地球科学进展 ›› 2019, Vol. 34 ›› Issue (10): 1038 -1049. doi: 10.11867/j.issn.1001-8166.2019.10.1038

综述与评述 上一篇    下一篇

风电场对气候环境的影响研究进展
蒋俊霞 1, 2( ),杨丽薇 1,李振朝 1,高晓清 1( )   
  1. 1. 中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049
  • 收稿日期:2019-07-01 修回日期:2019-09-15 出版日期:2019-10-10
  • 通讯作者: 高晓清 E-mail:jiangjx@lab.ac.cn;jiangjx@lzb.ac.cn;xqgao@lzb.ac.cn
  • 基金资助:
    国家重点研发计划项目“风电场;环境影响评价研究”(2018YFB1502800);国家自然科学基金项目“大型风电场引起的局地气候效应研究”(41575112)

Progress in the Research on the Impact of Wind Farms on Climate and Environment

Junxia Jiang 1, 2( ),Liwei Yang 1,Zhenchao Li 1,Xiaoqing Gao 1( )   

  1. 1. Northwest Institute of Eco-Environment and Resources/Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences,Lanzhou 730000, China
    2. University of Chinese Academy of Sciences,Beijing 100049, China
  • Received:2019-07-01 Revised:2019-09-15 Online:2019-10-10 Published:2019-12-05
  • Contact: Xiaoqing Gao E-mail:jiangjx@lab.ac.cn;jiangjx@lzb.ac.cn;xqgao@lzb.ac.cn
  • About author:Jiang Junxia (1985-), female, Lanzhou City, Gansu Province, Ph.D student. Research areas include land surface processes and climate resources research. E-mail: jiangjx@lab.ac.cn
  • Supported by:
    the National Key Research and Development Plan "Study on eco-climate effects and environmental impact assessment of wind and solar farms"(2018YFB1502800);The National Natural Science Foundation of China "Study on local climate effects caused by large wind farms"(41575112)

风电是发展最快的可再生能源之一,随着风能在全球范围内大规模发展,人们开始关注大规模风电场的部署及运行对生态环境和气候的影响。通过调研相关文献,总结归纳了风电场对气候和生态环境的影响:一方面风机的架设改变了原有空气动力学粗糙度高度,加强了下垫面对湍流的阻挡作用,直接影响边界层湍流运动,改变原有陆地表面和近地层大气之间的物质能量和水分交换的强弱程度和模式,影响大气环流和气候;另一方面由于风力涡轮机将一部分风动能转化为电能,产生风机尾流效应,改变了边界层中大尺度运动动能的收支模式与时空分布,导致大气各种通量(热量通量和水汽通量等)的变化,对温度、降水和风速等产生影响。通常情况下,风电场对近地面的增温或降温效应与大气的层结稳定性有关。尽管如此,在全球气候模式中的模拟结果表明,风电场对全球气候的平均影响很小,其影响远远小于温室气体排放引起的预期变化和自然气候的年际变化。风电几乎不排放二氧化碳和污染物,与其他传统能源相比,减少水资源消耗,同时可能破坏动物栖息地、鸟类碰撞和产生噪声视觉等一些消极生态影响,但是可以采取相应的一些措施来减缓这些不良影响。

Wind power has become one of the fastest growing renewable energy. With the large-scale deployment of wind farms in the world, people have started to pay attention to the impact of wind farms on the ecological environment and climate. This paper summarized the impact of wind farms on climate and ecological environment by investigating relevant literature: In the areas of wind farms, on the one hand, the set-up of wind turbines changes original aerodynamic roughness height and strengthens the dragging of the land surface against turbulence, directly affecting the turbulent motion of the boundary layer, resulting in the changes of intensity and pattern of material energy and water vapor exchange between land surface and near-surface atmosphere, further affecting the atmospheric circulation and climate. On the other hand, wind turbines convert the majority of the wind kinetic energy into electric energy, which produces the wake effect of the wind turbine. The budget patterns and spatial and temporal distribution of large-scale kinetic energy in the boundary layer are changed correspondingly, generating changes in various fluxes (heat flux, water vapor flux, etc.) in the atmosphere, which affect temperature, precipitation, and wind speed. Generally, the warming or cooling effect of wind farms on the near-surface is related to the stability of atmosphere. However, simulations in the global climate model showed that the average impact of wind farms on global climate is small, much smaller than the expected changes in greenhouse gas emissions and the interannual changes in natural climate.Wind power emits almost no carbon dioxide and pollutants. Compared with other traditional energy sources, it reduces water consumption but may generate some negative ecological impacts such as animal habitats, bird collisions, and noise, vision impact. However, some measures can be taken to mitigate these adverse effects.

