Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (8): 800-809    DOI: 10.11867/j.issn.1001-8166.2017.08.0800
应用地球化学专辑     
镁同位素体系在河流中的研究进展
董爱国, 韩贵琳*
中国地质大学(北京)科学研究院,北京 100083
A Review of Magnesium Isotope System in Rivers
Dong Aiguo, Han Guilin*
School of Scientific Research, China University of Geosciences (Beijing), Beijing 100083, China
 全文: PDF(2836 KB)   HTML
摘要:

近年来风化过程中镁同位素的研究取得了一系列重要进展,这些进展不仅有利于准确理解河流中镁同位素组成变化的机理,还为深入探讨镁同位素地球化学循环奠定了基础。河流既是风化过程中镁的汇,也是海洋中镁的源。流域河水的镁同位素组成主要与物源和迁移过程中镁同位素分馏有关。河水的镁主要来源于流域的岩石,也受风尘沉积、地下水、植物残骸、降雨降雪等因素的影响。河水迁移过程中镁同位素分馏过程主要为碳酸盐矿物沉淀和溶解、硅酸盐矿物水解、矿物或胶体物质的吸附作用以及植物的吸收作用。此外,水体中次生矿物的形成还可能反映了河流水化学参数(主量元素、CO2溶解度、pH等)的突变。因此,分析河水的镁同位素组成,探讨其主要的分馏过程,不仅是应用镁同位素示踪地表物质循环的基础,还对深入认识镁同位素的地球化学循环具有重要意义。

关键词: 镁同位素风化作用岩反应地球化学循环水&#x02014河流    
Abstract:

In recent years, a series of important progresses have been made in the aspect of magnesium isotopes behavior in weathering processes. These progresses are not only favorable to understand the change of the magnesium isotopic compositions in rivers, but also establish the foundation to further reveal the magnesium isotope geochemical cycle. The magnesium in rivers is both magnesium sink for weathering and magnesium source for the ocean. The Mg isotopic compositions in rivers are dominated by the magnesium sources and Mg isotope fractionations processes. The sources of magnesium in rivers originate mainly from draining rocks, as well as less contribution from the eolian deposition, groundwater, plant debris, and precipitation. The Mg isotope fractionations in rivers are mainly related to precipitation and dissolution of carbonate minerals, silicate mineral hydrolysis, adsorption on mineral or colloidal matter surface, and plant uptake. Generally, the contribution of carbonate minerals dissolution or precipitation is equal to add or reduce magnesium from carbonate endmember, which has a remarkably negative δ26Mg value. Based on the fact that most clay minerals are rich in 26Mg during nature silicate mineral hydrolysis, then it is possible to infer that residual weathering products enrich in 26Mg. However, there is no significant Mg isotope fractionation causing by the adsorption on mineral or colloidal matter surface during river water migration. For the plant uptake, the root prefers to have 26Mg, leading the plant itself rich in heavier Mg isotopic composition. In addition, formation of secondary minerals in rivers could also reflect the changes of chemical parameters in rivers (such as major elements, CO2 solubility, pH, etc.). Hence, Mg isotopic composition in rivers and associated isotope fractionations are not only the basis for the application of magnesium isotope to trace surface material cycle, but also have important significance for the further understanding the geochemical cycle of magnesium isotopes.

Key words: Water-rock reaction    Rivers    Geochemical cycle.    Weathering processes    Mg isotopes
收稿日期: 2017-03-23 出版日期: 2017-08-20
ZTFLH:  P592  
基金资助:

国家自然科学基金项目“环境地质”(编号:41325010); 国家自然科学基金国际合作项目“泰国Mun河流域物质循环的生物地球化学过程及水环境效应”(编号:41661144029)资助

通讯作者: 韩贵琳(1971-),女,江西上饶人,教授,主要从事环境地球化学研究.E-mail:hanguilin@cugb.edu.cn   
作者简介: 董爱国(1982-),男,内蒙古锡林浩特人,讲师,主要从事同位素地球化学研究.E-mail:aiguo.dong@cugb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董爱国
韩贵琳

引用本文:

董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.

Dong Aiguo, Han Guilin. A Review of Magnesium Isotope System in Rivers. Advances in Earth Science, 2017, 32(8): 800-809.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.08.0800        http://www.adearth.ac.cn/CN/Y2017/V32/I8/800

