地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1245

研究论文 上一篇    下一篇

基于SAR的表碛覆盖型冰川边界定位研究
蒋宗立 1,2,丁永建 2,刘时银 2*,林 剑 1,王 欣 1,龙四春 1,魏俊锋 2   
  1. 1.湖南科技大学建筑与城乡规划学院地信系,湖南 湘潭 411201;
    2.中国科学院寒区旱区环境与工程研究所,冰冻圈科学国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2012-03-27 修回日期:2012-07-02 出版日期:2012-11-10
  • 通讯作者: 刘时银(1963-),男,河南新县人,研究员,主要从事冰川水文学研究.E-mail:liusy@lzb.ac.cn E-mail:liusy@lzb.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“天山冰冻圈与环境”(编号:KZCX2-YW-GJ04);国家自然科学基金重大项目“水体多相态转换过程对水资源与灾害的影响”(编号:41190084);冻土工程国家重点实验室开放基金项目“冰碛湖坝温度梯度与内部结构变化关系研究”(编号:SKLFSE201102);国家自然科学基金项目“相干目标DInSAR高级技术对比分析与关键模型研究”(编号:41004002)资助.

A Study of the Debriscovered Glacier Limit Based on SAR

Jiang Zongli 1,2, Ding Yongjian 2, Liu Shiyin 2, Lin Jian 1, Wang Xin 1, Long Sichun 1, Wei Junfeng 2   

  1. 1.Geographic Informaion System Department, Schools of Architecture and Urban Planning, Hunan University of Science and Technology, Xiangtan 411201, China;2.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2012-03-27 Revised:2012-07-02 Online:2012-11-10 Published:2012-11-10

使用光学图像进行表碛覆盖型冰川边界判断相对比较困难。采用日本高级陆地观测卫星(ALOS)携带的L波段相控阵型合成孔径雷达(PALSAR)数据的干涉相干对表碛覆盖型冰川边界进行判断,并使用ALOS PALSAR 数据的特征匹配方法获得表面流速进行验证分析,发现公格尔山区5Y663D0009冰川表碛覆盖区呈现高相干性且运动速度十分缓慢,表明该表碛区域可能已经演化成非活动区;而该冰川中碛覆盖区则表现出低相干性,运动速度比较高(5 m/a),表明相干性是有效的判断依据,利用PALSAR数据相干性及获得的表面流速可以区分表碛覆盖型冰川活动与非活动区域,使气候波动情景下该类型冰川的动态变化监测成为可能并对该方法的可靠性与不确定性进行了探讨。

 Due to the difficulties in outlining glacier using optical imagery methodology hampered by debris-cover, a new method using the combination of interferometric coherence and surface velocity to delineate debris-covered glacier limits is presented. Coherence images from difference interferometry of ALOS PALSAR data were classified using Maximum Likelihood classifiers (ML) based on Iterative Self-Organization cluster algorithm (ISO) to discern glacier limit from non-glacier area. The results were compared with historic limit from aerial photos and validated by GPS ground-truth data. The surface velocity derived from SAR feature-tracking was employed to validate the results and to discuss the glacier dynamic change. The glacier (coded 5Y663D0009) in Kongur Mountains was tested. We find that the long glacier tongue shows high coherence with low surface velocities while the middle moraine area shows low coherence with higher surface velocities. This implies that the interferometric coherence is a confident judgment for active or inactive debris-covered glacier area. This will make it possible to monitor glacier dynamic change under climate warming. The reliability and uncertainty were discussed.

中图分类号: 

[1]IPCC. The Fourth Assessment Report[R].2007.

[2]Xie Zichu,Zhou Zaigen,Li Qiaoyuan,et al.Progress and prospects of mass balance characteristic and responding to global change of glacier system in High Asia[J].Advances in Earth Science,2009,24(10):1 065-1 072.[谢自楚,周宰根,李巧媛,等.高亚洲冰川系统物质平衡特征及其对全球变化响应研究进展与展望[J].地球科学进展,2009,24(10):1 065-1 072.]

[3]Paterson W S B. Physics of Glaciology[M].Beijing: Science Press,1987.[佩特森 W S B.冰川物理学[M]. 北京:科学出版社,1987.]

[4]Wang Guoya, Shen Yongping.The effect of change in glacierized area on calculation of mass balance in the Glacier NO.1 Headwaters of Urumqi River[J]. Journal of Glaciology & Geocryology,2011,33(1):1-7.[王国亚, 沈永平.天山乌鲁木齐河源1号冰川面积变化对物质平衡计算的影响[J]. 冰川冻土,2011, 33(1): 1-7.]

[5]Paul F, Huggel C, Kb A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers[J].Remote Sensing of Environment, 2004, 89(4): 510-518.

[6]Song Bo, He Yuanqing, Pang Hongxi. Automatically identifying the debris covered glaciers in China’s monsoonal temperate glacier regions based on remote sensing and GIS[J].Journal of Glaciology & Geocryology,2007,29(3): 456-462.[宋波,何元庆,庞洪喜.基于遥感和GIS 的我国季风海洋型冰川区冰碛物覆盖型冰川边界的自动识别[J]. 冰川冻土, 2007, 29(3): 456-462.]

[7]Shukla A, Arora M K, Gupta R P. Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters[J].Remote Sensing of Environment, 2010, 114(7): 1 378-1 387.

[8]Zhou Jianmin, Li Zhen, Xing Qiang. Deriving glacier border information based on analysis of decorrelation in SAR interferometry[J].Journal of Glaciology & Geocryology,2010, 32(1): 133-138.[周建民, 李震, 邢强. 基于雷达干涉失相干特性提取冰川边界方法研究[J]. 冰川冻土, 2010, 32(1): 133-138.]