中图分类号: 

表1 风电场气候效应相关研究
Table 1 The research on the climate effect of wind farms
作者 年份 参考文献 研究地区 数据和模式 风机参数化方案
Roy等 2004 [ 5 ] 北美大平原 RAMS(Regional Atmospheric Modeling System) 动量汇和湍流源
Keith等 2004 [ 6 ] 北美、欧洲和亚洲

NCAR GCM(Global Climate Model developed by National Center for Atmospheric Research)和GFDL AM(Atmospheric Model developed by Geophysical

Fluid Dynamics Laboratory)2

改变地面粗糙度长度、显式拖曳方案
Adams等 2007 [ 16 ] 加拿大南部 WRF(Weather Research and Forecasting Model) 对风施加上升的拖曳力
Kirk-Davidoff等 2008 [ 27 ] 北美、欧洲、亚洲 NCAR CAM3.1 地表粗糙度元素
Roy等 2010 [ 19 ] 美国加利福尼亚 风电场观测数据、RAMS 动量汇和湍流源
Barrie等 2010 [ 28 ] 北美地区 GCM 地表粗糙度元素
Wang等 2010 [ 29 ] 全球 CCM3 地表粗糙度元素
Wang等 2011 [ 30 ] 全球近海海域 CAM(Community Atmospheric Model)3 地表粗糙度要素(改变表面拖曳系数)
Roy 2011 [ 18 ] 美国加利福尼亚 RAMS 商业涡轮机真实数据,次网格尺度参数化
Fiedler等 2011 [ 20 ] 美国东部地区 WRF 3.0 WRF2.0风机参数化
Zhou等 2012 [ 33 ] 美国德克萨斯中西部地区 MODIS地表温度数据
Walsh-Thomas等 2012 [ 34 ] 美国加利福尼亚南部地区 Landsat5卫星遥感观测温度资料
Fitch等 2012 [ 21 ] 美国 WRF3.3 平均流上加一个动量汇,将动能转化成电流和湍流动能
胡菊 2012 [ 35 ] 中国河西走廊 RegCM(Regional Climate Model)4.1 增加地表粗糙度
Zhou等 2013 [ 36 ] 德克萨斯州西部 MODIS地表温度数据
Smith等 2013 [ 37 ] 美国中西部地区 风电场观测数据
Cervarich等 2013 [ 22 ] 美国德克萨斯中西部 WRF 动量汇和湍流源
Fitch等 2013 [ 12 ] 美国堪萨斯州 WRF和LES 增加地表粗糙度、动量汇和湍流源
Vautard等 2014 [ 23 ] 欧洲地区 WRF 提取动量和产生额外的湍流动能
徐荣会 2014 [ 38 ] 内蒙古自治区中部苏尼特右旗 风电场野外观测数据
Fitch 2015 [ 31 ] 全球 CAM5 动量汇和湍流源
Armstrong等 2016 [ 39 ] 苏格兰地区 风电场观测数据
Geng等 2017 [ 24 ] 德克萨斯中西部 WRF WRF2.0风机参数化
Pan等 2017 [ 25 ] 美国德克萨斯州沿岸 WRF 上升的阻力和湍流动能源
Sun等 2018 [ 26 ] 中国 WRF WRF2.0风机参数化
Li等 2018 [ 32 ] 撒哈拉 WRF 增加地表粗糙度
表2 风能与其他能源的环境影响比较 [ 49 ]
Table 2 Comparison of environmental impacts of wind energy and other energy sources [ 49 ]
表3 风力发电与其他形式发电技术的水资源消耗比较 [ 52 , 53 ]
Table 3 Comparison of water consumption between wind power and other forms of power technology [ 52 , 53 ]
表 4 美国由于人类活动导致的鸟类死亡数目 [ 75 ]
Table 4 Number of bird deaths due to human activities in the United States [ 75 ]
表5 风电场对生态环境的主要影响
Table 5 The main impact of wind farms on the ecological environment
1 He Dexin . Research on China's wind energy development strategy[J]. Strategic Study of CAE, 2011,13(6):95-100.
贺德馨 .中国风能发展战略研究[J].中国工程科学,2011,13(6):95-100.
2 Harte J , Jassby A . Energy technologies and natural environments: The search for compatibility[J]. Annual Review of Energy, 1978, 3(1):101-146.
3 Coles R W , Taylor J . Wind power and planning: The environmental impact of wind farms in the UK[J]. Land Use Policy, 1993, 10(3):205-226.
4 Abbasi S A , Abbasi N , Nipaney P C , et al . Environmental impact of non-conventional energy sources[J]. Journal of Scientific & Industrial Research, 1995, 54:285-293.
5 Roy S B , Pacala S W , Walko R L . Can large wind farms affect local meteorology?[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D19101). DOI:10.1029/2004JD004763 .
doi: 10.1029/2004JD004763    
6 Keith D W , Decarolis J F , Denkenberger D C , et al . The influence of large-scale wind power on global climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46):16 115-16 120.
7 Buckley C , Scott N , Snodin S , et al . Review of Impacts of High Wind Penetration in Electricity Networks[M]. Australia:Garrad Hassan Pacific Pty Ltd., 2005.
8 Zhao Zongci , Luo Yong , Jiang Ying . Advances in assessment on impacts of wind farms upon climate change[J]. Advances in Climate Change Research, 2011, 7(6): 400-406.
赵宗慈, 罗勇, 江滢 . 风电场对气候变化影响研究进展[J]. 气候变化研究进展, 2011, 7(6): 400-406.
9 Calaf M , Meneveau C , Parlange M . Large Eddy Simulation study of a fully developed thermal wind-turbine array boundary layer[J]. Physics of Fluids, 2010, 22(1):46-56.