[1] Liu Yingjun, Cao Liming, Li Zhaolin, et al . Elementary Geochemistry[M]. Beijing: Geological Publishing House, 1987.
[刘英俊, 曹励明, 李兆麟, 等. 元素地球化学导论[M].北京:地质出版社, 1987.]
[2] Dong Aiguo, Zhu Xiangkun. Mg isotope geochemical cycle in supergene environment[J]. Advances in Earth Science , 2016, 31(1): 43-58.
[董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.]
[3] Galy A, Belshaw N S, Halicz L, et al. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry , 2001, 208(1): 89-98.
[4] Galy A, Bar-Matthews M, Halicz L, et al. Mg isotopic composition of carbonate: Insight from speleothem formation[J]. Earth and Planetary Science Letters , 2002, 201(1): 105-115.
[5] Galy A, Young E D, Ash R D, et al. The formation of chondrules at high gas pressures in the solar nebula[J]. Science , 2000, 290(5 497): 1 751-1 753.
[6] Tipper E, Galy A, Gaillardet J, et al. The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios[J]. Earth and Planetary Science Letters , 2006, 250(1/2): 241-253.
[7] Brenot A, Cloquet C, Vigier N, et al. Magnesium isotope systematics of the lithologically varied Moselle River Basin, France[J]. Geochimica et Cosmochimica Acta , 2008, 72(20): 5 070-5 089.
[8] Fan B, Zhao Z-Q, Tao F, et al. The geochemical behavior of Mg isotopes in the Huanghe Basin, China[J]. Chemical Geology , 2016, 426: 19-27.
[9] Lee S W, Ryu J S, Lee K S. Magnesium isotope geochemistry in the Han River, South Korea[J]. Chemical Geology , 2014, 364: 9-19.
[10] Wimpenny J, Burton K W, James R H, et al. The behaviour of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland[J]. Earth and Planetary Science Letters , 2011, 304(1): 260-269.
[11] Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature , 2014, 506(7 488): 307-315.
[12] Torres M A, West A J, Li G. Sulphide oxidation and carbonate dissolution as a source of CO 2 over geological timescales[J]. Nature , 2014, 507(7 492): 346-349.
[13] Pu Junbing, Jiang Zhongcheng, Yuan Daoxian, et al . Some opinions on rock-weathering-related carbon sinks from the IPCC fifthassessment report[J]. Advances in Earth Science , 2015,30(10): 1 081-1 090.
[蒲俊兵, 蒋忠诚, 袁道先, 等.岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015,30(10): 1 081-1 090.]
[14] Liu Congqiang, Jiang Yingkui, Tao Faxiang, et al. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Soutwest China[J]. Geochmica , 2008,37(4): 404-414.
[刘丛强, 蒋颖魁, 陶发祥, 等.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008,37(4): 404-414.]
[15] Chang V T C, Makishima A, Belshaw N S, et al. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry , 2003, 18(4): 296-301.
[16] Tipper E T, Louvat P, Capmas F, et al. Accuracy of stable Mg and Ca isotope data obtained by MC-ICP-MS using the standard addition method[J]. Chemical Geology , 2008, 257(1/2): 65-75.
[17] Teng F-Z, Wadhwa M, Helz R T. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle[J]. Earth and Planetary Science Letters , 2007, 261(1): 84-92.
[18] An Y, Wu F, Xiang Y, et al. High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS[J]. Chemical Geology , 2014, 390: 9-21.
[19] Wombacher F, Eisenhauer A, Heuser A, et al. Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and double-spike TIMS[J]. Journal of Analytical Atomic Spectrometry , 2009, 24(5): 627-636.
[20] Teng F Z, Li W Y, Ke S, et al. Magnesium isotopic compositions of international geological reference materials[J]. Geostandards and Geoanalytical Research , 2015, 39(3): 329-339.
[21] Huang F, Glessner J, Ianno A, et al. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS[J]. Chemical Geology , 2009, 268(1): 15-23.
[22] Bizzarro M, Paton C, Larsen K, et al. High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—Implications for the relative and absolute Mg-isotope composition of the bulk silicate earth[J]. Journal of Analytical Atomic Spectrometry ,2011, 26(3): 565-577.
[23] He Xuexian, Zhu Xiangkun, Li Shizhen, et al . High-precision measurement of magnesium isotopes using MC- ICPMS[J]. Acta Petrologica et Mineralogica , 2008, 27(5): 441-448.
[何学贤, 朱祥坤, 李世珍,等.多接收器等离子体质谱 (MC-ICP-MS) 测定Mg同位素方法研究[J]. 岩石矿物学杂志, 2008, 27(5): 441-448.]
[24] Teng F Z, Yang W. Comparison of factors affecting the accuracy of high-precision magnesium isotope analysis by multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry , 2014, 28(1): 19-24.
[25] Galy A, Yoffe O, Janney P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry , 2003, 18(11): 1 352-1 356.
[26] Zhu Xiangkun, Wang Yue, Yan Bin, et al . Developments of Non-traditional stable isotope geochemistry[J]. Bulletin of Mineralogy , Petrology and Geochemistry ,2013, 32(6): 651-688.
[朱祥坤, 王跃, 闫斌, 等.非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013,32(6): 651-688.]
[27] Ling M X, Sedaghatpour F, Teng F Z, et al. Homogeneous magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry , 2011, 25(19): 2 828-2 836.
[28] Foster G L, Pogge von Strandmann P A E, Rae J W B. Boron and magnesium isotopic composition of seawater[J]. Geochemistry Geophysics Geosystems , 2010, 11(8): Q08015,doi:10.1029/2010GC003201.
[29] Yan H, Harrington M D, Yang S, et al. Magnesium isotopic homogeneity of San Carlos olivine: A potential standard for Mg isotopic analysis by multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry Rcm , 2016, 30(19): 2 123-2 132.
[30] Shirokova L S, Mavromatis V, Bundeleva I A, et al. Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes[J]. Aquatic Geochemistry , 2013, 19(1): 1-24.
[31] Bolou-Bi E B, Vigier N, Poszwa A, et al. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France)[J]. Geochimica et Cosmochimica Acta , 2012, 87: 341-355.
[32] Riechelmann S, Buhl D, Schröder-Ritzrau A, et al. Hydrogeochemistry and fractionation pathways of Mg isotopes in a continental weathering system: Lessons from field experiments[J]. Chemical Geology , 2012,(300/301): 109-122.
[33] Tipper E T, Gaillardet J, Louvat P, et al. Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California[J]. Geochimica et Cosmochimica Acta , 2010, 74(14): 3 883-3 896.
[34] Tipper E T, Lemarchand E, Hindshaw R S, et al. Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream[J]. Chemical Geology , 2012,(312/313): 80-92.
[35] Ma L, Teng F Z, Jin L, et al. Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation[J]. Chemical Geology , 2015,(397): 37-50.
[36] Immenhauser A, Buhl D, Richter D, et al. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—Field study and experiments[J]. Geochimica et Cosmochimica Acta , 2010, 74(15): 4 346-4 364.
[37] Jacobson A D, Zhang Z, Lundstrom C, et al. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota[J]. Earth and Planetary Science Letters , 2010, 297(3): 446-452.
[38] Pogge von Strandmann P A E, Opfergelt S, Lai Y J, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters , 2012, 339/340: 11-23.
[39] Tipper E T, Galy A, Bickle M J. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?[J]. Geochimica et Cosmochimica Acta , 2008, 72(4): 1 057-1 075.
[40] Tipper E T, Calmels D, Gaillardet J, et al. Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering[J]. Earth and Planetary Science Letters , 2012, 333: 35-45.
[41] Mavromatis V, Rinder T, Prokushkin A S, et al. The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood[J]. Geochimica et Cosmochimica Acta , 2016,191:32-46.
[42] Pogge von Strandmann P A E, Burton K W, James R H, et al. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain[J]. Earth and Planetary Science Letters , 2008, 276(1/2): 187-197.
[43] Chen Jun, Wang Henian. Geochemistry[M]. Beijing: Science Press, 2004.
[陈骏, 王鹤年. 地球化学[M]. 北京:科学出版社,2004.]
[44] Bolou-Bi B E, Dambrine E, Angeli N, et al. Magnesium isotope variations to trace liming input to terrestrial ecosystems: A case study in the Vosges Mountains[J]. Journal of Environmental Quality , 2016, 45(1): 276-284.
[45] Huang K J, Teng F Z, Wei G J, et al. Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China[J]. Earth and Planetary Science Letters , 2012, 359/360: 73-83.
[46] Teng F Z, Li W Y, Rudnick R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters , 2010, 300(1): 63-71.
[47] Lara M C, Buss H L, Pogge von Strandmann P A E, et al. Controls on the Mg cycle in the tropics: Insights from a case study at the Luquillo Critical Zone observatory[J]. Procedia Earth and Planetary Science , 2014, 10: 200-203.
[48] Fan B, Zhao Z, Tao F, et al. The geochemical behavior of Mg isotopes in the Huanghe Basin, China[J]. Chemical Geology , 2016, 426: 19-27.
[49] De Villiers S, Dickson J, Ellam R. The composition of the continental river weathering flux deduced from seawater Mg isotopes[J]. Chemical Geology , 2005, 216(1): 133-142.
[50] Saulnier S, Rollion-Bard C, Vigier N, et al. Mg isotope fractionation during calcite precipitation: An experimental study[J]. Geochimica et Cosmochimica Acta , 2012, 91: 75-91.
[51] Mavromatis V, Gautier Q, Bosc O, et al. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta , 2013, 114: 188-203.
[52] Pearce C R, Saldi G D, Schott J, et al. Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: Evidence from Mg isotopes[J]. Geochimica et Cosmochimica Acta , 2012, 92: 170-183.
[53] Li W, Beard B L, Li C, et al. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J]. Geochimica et Cosmochimica Acta , 2015, 157: 164-181.
[54] Mavromatis V, Pearce C R, Shirokova L S, et al. Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria[J]. Geochimica et Cosmochimica Acta , 2012, 76: 161-174.
[55] Wang Z, Hu P, Gaetani G, et al. Experimental calibration of Mg isotope fractionation between aragonite and seawater[J]. Geochimica et Cosmochimica Acta , 2013,(102): 113-123.
[56] Geske A, Goldstein R, Mavromatis V, et al. The magnesium isotope (δ 26 Mg) signature of dolomites[J]. Geochimica et Cosmochimica Acta , 2015, 149: 131-151.
[57] Liu C, Wang Z, Raub T D, et al. Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume[J]. Earth and Planetary Science Letters , 2014, 404: 22-32.
[58] Ryu J S, