1 |
Qin Dahe. An Introduction to Cryosphere Science [M]. Beijing: Science Press, 2017.
|
|
秦大河. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017.
|
2 |
Editing Commission of the Third National Report on Climate Change of China. The Third National Report on Climate Change of China [M]. Beijing: Science Press, 2015.
|
|
《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[M]. 北京: 科学出版社, 2015.
|
3 |
Consortium R. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0[R]. Technical Report, Global Land Ice Measurements from Space, Colorado, USA, 2017.
|
4 |
Paul F, K??b A, Maisch M, et al. Rapid disintegration of Alpine glaciers observed with satellite data [J]. Geophysical Research Letters, 2004, 31(21). DOI:10.1029/2004GL020816.
doi: 10.1029/2004GL020816
|
5 |
Lambrecht A, Kuhn M. Glacier changes in the Austrian Alps during the last three decades, derived from the New Austrian Glacier Inventory [J]. International Glaciological Society, 2007, 46(1): 177-184.
|
6 |
Paul F, Andreassen L M, Winsvold S H. A new glacier inventory for the Jostedalsbreen region, Norway, from Landsat TM scenes of 2006 and changes since 1966 [J]. Annals of Glaciology, 2011, 52(59): 153-162.
|
7 |
Tielidze L G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery[J]. The Cryosphere, 2016, 10(2): 713-725.
|
8 |
Lynch C M, Barr I D, Mullan D, et al. Rapid glacial retreat on the Kamchatka Peninsula during the early 21st century [J]. Cryosphere, 2016, 10(4): 1 809-1 821.
|
9 |
Paul F, Frey H, Le Bris R. A new glacier inventory for the European Alps from Landsat TM scenes of 2003: Challenges and results [J]. Annals of Glaciology, 2011, 52(59): 144-152.
|
10 |
Kaab A. Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry: A test study on Edge?ya, Eastern Svalbard [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46: 2 823-2 830.
|
11 |
Shahgedanova M, Nosenko G, Bushueva I, et al. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia, 1950-2008 [J]. Journal of Glaciology, 2012, 58(211): 953-964.
|
12 |
Liu S, Ding Y, Shangguan D, et al. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China [J]. Annals of Glaciology, 2006, 43(1): 91-96.
|
13 |
Kriegel D, Mayer C, Hagg W, et al. Changes in glacierisation, climate and runoff in the second half of the 20th century in the Naryn Basin, Central Asia [J]. Global and Planetary Change, 2013, 110: 51-61.
|
14 |
Bie Qiang, Qiang Wenli, Wang Chao, et al. Monitoring the glacier variation in the upper reaches of the Heihe River based on remote sensing in 1960-2010 [J]. Journal of Glaciology and Geocryology, 2013, 35(3): 574-582.
|
|
别强, 强文丽, 王超, 等. 1960—2010 年黑河流域冰川变化的遥感监测 [J]. 冰川冻土, 2013, 35(3): 574-582.
|
15 |
Ye Q, Kang S, Chen F, et al. Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies [J]. Journal of Glaciology, 2006, 52(179): 537-545.
|
16 |
Liu S, Shangguan D, Ding Y, et al. Glacier changes during the past century in the Gangrigabu mountains, southeast Qinghai-Xizang (Tibetan) Plateau, China [J]. Annals of Glaciology, 2006, 43(1): 187-193.
|
17 |
Li B, Zhu A-X, Zhang Y, et al. Glacier change over the past four decades in the middle Chinese Tien Shan [J]. Journal of Glaciology, 2006, 52(178): 425-432.
|
18 |
Aizen V, Aizen E, Glazirin G, et al. Simulation of daily runoff in Central Asian alpine watersheds [J]. Journal of Hydrology, 2000, 238(1/2): 15-34.
|
19 |
Hagg W, Hoelzle M, Wagner S, et al. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya Basin until 2050 [J]. Global and Planetary Change, 2013, 110: 62-73.
|
20 |
Ye Q, Yao T, Kang S, et al. Glacier variations in the Naimona’nyi region, western Himalaya, in the last three decades [J]. Annals of Glaciology, 2006, 43(1): 385-389.