10 Calaf M , Parlange M B , Meneveau C . Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers[J]. Physics of Fluids, 2011, 23(126603). DOI: 10.1063/1.3663376 .
doi: 10.1063/1.3663376    
11 Lu H , Portéagel F . Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer[J]. Physics of Fluids, 2011, 23(6). DOI:10.1063/1.3589857 ..
doi: 10.1063/1.3589857    
12 Fitch A C , Olson J B , Lundquist J K . Parameterization of wind farms in climate models[J]. Journal of Climate, 2013, 26(17):6 439-6 458.
13 Fitch A C , Lundquist J K , Olson J B . Mesoscale influences of wind farms throughout a diurnal cycle[J]. Monthly Weather Review, 2013, 141(7):2 173-2 198.
14 Mirocha J D , Kosovic B , Aitken M L , et al . Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications[J]. Journal of Renewable & Sustainable Energy, 2014, 6(1):139-151.
15 Chatterjee F , Allaerts D , Blahak U , et al . Evaluation of a wind-farm parametrization in a regional climate model using large eddy simulations[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(701):3 152-3 161.
16 Adams A S , Keith D W . Wind energy and climate: Modeling the atmospheric impacts of wind energy turbines[J]. AGU Fall Meeting Abstracts,2007, 1:8.
17 Adams A S , Keith D W . Understanding the impacts of wind farms on climate[J]. Bulletin of the American Meteorological Society,2007,88(3):307-309.
18 Roy S B . Simulating impacts of wind farms on local hydrometeorology[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):491-498.
19 Roy S B , Traiteur J J . Impacts of wind farms on surface air temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42):17 899-17 904.
20 Fiedler B H , Bukovsky M S . The effect of a giant wind farm on precipitation in a regional climate model[J]. Environmental Research Letters, 2011, 6(4):045101.
21 Fitch A C , Olson J B , Lundquist J K , et al . Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP Model[J]. Monthly Weather Review, 2012, 140(4):3 017-3 038.
22 Cervarich M C , Roy S B , Zhou L . Spatiotemporal structure of wind farm-atmospheric boundary layer interactions[J]. Energy Procedia, 2013, 40(40):530-536.
23 Vautard R , Thais F , Tobin I , et al . Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms[J]. Nature Communications, 2014, 5:3 196.
24 Geng Xia , Cervarich M C , Roy S B , et al . Simulating impacts of real-world wind farms on land surface temperature using the WRF Model: Validation with observations[J]. Monthly Weather Review, 2017, 145(12). DOI: 10.1175/MWR-D-16-0401.1 .
doi: 10.1175/MWR-D-16-0401.1    
25 Pan Y , Archer C L . Impacts of a large array of offshore wind farms on precipitation during hurricane Harvey[C]// AGU Fall Meeting Abstracts, 2017.
26 Sun Hongwei , Luo Yong , Zhao Zongci ,et al . The impacts of Chinese wind farms on climate[J]. Journal of Geophysical Research: Atmospheres, 2018,123: 5 177-5 187. DOI:10.1029/2017JD028028 .
doi: 10.1029/2017JD028028    
27 Kirk-Davidoff D B , Keith D W . On the climate impact of surface roughness anomalies[J]. Journal of the Atmospheric Sciences, 2008, 65(75):2 215-2 234.
28 Barrie D B , Kirk-Davidoff D B . Weather response to a large wind turbine array[J]. Atmospheric Chemistry & Physics, 2010, 10(2):769-775.
29 Wang C , Prinn R G . Potential climatic impacts and reliability of very large-scale wind farms[J]. Atmospheric Chemistry & Physics Discussions, 2010, 9(5):2 053-2 061.
