benthic foraminiferal accumulation rates[J]. Geochemistry Geophysics Geosystem, 2007, 9: 2007GC001812.
[19]Emiliani C. Mineralogical and chemical composition of the tests of certain pelagic foraminifera[J].Micropaleontology,1955,1(4): 377-380.
[20]Rickaby R, Schrag D, Zondervan I,et al. Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi[J].Global Biogeochemical,2002, 16(1):1 006.
[21]Terzaghi K, Peck R, Mesri G. Soil Mechanics in Engineering Practice (3rd ed)[M]. New York: Wiley-Interscience, 1996.
[22]Stoll H, Bains S. Coccolith Sr/Ca records of productivity during the Paleocene-Eocenethermal maximum from the Weddell Sea[J]. Paleoceanography,2003, 18(2):1 029.
[23]Stoll H, Shimizu N, Archer D. Coccolithophore productivity response to greenhouse event of the Paleocene-Eocene Thermal Maximum[J].Earth and Planetary Science Letters, 2007, 258: 192-206.
[24]Bralowei T J, Kelly D C, Thomas D J, et al. Comment on “Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea” by Heather M. Stoll and Santo Bains[J]. Paleoceanography, 2004, 19:PA1014.
[25]Thomas E, Shackleton N. The latest Paleocene benthic foraminiferal extinction and stable isotope anomalies, in correlation of the Early Paleogene in northwest Europe[M]Knox R,Corfield R, Dunay R, eds.London: Specifications Publication, 1996,101:401-441.
[26]Bralower T. Evidence of surface wateroligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage datafrom Ocean Drilling Program Site 690, Maud Rise, Weddell Sea[J].Paleoceanography, 2002, 17(2):1 023, doi:10.1029/2001PA000662.
[27]Stoll H M, Bains S. Reply to comment by Timothy J, Bralower D, Clay Kelly, and Deborah J. Thomas on “Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea”[J]. Paleoceanography, 2004, 19:PA1015.
[28]Gibbs S, Bralower T, Bown P, et al. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients[J]. Geology, 2006, 34: 233-236.
[29]Young J. Functions of Coccoliths[M]Winter A, Siesser W, eds. Coccolithophores. London:Cambridge University Press, 1994: 63-82.
[30]Aubry M. Late Paleocene Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records[M]. New York: Columbia University Press, 1998:158-203.

[1] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[2] 张文防,戴霜,刘海娇,陈世强,张永全,张莉莉,张瑞,汪禄波. 六盘山地区下白垩统红色绿色泥岩地球化学特征及气候环境[J]. 地球科学进展, 2012, 27(11): 1236-1244.
[3] 苏 翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.
[4] 孙军. 今生颗石藻的有机碳泵和碳酸盐反向泵[J]. 地球科学进展, 2007, 22(12): 1231-1239.
[5] 丁振举,刘丛强,姚书振,周宗桂. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展, 2000, 15(3): 307-312.
[6] 杨学明,杨晓勇,M.J.Le Bas. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 1998, 13(5): 457-466.
[7] 陈国能. 花岗岩成因与成矿理论研究进展——原地重熔说与元素地球化学场简介[J]. 地球科学进展, 1998, 13(2): 140-144.
[8] 贺秀斌. 微量元素锶及其同位素的地球化学研究与应用前景[J]. 地球科学进展, 1997, 12(1): 15-19.