|
21 |
Wu Y, Zhu L. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000 [J]. Journal of Geographical Sciences, 2008, 18(2): 177-189.
|
22 |
Wang Y, Hou S, Liu Y. Glacier changes in the Karlik Shan, eastern Tien Shan, during 1971/72-2001/02 [J]. Annals of Glaciology, 2009, 50(53): 39-45.
|
23 |
Niederer P, Bilenko V, Ershova N, et al. Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years [J]. Climatic Change, 2008, 86(1): 227-234.
|
24 |
Shahgedanova M, Nosenko G, Khromova T, et al. Glacier shrinkage and climatic change in the Russian Altai from the mid‐20th century: An assessment using remote sensing and PRECIS regional climate model [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D6). DOI:10.1029/2009JD012976.
doi: 10.1029/2009JD012976
|
25 |
Moelg T, Cullen N J, Hardy D R, et al. East African glacier loss and climate change: Corrections to the UNEP article “Africa without ice and snow” [J]. Environmental Development, 2013, 6(1): 1-6.
|
26 |
Klein A G, Kincaid J L. Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images [J]. Journal of Glaciology, 2006, 52: 65-79.
|
27 |
Mackintosh A N, Anderson B M, Lorrey A M, et al. Regional cooling caused recent New Zealand glacier advances in a period of global warming [J]. Nature Communications, 2017, 8: 14 202.
|
28 |
Kotlyakov V, Osipova G, Tsvetkov D. Monitoring surging glaciers of the Pamirs, central Asia, from space [J]. Annals of Glaciology, 2008, 48(1): 125-134.
|
29 |
Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings [J]. Nature Climate Change, 2012, 2(9): 663.
|
30 |
Quincey D J, Glasser N F, Cook S J, et al. Heterogeneity in Karakoram glacier surges [J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 1 288-1 300.
|
31 |
Yasuda T, Furuya M. Dynamics of surge‐type glaciers in West Kunlun Shan, Northwestern Tibet [J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 2 393-2 405.
|
32 |
Harrison W D, Post A S. How much do we really know about glacier surging?[J]. Annals of Glaciology, 2003, 36: 1-6.
|
33 |
Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011 [J]. The Cryosphere, 2013, 7: 1 885-1 886.
|
34 |
Lang C, Fettweis X, Erpicum M. Stable climate and surface mass balance in Svalbard over 1979-2013 despite the Arctic warming [J]. The Cryosphere, 2015, 9: 83-101.
|
35 |
Carturan L, Filippi R, Seppi R, et al. Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): Controls and imbalance of the remaining glaciers [J]. The Cryosphere, 2013, 7: 1 339-1 359.
|
36 |
Paul F, Haeberli W. Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models [J]. Geophysical Research Letters, 2008, 35(2). DOI:10.1029/2008GL034718.
doi: 10.1029/2008GL034718
|
37 |
K??b A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas [J]. Nature, 2012, 488(7 412): 495.
|
38 |
Wang P, Li Z, Li H, et al. Comparison of glaciological and geodetic mass balance at Urumqi Glacier No. 1, Tian Shan, central Asia [J]. Global and Planetary Change, 2014, 114: 14-22.
|
39 |
Shangguan D, Bolch T, Ding Y, et al. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ~1975 and 2007 derived from remote sensing data [J]. The Cryosphere, 2015, 9: 703-717.
|
40 |
Wei J F, Liu S Y, Xu J L, et al. Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images [J]. Journal of Mountain Science, 2015, 12(2): 330-343.
|
41 |
Wu K, Liu S, Jiang Z, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories [J]. The Cryosphere, 2018, 12: 103.
|
42 |
Haug T, Rolstad C, Elveh?y H, et al. Geodetic mass balance of the western Svartisen ice cap, Norway, in the periods 1968-1985 and 1985-2002 [J]. Annals of Glaciology, 2009, 50(50): 119-125.
|
43 |
Li G, Lin H. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry[J]. Global and Planetary Change, 2017, 149: 177-190.