30 Wang C , Prinn R G . Potential climatic impacts and reliability of large-scale offshore wind farms[J]. Environmental Research Letters, 2011, 6(2):461-468.
31 Fitch A C . Climate impacts of large-Scale wind farms as Parameterized in a global climate model[J]. Journal of Climate, 2015, 28(15):6 160-6 180.
32 Li Yan , Kalnay E , Motesharrei S ,et al . Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J]. Science,2018,361:1 019-1 022.
33 Zhou L , Tian Y , Roy S B , et al . Impacts of wind farms on land surface temperature[J]. Nature Climate Change, 2012, 2(7):539-543.
34 Walsh-Thomas J M , Cervone G , Agouris P , et al . Further evidence of impacts of large-scale wind farms on land surface temperature[J]. Renewable & Sustainable Energy Reviews, 2012, 16(8):6 432-6 437.
35 Hu Ju . Numerical Simulation Research on Impact of Large-scale Wind Farms on Regional Climate[D]. Lanzhou:Lanzhou University, 2012.
胡菊 . 大型风电场建设对区域气候影响的数值模拟研究[D]. 兰州:兰州大学, 2012.
36 Zhou L , Tian Y , Roy S B , et al . Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas[J]. Climate Dynamics, 2013, 41(2):307-326.
37 Smith C M , Barthelmie R J , Pryor S C . In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles[J]. Environmental Research Letters, 2013, 8(3):034006.
38 Xu Ronghui . The Impact of Wind Farm on Local Micro Meteorological Environment in Arid Region[D].Huhhot:Inner Mongolia Agricultural University,2014.
徐荣会 . 干旱区风电场对局地微气象环境的影响研究[D]. 呼和浩特:内蒙古农业大学, 2014.
39 Armstrong A , Burton R R , Lee S E , et al . Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation[J]. Environmental Research Letters, 2016, 11(4):044024.
40 Harris R , Zhou L , Xia G . Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa[J]. Remote Sensing, 2014, 6(12):12 234-12 246.
41 Rajewski D A , Takle E S , Lundquist J K , et al . Crop Wind Energy Experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm[J]. Bulletin of the American Meteorological Society, 2013, 94(5):655.
42 Lu H , Portéagel F . On the impact of wind farms on a convective atmospheric boundary layer: A large-eddy simulation study[C]// European Geosciences Union. Vicnna,Australia,2013.
43 Christiansen M B , Hasager C B . Using airborne and satellite SAR for mapping offshore[J]. Wind Energy,2006,9:437-455.
44 Frandsen S T , J?rgensen H E , Barthelmie R , et al . The making of a second‐generation wind farm efficiency model complex[J]. Wind Energy, 2010, 12(5):445-458.
45 Rooijmans P . Impact of a Large-scale Offshore Wind Farm on Meteorology: Numerical Simulations with a Mesoscale Circulation Model[D]. Utrecht:Universiteit Utrecht, 2004.
46 Liu Lei , Gao Xiaoqing , Chen Bolong , et al . Preliminary estimates of wind energy resources deficit in large wind farm[J]. Plateau Meteorology, 2012,31(4):1 139-1 144.
刘磊,高晓清,陈伯龙,等 . 大规模风电场建成后对风能资源影响的研究[J].高原气象,2012,31(4):1 139-1 144.
47 Chen Bolong , Gao Xiaoqing , Zuo Hongchao , et al . Model study on the optimal interval distance among wind farms in large-scale wind farm [J]. Plateau Meteorology,2012,31(6): 1 746-1 752.
陈伯龙,高晓清,左洪超,等 .大型风电场群风电场布局间距的模型研究[J].高原气象,2012,31(6):1 746-1 752.
48 Crawford R H . Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield[J]. Renewable & Sustainable Energy Reviews, 2009, 13(9):2 653-2 660.
49 AWEA.CO 2 emissions.Wind vs.
URL    
Trees.American Wind Energy Association [EB/OL]. [2019-03-25]., 2009.
URL    
50 ESTF (Energy Saving Trust Field) . [EB/OL]. [2019-03-25]. ,2009.
URL    