[9]Wegmüller U, Strozzi T, Farr T, et al. Arid land surface characterization with repeat-pass sar interferometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 776-781.

[10]Hall-Atkinson C, Smith L C. Delineation of delta ecozones using interferometric sar phase coherence mackenzie river delta, n.W.T., Canada[J].Remote Sensing of Environment, 2001, 78(3): 229-238.

[11]Strozzi T,Wegmüller U. Forest Mapping with Ers Sar Interferometry, in ERS Symposium on Space at the Service of Our Environmen[R]. European Space Agency, Noordwijk, PAYS-BAS, Florence, Italy,1997.

[12]Strozzi T, Dammert P, Wegmüller U, et al. Landuse mapping with ers sar interferometry[J].IEEE Transactions on Geoscience and Remote Sensing,2000, 38(2): 766-775.

[13]Atwood D K, Meyer F, Arendt A. Using l-band SAR coherence to delineate glacier extent[J].Canadian Journal of Remote Sensing, 2010, 36(S1): 186-195.

[14]Shi Yafeng. Glaciers and Environment in China—Present, Past and Future[M].Beijing: Science Press, 2000.[施雅风.中国冰川与环境——现在、过去和未来.[M]. 北京:科学出版社,2000.]

[15]Zebker H A, Villasensor J. Decorrelation in interferometric radar echoes[J].IEEE Transactions on Geoscience and Remote Sensing,1992, 30(5): 950-959.

[16]Wang Chao, Zhang Hong, Liu Zhi. Space-borne Synthetic Aperture Radar Interferometry[M].Beijing: Science Press, 2002.[王超, 张红, 刘智. 星载合成孔径雷达干涉测量[M]. 北京: 科学出版社, 2002.]

[17]Hagberg J O, Ulander L M H, Askne J. Repeat-pass SAR interferometry over forested terrain[J].IEEE Transactions on Geoscience and Remote Sensing,1995, 33(2): 331-340.

[18]Touzi R, Lopes A, Bruniquel J, et al. Coherence estimation for sar imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 135-149.

[19]Aiazzi B, Alparone L, Baronti S, et al. Coherence estimation from multilook detected SAR images[C]//Proceedings of IGARSS.USA:IEEE Press,2003:200-202.

[20]López-Martínez C, Pottier E. Coherence estimation in synthetic aperture radar data based on speckle noise modeling[J].Applied Optics,2007, 46(4): 544-558.

[21]Wang T, Liao M, Perissin D, et al. Coherence decomposition analysis, a case study in Three Gorges Area[C]//Proceedings of Dragon I Symposium. ESA,2008.

[22]Seymour M S, Cumming I G. Maximum likelihood estimation for SAR interferometry[C]//Proceedings of IGARSS. USA: IEEE Press,1994:2 272-2 275.

[23]Aiazzi B, Alparone L, Baronti S, et al. Coherence estimation from multilook incoherent sar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2 531-2 539.

[24]Jung H C, Alsdorf D. Repeat-pass multi-temporal interferometric SAR coherence variations with amazon floodplain and lake habitats[J]. International Journal of Remote Sensing, 2010, 31(4): 881-901.

[25]Lee H, Liu J, Huxley T H. Topographic phase corrected coherence estimation using multi-pass differential sar interferometry: Differential coherence[C]∥Proceedings of IGARSS. USA: IEEE Press,2000:776-778.

[26]Lee H, Liu J. Spatial decorrelation due to topography in the interferometric SAR coherence imagery[C]∥Proceeding of IGARSS. USA: IEEE Press,1999:485-487.

[27]Ghiglia D C, Corp V, Boulder C. Ifsar correlation improvement through local slope correction[C]∥Proceedings of  IGARSS. USA: IEEE Press,1998: 2 445-2 447.

[28]Strozzi T, Luckman A, Murray T, et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2 384-2 391.

[29]Hanssen R F. Radar Interferometry-data Interpretation and Error Analysis[M]. Dordrecht:Kluwer Academic Publishers, 2001.

[30]Cheng Xiao. A Study on Monitoring Antarctic Ice Sheet Using Space-borne Microwave Remote Sensing Data[D].Beijing: Graduated University Chinese Academy of Sciences,2004.[程晓.基于星载微波遥感数据的南极冰盖信息提取与变化监测研究[D].北京:中国科学院研究生院,2004.]

[31]Colesanti C, Ferretti A, Prati C, et al. Monitoring landslides and tectonic motions with the Permanent Scatterers technique[J]. Engineering Geology, 2003, 68(1/2): 3-14.

[32]Xu Xiaobo, Qu Chunyan, Shan Xinjian, et al. An experimental study of monitoring fault crustal deformation using PS-Insar technology[J]. Advances in Earth Science, 2012, 27(4): 452-459.[徐小波,屈春燕,单新建,等.基于PS-InSAR技术的断裂带地壳形变实验研究[J].地球科学进展,2012, 27(4): 452-459.]

[1] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[3] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[4] 康世昌, 郭万钦, 吴通华, 钟歆玥, 陈仁升, 许民, 陈金雷, 杨瑞敏. “一带一路”区域冰冻圈变化及其对水资源的影响[J]. 地球科学进展, 2020, 35(1): 1-17.
[5] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[6] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[7] 卿文武, 刘俊峰, 杨钰泉, 陈仁升, 韩春坛. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展, 2016, 31(9): 937-945.
[8] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[9] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[10] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[11] 杨建平, 丁永建, 方一平, 秦大河. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展, 2015, 30(5): 517-529.
[12] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[13] 黄磊, 李震, 周建民, 田帮森. SAR监测冰川变化研究进展[J]. 地球科学进展, 2014, 29(9): 985-994.
[14] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[15] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
阅读次数
全文


摘要