|
44 |
Xu J, Liu S, Zhang S, et al. Recent changes in glacial area and volume on Tuanjiefeng Peak Region of Qilian Mountains, China [J]. PLoS ONE, 2013, 8: e70574.
|
45 |
Gardelle J, Berthier E, Arnaud Y. Slight mass gain of Karakoram glaciers in the early twenty-first century [J]. Nature Geoscience, 2012, 5: 322.
|
46 |
M?ller M, Finkelnburg R, Braun M, et al. Variability of the climatic mass balance of Vestfonna ice cap, northeastern Svalbard,1979-2011[J]. Annals of Glaciology, 2013, 54(63): 254-264.
|
47 |
Ma?ecki J. Elevation and volume changes of seven Dickson Land glaciers,Svalbard,1960-1990-2009 [J]. Polar Research, 2013, 32: 18 400.
|
48 |
Moholdt G, Wouters B, Gardner A S. Recent mass changes of glaciers in the Russian High Arctic [J]. Geophysical Research Letters, 2012, 39(10). DOI:10.1029/2012GL051466.
doi: 10.1029/2012GL051466
|
49 |
Cheng Guodong, Zhao Lin. The problems associated with permafrost in the development of the Qinghai-Xizhang Plateau [J]. Quaternary Sciences, 2000, 20(16): 521-531.
|
|
程国栋, 赵林. 青藏高原开发中的冻土问题 [J]. 第四纪研究, 2000, 20(16): 521-531.
|
50 |
Zhao L, Marchenko S, Sharkhuu N, et al. Regional changes of permafrost in Central Asia[C]// Proceedings of the Extended Abstracts, Proceedings Ninth International Conference on Permafrost. Institute of Northern Engineering. Fairbanks: University of Alaska,2008.
|
51 |
Gruber S. Derivation and analysis of a high-resolution estimate of global permafrost zonation [J]. The Cryosphere, 2012, 6: 1 547-1 582.
|
52 |
IPCC. Climate Change 2013: The Physical Science Basis [M]. Cambridge, UK, and New York, USA: Cambridge University Press, 2013.
|
53 |
Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades [J]. International Journal of Climatology, 2000, 20(14): 1 729-1 742.
|
54 |
Wang B, Bao Q, Hoskins B, et al. Tibetan Plateau warming and precipitation changes in East Asia [J]. Geophysical Research Letters, 2008, 35(14). DOI:10.1029/2008GL034330.
doi: 10.1029/2008GL034330
|
55 |
Wu Tonghua. Study on the Response of Frozen Soil to Global Climate Change in Tibetan Plateau [D]. Beijing:Graduate School of Chinese Academy of Sciences, 2005.
|
|
吴通华. 青藏高原冻土对全球气候变化响应研究 [D].北京: 中国科学院研究生院, 2005.
|
56 |
Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau [J]. Journal of Geophysical Research: Earth Surface, 2007, 112: 93-104.
|
57 |
Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region [J]. Chinese Science Bulletin, 2012, 57(30): 2 864-2 871.
|
|
李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征 [J]. 科学通报, 2012, 57(30): 2 864-2 871.
|
58 |
Xu Xiaoming, Zhang Zhongqiang, Wu Qingbai. Simulation of permafrost changes on the Qinghaig Peak region of Qilian Mountains, China [J]. International Journal of Digital Earth, 2016, 10(5): 1-17.
|
59 |
Anisimov O, Reneva S. Permafrost and changing climate: The Russian perspective [J]. AMBIO: A Journal of the Human Environment, 2006, 35(4): 169-176.
|
60 |
Pavlov A. Current changes of climate and permafrost in the Arctic and sub‐Arctic of Russia [J]. Permafrost and Periglacial Processes, 1994, 5(2): 101-110.
|
61 |
Pavlov A, Moskalenko N. The thermal regime of soils in the north of western Siberia [J]. Permafrost and Periglacial Processes, 2002, 13(1): 43-51.
|
62 |
Isaksen K, Sollid J L, Holmlund P, et al. Recent warming of mountain permafrost in Svalbard and Scandinavia[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI:10.1029/2006JF000522.
doi: 10.1029/2006JF000522
|
63 |
Pogliotti P, Guglielmin M, Cremonese E, et al. Warming permafrost and active layer variability at Cime Bianche, Western European Alps [J]. The Cryosphere, 2015, 9: 647-661.
|
64 |
Visconti G, Beniston M, Iannorelli E D, et al. Global Change and Protected Areas [M]. Springer Press, 2001. DOI:12.100710-306-48051-4.
doi: 12.100710-306-48051-4
|
65 |
Farbrot H, Etzelmüller B, Schuler T V, et al. Thermal characteristics and impact of climate change on mountain permafrost in Iceland[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F3). DOI: 10.1029/2006JF000541.
doi: 10.1029/2006JF000541
|
66 |
Gisn?s K, Etzelmüller B, Lussana C, et al. Permafrost map for Norway, Sweden and Finland [J]. Permafrost and Periglacial Processes, 2017, 28: 359-378.
|
67 |
Myhra K, Westermann S, Etzelmüller B. Modelled distribution and temporal evolution of permafrost in steep rock walls along a latitudinal transect in Norway by CryoGrid 2D [J]. Permafrost and Periglacial Processes, 2017, 28: 172-182.
|
68 |
Wu Q, Zhang T. Changes in active layer thickness over the Qinghai‐Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D9). DOI:10.1029/2009JD012974.
doi: 10.1029/2009JD012974
|
69 |
Brutsaert W, Hiyama T. The determination of permafrost thawing trends from long‐term streamflow measurements with an application in eastern Siberia[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D22). DOI:10.1029/2012JD018344.
doi: 10.1029/2012JD018344
|
70 |
Frauenfeld O W, Zhang T, Barry R G, et al. Interdecadal changes in seasonal freeze and thaw depths in Russia[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D5). DOI:10.1029/2003JD004245.
doi: 10.1029/2003JD004245
|
71 |
Christiansen H, Humlum O. Interannual variations in active layer thickness in Svalbard[C] //Proceedings Ninth International Conference on Permafrost, 2008.
|
72 |
Hilbich C, Hauck C, Hoelzle M, et al. Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7‐year study of seasonal, annual, and long‐term variations at Schilthorn, Swiss Alps[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1). DOI:10.1029/2007JF000799.
doi: 10.1029/2007JF000799
|
73 |
Malevsky-Malevich S, Molkentin E, Nadyozhina E, et al. Numerical simulation of permafrost parameters distribution in Russia [J]. Cold Regions Science and Technology, 2001, 32(1): 1-11.
|
74 |
Sattler K, Anderson B, Mackintosh A, et al. Estimating permafrost distribution in the maritime Southern Alps, New Zealand, based on climatic conditions at rock glacier sites [J]. Frontiers in Earth Science, 2016, 4: 4.
|
75 |
Brown R D, Goodison B E. Interannual variability in reconstructed Canadian snow cover, 1915-1992 [J]. Journal of Climate, 1996, 9(6): 1 299-1 318.
|
76 |
King J C, Pomeroy J W, Gray D M, et al. Snow-Atmosphere Energy and Mass Balance [M]. Cambridge, UK: Cambridge University Press, 2008.
|
77 |
Armstrong R L, Brodzik M J. Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors [J]. Geophysical Research Letters, 2001, 28(19): 3 673-3 676.
|
78 |
Robinson D A, Dewey K F, Heim Jr R R. Global snow cover monitoring: An update [J]. Bulletin of the American Meteorological Society, 1993, 74(9): 1 689-1 696.
|
79 |
Strategy I G O. Cryosphere Theme Report: For the Monitoring of Our Environment from Space and from Earth [R]. Geneva: World Meteorological Organisation, 2007.
|
80 |
Barry R, Gan T Y. The Global Cryosphere: Past, Present and Future [M]. Cambridge, UK: Cambridge University Press, 2011.
|
81 |
Parkinson C L. Earth's cryosphere: Current state and recent changes [J]. Annual Review of Environment Resources, 2006, 31: 33-60.
|
82 |
Zhong X, Zhang T, Kang S, et al. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012 [J]. The Cryosphere, 2018, 12: 227-245.
|
83 |
Brown R D, Robinson D A. Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty [J]. The Cryosphere, 2011, 5: 219-229.