51 Saidur R , Rahim N A , Islam M R , et al . Environmental impact of wind energy[J]. Renewable & Sustainable Energy Reviews, 2011, 15(5):2 423-2 430.
52 Clarke S . Electricity Generation Using Small Wind Turbines at Your Home or Farm[EB/OL]. [2019-03-25]. .
URL    
53 Paul G . Wind energy comes of age[J]. Solar Today(United States),1991,5(3):1.
54 NDRC (the National Development and Reform Commission) . [EB/OL]. [2019-03-25]. , 2009.
URL    
55 Lap?ík V . Environmental impact assessment of wind generators in the Czech Republic[J]. Acta Montanistica Slovaca,2008,13.DOI:10.2478/V10026-011-0031-8 .
doi: 10.2478/V10026-011-0031-8    
56 Baldwin S . Carbon Footprint of Electricity Generation [EB/OL]. [2019-03-25]. .
URL    
57 WED . Wind Energy Development Environmental Concerns [EB/OL]. [2019-03-25]. , 2010.
URL    
58 Tabassum-Abbasi, Premalatha M , Abbasi T , et al . Wind energy: Increasing deployment, rising environmental concerns[J]. Renewable & Sustainable Energy Reviews, 2014, 31(31):270-288.
59 Dai K , Bergot A , Liang C , et al . Environmental issues associated with wind energy—A review[J]. Renewable Energy, 2015, 75:911-921.
60 Arnett E B , Brown W K , Erickson W P , et al . Patterns of bat fatalities at wind energy facilities in North America[J]. Journal of Wildlife Management, 2008, 72(1):61-78.
61 Drewitt A L , Langston R H W . Assessing the impacts of wind farms on birds[J]. Ibis, 2006, 148(s1):29-42.
62 Krijgsveld K L , Akershoek K , Schenk F , et al . Collision risk of birds with modern large wind turbines[J]. Ardea, 2009, 97(3):357-366.
63 Kikuchi R . Adverse impacts of wind power generation on collision behaviour of birds and anti-predator behaviour of squirrels[J]. Journal for Nature Conservation, 2008, 16(1):44-55.
64 Sovacool B K . Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity[J]. Energy Policy, 2009, 37(6):2 241-2 248.
65 Hull C L , Stark E M , Eruzzo S P , et al . Avian collisions at two wind farms in Tasmania, Australia: Taxonomic and ecological characteristics of colliders versus non-colliders[J]. New Zealand Journal of Zoology, 2013, 40(1):47-62.
66 Marques A T , Batalha H , Rodrigues S , et al . Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies[J]. Biological Conservation, 2014, 179:40-52.
67 Xu Xiazhen , Zheng Youfei , Yang Lihui , et al . Influence of wind power field on birds in Yancheng national rare waterfowls nature reserve of Jiangsu[J]. Chinese Journal of Ecology,2010,29(3): 560-565.
许遐祯, 郑有飞, 杨丽慧,等 . 风电场对盐城珍禽国家自然保护区鸟类的影响[J]. 生态学杂志, 2010, 29(3):560-565.
68 Pearce‐Higgins J W , Stephen L , Douse A , et al . Greater impacts of wind farms on bird populations during construction than subsequent operation: Results of a multi‐site and multi‐species analysis[J]. Journal of Applied Ecology, 2012, 49(2):386-394.
69 Farfán M A , Duarte J , Real R , et al . Differential recovery of habitat use by birds after wind farm installation: A multi-year comparison[J]. Environmental Impact Assessment Review, 2017, 64:8-15.
70 Stewart G B , Pullin A S , Coles C F . Poor evidence-base for assessment of wind farm impacts on birds[J]. Environmental Conservation, 2007, 34(1):1-11.
71 Sun Jing , Qian Yi , Xu Wei , et al . Influence of Dafeng wind power field on birds in Jiangsu[J]. Journal of Anhui Agricultural Sciences, 2007, 35(31):9 920-9 922.
孙靖, 钱谊, 许伟,等 . 江苏大丰风电场对鸟类的影响[J]. 安徽农业科学, 2007, 35(31):9 920-9 922.
72 Xu Yanhua , Qian Yi , Chen Yan , et al . Effect of construction of offshore wind farm in intertidal zones on birds in Dongsha Sandbank[J]. The Administration and Technique of Environmental Monitoring, 2010, 22(2):19-23.
许燕华, 钱谊, 陈雁,等 . 东沙沙洲离岸潮间带风电场建设对鸟类的影响[J]. 环境监测管理与技术, 2010, 22(2):19-23.
73 McCubbin D , Sovacool B K . Quantifying the health and environmental benefits of wind power to natural gas[J]. Energy Policy,2013,53:429-441.
74 Wikipedia . Environmental Impact of Wind Power[EB/OL]. [2019-03-25]., 2010.
URL    
75 Rebecca O . Environmental Benefits of Wind Energy. National Wind[EB/OL]. [2019-03-25]., 2009.
URL    
76 Hau E . Wind Turbines[M]. Germany: Springer, 2000.
77 Mc Dermott M . Texas Wind Farm Uses NASA Radar to Prevent Bird Deaths[EB/OL].[2019-03-25]. , 2009.
URL    
78 Thaker Maria , Zambre Amod , Bhosale Harshal . Wind farms have cascading impacts on ecosystems across trophic levels[J]. Nature Ecology & Evolution,2018(2):1 854-1 858.
79 Li Guoqing , Zhang Chunhua , Zhang Li , et al . Effects of wind farms on grassland vegetation: A case study of Huitengliang wind farm, Inner Mongolia[J]. Scientia Geographica Sinica, 36 (6): 959-964.
李国庆,张春华,张丽,等 .风电场对草地植被生长影响分析——以内蒙古灰腾梁风电场为例[J].地理科学,2016,36(6):959-964.
80 Lee S , Kim K , Choi W . Annoyance caused by amplitude modulation of wind turbine noise[J]. Noise Control Engineering Journal, 2011,59(1):38-46.
81 Oerlemans S , Sijtsma P , López B M . Location and quantification of noise sources on a wind turbine[J]. Journal of Sound & Vibration, 2007, 299(4):869-883.
82 Pedersen E , Waye K P . Perception and annoyance due to wind turbine noise—A dose-response relationship[J]. Journal of the Acoustical Society of America, 2004, 116(6):3 460-3 470.
83 Pedersen E , Berg F V D , Bakker R , et al . Can road traffic mask sound from wind turbines?Response to wind turbine sound at different levels of road traffic sound[J]. Energy Policy, 2010, 38(5):2 520-2 527.
84 Kaldellis J K , Garakis K , Kapsali M . Noise impact assessment on the basis of onsite acoustic noise immission measurements for a representative wind farm[J]. Renewable Energy, 2014, 41(2):306-314.
85 Janssen S A , Vos H , Eisses A R , et al . A comparison between exposure-response relationships for wind turbine annoyance and annoyance due to other noise sources[J]. Journal of the Acoustical Society of America, 2011, 130(6):3 746.
86 Waye K P , ?hrstr?m E . Psycho-acoustic characters of relevance for annoyance of wind turbine noise[J]. Journal of Sound & Vibration, 2002, 250(1):65-73.
87 Pedersen E , Waye K P . Exploring perception and annoyance due to wind turbine noise in dissimilar living environments[C]// Proceedings of Euronoise. Tampere, Finland,2006.
88 Pedersen E , Larsman P . The impact of visual factors on noise annoyance among people living in the vicinity of wind turbines[J]. Journal of Environmental Psychology, 2008, 28(4):379-389.
89 Bakker R H , Pedersen E , Berg G P V D , et al . Impact of wind turbine sound on annoyance, self-reported sleep disturbance and psychological distress[J]. Science of the Total Environment, 2012, 425(19):42-51.
90 Neuffer T , Kremers S . How wind turbines affect the performance of seismic monitoring stations and networks[J]. Geophysical Journal International, 2017, 211(3):1 319-1 327.
91 Zhou Yanzhao , Li Xin . Progress in the energy closure of eddy covariance systems[J]. Advances in Earth Science, 2018, 33(9):18-33.
周彦昭, 李新 . 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9):18-33.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要