Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (10): 1067-1076    DOI: 10.11867/j.issn.1001-8166.2013.10.1067
973项目研究     
冰冻圈变化及其影响研究的主要科学问题概论
丁永建1, 2, 效存德1, 3
1.中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室, 甘肃 兰州 730000; 2.中国科学院寒区旱区环境与工程研究所水土资源研究室, 甘肃 兰州 730000; 3.中国气象科学研究院, 北京 100081
Challenges in the Study of Cryospheric Changes and Their Impacts
Ding Yongjian1, 2, Xiao Cunde1
1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2.Water and Soil Resource Division, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 3. Chinese Academy of Meteorogical Science, Beijing 100081, China
 全文: PDF(4221 KB)   HTML
摘要:

冰冻圈变化及其影响日益显著并受到广泛关注。系统梳理了目前国际冰冻圈科学研究的主要关注热点, 认为冰冻圈的变化机理、冰冻圈与气候相互作用、冰冻圈变化的影响与适应等构成了国际冰冻圈科学研究的4大科学问题。冰冻圈变化机理是冰冻圈科学研究的基础领域, 冰冻圈与气候相互作用是当前着力加强的重点, 冰冻圈变化的影响日益受到关注, 但研究基础还较薄弱, 冰冻圈变化影响的适应机制是尚处在萌芽状态的研究领域。围绕上述重大科学问题, 紧抓冰冻圈变化过程中的动力响应与时空差异性问题, 气候模式中冰冻圈过程的精细化描述问题, 准确认识影响的时空尺度与程度问题和脆弱性评价方法和指标体系等科学问题, 是寻求科学突破的关键。以全球的视野审视冰冻圈的变化过程, 从有机耦合的角度探讨气候模式中的冰冻圈过程, 以多因素、多过程综合与集成的手段辨析冰冻圈变化的影响, 从方法创新上寻求科学评估冰冻圈变化脆弱性及适应性的突破途径, 是未来研究的重点。

关键词: 气候变化影响模式冰冻圈变化    
Abstract:

Cryospheric changes and their impacts are receiving wide attention from international scientific and social communities. Here, we summarize the present hotspots of international cryospheric sciences and hence conclude four major aspects of it. They are respectively ① mechanism of cryospheric changes, ② interaction of cryospheric and other spheres of climate/earth system, ③ impacts of cryospheric changes, and ④ adaptation methods and strategy to these changes. Among the four areas, mechanism study is the basis for cryospherc sciences, interaction between different spheres is the currently developing aspect of the field, impacts of cryospheric changes are increasingly studied and yet still have large gaps, while adaptation study is still an iniative nowadays. For the above four aspects, there are key issues for each of them. For instance, dynamic responses and spatial/temporal differences are the key challenges in the mechanism studies. Rational and precise description on physical/chemical/geochemical processes of cryosphere is one of critical issues on improving the climate models. Scoping the spatial/temporal scales, as well as defining the influence degree is the key gaps in studying the cryospheric impacts. Methods and related index system for vulnerability assessment is the key issue in the study of the adaptation strategy of cryospheric impacts. Cryospheric sciences are developing towards, in the near future, the coupling of cryoshperic components into climate system in global scale, detecting the impacts of cryospheric changes using multiple and integrated methodology, and innovated approaches in adaptation.

Key words: Impacts and adaptation.    Climate system    Models    Cryopsheric changes
收稿日期: 2013-05-15 出版日期: 2013-10-10
:  P343.6  
基金资助:

科技部全球变化重大科学研究计划重大科学目标导向项目“冰冻圈变化及其影响研究”(编号:2013CBA01800)资助.

作者简介: 丁永建(1958-),男,甘肃天水人,研究员,主要从事冰冻圈与全球变化研究. E-mail:dyj@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
效存德
丁永建

引用本文:

丁永建,效存德,. 冰冻圈变化及其影响研究的主要科学问题概论[J]. 地球科学进展, 2013, 28(10): 1067-1076.

Ding Yongjian,Xiao Cunde. Challenges in the Study of Cryospheric Changes and Their Impacts. Advances in Earth Science, 2013, 28(10): 1067-1076.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.10.1067        http://www.adearth.ac.cn/CN/Y2013/V28/I10/1067

[1]Climate and Cryosphere[EB/OL]. [2012-10-21]. http:∥clic.npopar.no/.
[2]IPCC. Climate change 2007: Impacts, adaptation and vulnerability[M]∥Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 2007.
[3]Wu B, Huang R, Gao D. Effects of variation of winter sea-ice area in Kara and Barents seas on East Asian winter monsoon[J].Acta Meteorologica Sinica, 1999, 13:141-153.
[4]Alexander M A, Bhatt U S, Walsh J E, et al. The atmospheric response to realistic sea ice anomalies in an AGCM during winter[J]. Journal of Climate, 2004, 17: 890-905.
[5]Deser C, Magnusdottir G, Saravanan R, et al. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response[J]. Journal of Climate, 2004, 17: 877-889.
[6]Honda M, Inous J, Yamane S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters[J]. Geophysical Research Letters, 2009, 36:L08707, doi:10.1029/2008GL037079.
[7]Li Zhenkun, Zhu Weijun, Wu Bingyi. Impact of improved soil freezing process on climate in East Asia using NCAR CAM model[J]. Chinese Journal of Atomspheric Sciences, 2011, 35(4):683-693.[李震坤, 朱伟军, 武炳义. 大气环流模式CAM中土壤冻融过程改进对东亚气候模拟的影响[J]. 大气科学, 2011, 35(4):683-693.]
[8]Ding Yongjian, Qin Dahe. Cryosphere change and global warming: Impact and challenges in China[J]. China Basic Science, 2009, 11(3):4-11.[丁永建, 秦大河. 冰冻圈变化与全球变暖:我国面临的影响与挑战[J]. 中国基础科学, 2009, 11(3):4-11.]
[9]Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: A test of our knowledge of earth as a system[J]. Science, 2000, 290: 291-296.
[10]Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and implications of recent climate change in terrestrial regions of the Arctic[J]. Climatic Change, 2005, 72: 251-298.
[11]Tape K, Sturm M, Racine C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic[J]. Global Change Biology, 2006, 12: 686-702.
[12]Kaplan J O. New M. Arctic climate change with a 2 ℃ global warming: Timing, climate patterns and vegetation change[J]. Climatic Change, 2006, 79(3/4): 213-241.
[13]Lenoir J, Gegout J C, Marquet P A, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320: 1 768-1 771.
[14]Wang Genxu, Li Yuanshou, Wang Yibo. Land Surface Process and Environmental Change in the River Sources of Tibet Plateau[M]. Beijing: Science Press, 2010.[王根绪, 李元寿, 王一博. 青藏高原河源区地表过程与环境变化[M]. 北京: 科学出版社, 2010.]
[13]Loarie S R, Duffy P B, Hamilton H, et al. The velocity of climate change[J]. Nature, 2009, 462(24): 1 052-1 055.
[14]Zimov S A, Schuur E A G, Chapin F S. Permafrost and global carbon budget[J]. Science, 2009, 312: 1 612-1 613.
[15]Tarnocai C, Canadel J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23: GB2023, doi:10.1029/2008GB003327.
[16]Ping C, Michalson G J, Jorgenson M T, et al. High stocks of soil organic carbon in the North American Arctic region[J]. Nature Geoscience, 2008, 1: 615-619.
[17]Christensen T R, Johansson T, Akerman H J, et al. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions[J]. Geophysical Research Letters, 2004, 31: L04501.
[18]Slaymaker O, Richard E J K. The Cryosphere and Global Environmental Change[M]. Malden, MA: Blackwell Publishing, 2007.
[19]Grove J M. Glacier fluctuations and hazards[J]. The Geophysical Journal, 1987, 153(3): 351-369.
[20]Ding Yongjian, Liu Jingshi. Glacier lake outburst flood disasters in China[J]. Annals of Glaciology, 1992, 16: 180-190.
[21]Shen Yongping, Wang Guoya, Zhang Jian’gang, et al. Human activity impacts on local climate and water environments of Aksu River Oasis, South Xinjiang[J]. Arid Land Geography, 2008, 31(4): 524-534.[沈永平, 王国亚, 张建岗, 等.人类活动对阿克苏河绿洲气候及水文环境的影响[J]. 干旱区地理, 2008, 31(4): 524-534.]
[22]Reid W V, Catherine Bréchignac, Yuan Tseh Lee. Earth system research priorities[J]. Science, 2009, 325(5 938): 245.
[23]Reid W V, Chen D, Goldfarb L, et al. Earth system science for global sustainability: Grand challenges[J]. Science, 2010, 330(6 006): 916-917.
[24]Smit B, Wandel J. Adaptation, adaptation capacity and vulnerability[J]. Global Environmental Change, 2006, 16:282-292.
[25]Li Huilin, Li Zhongqin, Shen Yongping, et al. Glacier dynamic models and their applicability for the glaciers in China[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 201-208.[李慧林, 李忠勤, 沈永平, 等. 冰川动力学模式及其对中国冰川变化预测的适应性[J]. 冰川冻土, 2007, 29(2): 201-208.]
[1] 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
[2] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[3] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[4] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[5] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[6] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[7] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[8] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[9] 容新尧, 刘征宇, 段晚锁. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4): 382-395.
[10] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[11] 孙倩, 吴波, 周天军. 基于可预测模态分析技术的亚澳夏季风统计—动力季节预测模型及其回报技巧评估[J]. 地球科学进展, 2017, 32(4): 420-434.
[12] 周天军, 吴波. 年代际气候预测问题:科学前沿与挑战[J]. 地球科学进展, 2017, 32(4): 331-341.
[13] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[14] 王坚红, 丁晓敏, 薛峰, 苗春生. 气温增暖与趋冷变化阶段江淮汛期气旋气候特征对比研究[J]. 地球科学进展, 2017, 32(2): 160-173.
[15] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.