|
84 |
AMAP. Snow,Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere [R]. Oslo, Norway:Arctic Monitoring and Assessment Programme (AMAP), 2011.
|
85 |
Callaghan T V, Johansson M, Brown R D, et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes [J]. Ambio, 2011, 40: 17-31.
|
86 |
Bulygina O, Razuvaev V, Korshunova N. Changes in snow cover over Northern Eurasia in the last few decades [J]. Environmental Research Letters, 2009, 4: 045026.
|
87 |
Bulygina O, Groisman P Y, Razuvaev V, et al. Changes in snow cover characteristics over Northern Eurasia since 1966 [J]. Environmental Research Letters, 2011, 6: 045204.
|
88 |
Wegmann M, Orsolini Y, Dutra E, et al. Eurasian snow depth in long-term climate reanalyses [J]. The Cryosphere, 2017, 11: 923-935.
|
89 |
Ma Lijuan, Qin Dahe. Spatial-temporal characteristics of observed key parmeters for snow cover in China during 1957-2009 [J]. Journal of Glaciology and Geocryology, 2012, 34(1): 1-11.
|
|
马丽娟, 秦大河. 1957—2009 年中国台站观测的关键积雪参数时空变化特征 [J]. 冰川冻土, 2012, 34(1): 1-11.
|
90 |
Hernández-Henríquez M A, Déry S J, Derksen C. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014 [J]. Environmental Research Letters, 2015, 10: 044010.
|
91 |
Huang X, Deng J, Wang W, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau [J]. Remote Sensing of Environment, 2017, 190: 274-288.
|
92 |
AMAP. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) [M]. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2017.
|
93 |
Huang X, Deng J, Ma X, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China [J]. The Cryosphere, 2016, 10: 2 453-2 463.
|
94 |
Shmakin A. Climatic characteristics of snow cover over North Eurasia and their change during the last decades [J]. Ice and Snow, 2010, 1: 43-57.
|
95 |
Peng S, Piao S, Ciais P, et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades [J]. Environmental Research Letters, 2013, 8(1): 014008.
|
96 |
Shen S S, Yao R, Ngo J, et al. Characteristics of the Tibetan Plateau snow cover variations based on daily data during 1997-2011 [J]. Theoretical and Applied Climatology, 2015, 120: 445-453.
|
97 |
Bai Shuying, Shi Jianqiao, Shen Weishou, et al. Spatial and temporal variations of snow and influencing factors in Tibet Plateau based on remote sensing [J]. Remote Sensing Technology and Application, 2014, 29(6): 954-962.
|
|
白淑英, 史建桥, 沈渭寿, 等. 卫星遥感西藏高原积雪时空变化及影响因子分析 [J]. 遥感技术与应用, 2014, 29(6): 954-962.
|
98 |
Xu W, Ma L, Ma M, et al. Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau [J]. Journal of Climate, 2017, 30: 1 521-1 533.
|
99 |
Shi Jianqiao. Spatial and Temporal Variations of Snow and Influencing Factors in Tibetan Based on Remote Sensing and GIS [D]. Nanjing:Nanjing University of Information Science & Technology, 2014.
|
|
史建桥. 基于遥感和 GIS 的青藏高原积雪时空变化及影响因子分析 [D].南京:南京信息工程大学, 2014.
|
100 |
Chu Duo, Yang Yong, Jiancan Luobu, et al. The variations of snow cover days over the Tibetan Plateau during 1981-2010 [J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1 461-1 472.
|
|
除多, 杨勇,罗布坚参,等. 1981—2010年青藏高原积雪日数时空变化特征分析 [J]. 冰川冻土, 2015, 37(6): 1 461-1 472.
|
101 |
Xiong C, Shi J, Cui Y, et al. Snowmelt pattern over high-mountain Asia detected from active and passive microwave remote sensing [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14: 1 096-1 100.
|
102 |
Zhang Y, Kang S, Sprenger M, et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau [J]. The Cryosphere, 2018, 12: 413-431.
|
103 |
Kang S, Zhang Q, Qian Y, et al. Linking atmospheric pollution to cryospheric change in the third pole region: Current progresses and future prospects [J]. National Science Review, 2019, 6(4): 796-809.
|
104 |
Zhong X, Kang S, Zhang W, et al. Light-absorbing impurities in snow cover across Northern Xinjiang, China [J]. Journal of Glaciology, 2019, 65(254): 940-956.
|
105 |
Wang Daiwei, Yang Xiuqun. Temporal and spatial patterns of Arctic sea ice variations [J]. Acta Meteorological Sinica, 2002, 60(2): 129-138.
|
|
汪代维, 杨修群. 北极海冰变化的时间和空间型 [J]. 气象学报, 2002, 60(2): 129-138.
|
106 |
Stroeve J C, Serreze M C, Holland M M, et al. The Arctic’s rapidly shrinking sea ice cover: A research synthesis [J]. Climatic Change, 2012, 110(3/4): 1 005-1 027.
|
107 |
Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification [J]. Nature, 2010, 464(7 293): 1 334-1 337.
|
108 |
Gao Y, Sun J, Li F, et al. Arctic sea ice and Eurasian climate: A review [J]. Advances in Atmospheric Sciences, 2015, 32: 92-114.
|
109 |
Comiso J C, Meier W N, Gersten R. Variability and trends in the Arctic Sea ice cover: Results from different techniques [J]. Journal of Geophysical Research: Oceans, 2017, 122: 6 883-6 900.
|
110 |
Meier W N, Hovelsrud G K, Van Oort B E, et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity [J]. Reviews of Geophysics, 2014, 52(3): 185-217.
|
111 |
Perovich D K, Richter-Menge J A. Regional variability in sea ice melt in a changing Arctic [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373: 20140165.
|
112 |
Perovich D K, Richter-Menge J A. Loss of sea ice in the Arctic [J]. Annual Review of Marine Science, 2009, 1: 417-441.
|
113 |
Lindsay R, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations [J]. The Cryosphere, 2015, 9: 269-283.
|
114 |
Wang L, Derksen C, Brown R, et al. Recent changes in pan‐Arctic melt onset from satellite passive microwave measurements [J]. Geophysical Research Letters, 2013, 40(3): 522-528.
|
115 |
Mortin J, Svensson G, Graversen R G, et al. Melt onset over Arctic sea ice controlled by atmospheric moisture transport [J]. Geophysical Research Letters, 2016, 43: 6 636-6 642.
|
116 |
Bliss A, Anderson M. Arctic sea ice melt onset from passive microwave satellite data: 1979-2012 [J]. The Cryosphere Discussions, 2014, 8: 3 037-3 055.
|
117 |
Cordeira J M, Laird N F. The influence of ice cover on two lake-effect snow events over Lake Erie [J]. Monthly Weather Review, 2008, 136: 2 747-2 763.
|
118 |
Likens G E. Plankton of Inland Waters [M]. New York:Academic Press, 2010.
|
119 |
Walter K M, Smith L C, Stuart Chapin Iii F. Methane bubbling from northern lakes: Present and future contributions to the global methane budget [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1 856): 1 657-1 676.
|
120 |
De Munck S, Gauthier Y, Bernier M, et al. River predisposition to ice jams: A simplified geospatial model [J]. Natural Hazards and Earth System Sciences, 2017, 17: 1 033-1 045.
|
121 |
Magnuson J J, Robertson D M, Benson B J, et al. Historical trends in lake and river ice cover in the Northern Hemisphere [J]. Science, 2000, 289(5 848): 1 743-1 746.
|
122 |
Benson B J, Magnuson J J, Jensen O P, et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855-2005) [J]. Climatic Change, 2012, 112(2): 299-323.
|
123 |
Yao X, Li L, Zhao J, et al. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011 [J]. Journal of Geographical Sciences, 2016, 26(1): 70-82.
|
124 |
Cai Y, Ke C Q, Duan Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data [J]. Science of the Total Environment, 2017, 607/608: 120-131.
|
125 |
Gou P, Ye Q, Che T, et al. Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products [J]. Journal of Great Lakes Research, 2017, 43(6): 989-998.
|
126 |
Kropá?ek J, Maussion F, Chen F, et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data [J]. The Cryosphere, 2013, 7: 287-301.
|
127 |
Kouraev A V, Semovski S V, Shimaraev M N, et al. Observations of Lake Baikal ice from satellite altimetry and radiometry [J]. Remote Sensing of Environment, 2007, 108(3): 240-253.
|
128 |
Arp C D, Jones B M, Lu Z, et al. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska[J].Geophysical Research Letters,2012,39(16). DOI:10.1029/2012GL052518.
doi: 10.1029/2012GL052518
|
129 |
Immerzeel W W, Van Beek L P, Bierkens M F. Climate change will affect the Asian water towers [J]. Science, 2010, 328(5 984): 1 382-1 385.
|
130 |
Kaser G, Gro?hauser M, Marzeion B. Contribution potential of glaciers to water availability in different climate regimes [J]. Proceedings of the National Academy of Sciences, 2010, 107(47): 20 223-20 227.
|
131 |
Ren Jiawen, Ye Baisheng, Ding Yongjian, et al. Initial estimate of the contribuiton of cryospheric changes in China to sea level rise [J]. Chinese Science Bulletin, 2011, 56(14): 1 084-1 087.
|
|
任贾文,叶柏生,丁永建,等. 中国冰冻圈变化对海平面上升潜在贡献的初步估计[J]. 科学通报, 2011, 56(14): 1 084-1 087.
|
132 |
Qin Dahe, Chen Yiyu, Li Xueyong. Assessment of Climate and Environment Changes in China(II): Measures to Adapt and Mitigate the Effects of Climate and Environment Changes [M]. Beijing: Science Press, 2005.
|
|
秦大河, 陈宜瑜, 李学勇. 中国气候与环境演变 (下卷): 气候与环境变化的影响与适应, 减缓对策 [M]. 北京: 科学出版社, 2005.
|
133 |
Zhao Lin, Liu Guangyue, Jiao Keqin, et al. Variations of the permafrost in the headwaters of the Urumqi River in the Tianshan Mountains since 1991 [J]. Journal of Glaciology and Geocryology, 2010, 32(2): 223-230.
|
|
赵林, 刘广岳, 焦克勤, 等. 1991—2008 年天山乌鲁木齐河源区多年冻土的变化 [J]. 冰川冻土, 2010, 32(2): 223-230.
|
134 |
Xie Zichu, Wang Xin, Kang Ersi, et al. Glacial runoff in China: An evaluation and orediction for the future 50 years [J]. Journal of Glaciology and Geocryology, 2006, 28(4): 457-466.
|
|
谢自楚, 王欣, 康尔泗, 等. 中国冰川径流的评估及其未来50a变化趋势预测[J]. 冰川冻土, 2006, 28(4): 457-466.
|
135 |
Shi Yafeng. Glacier and Envrionment in China [M]. Beijing: Science Press, 2000.
|
|
施雅风. 中国冰川与环境 [M]. 北京: 科学出版社, 2000.
|
136 |
Gao X, Ye B, Zhang S, et al. Glacier runoff variation and its influence on river runoff during 1961-2006 in the Tarim River Basin, China [J]. Science in China (Series D), 2010, 53: 880-891.
|
137 |
Chen Rensheng, Zhang Shiqiang, Yang Yong, et al. The Impacts of Cryospheric Changes on Runoff in Cold Regions of Western China [M]. Beijing: Science Press, 2019.
|
|
陈仁升, 张世强, 阳勇, 等. 冰冻圈变化对中国西部寒区径流的影响 [M]. 北京: 科学出版社, 2019.
|
138 |
Gao Xin, Zhang Shiqiang, Ye Baisheng, et al. Recent changes of glacier runoff in the Hexi Inland riber basin [J]. Advances in Water Science, 2011, 22(31): 344-350.
|
|
高鑫, 张世强, 叶柏生, 等. 河西内陆河流域冰川融水近期变化 [J]. 水科学进展, 2011, 22(31): 344-350.
|
139 |
Hock R, Rasul R, Adler C, et al. High mountain areas[R]// P?rtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. 2019.
|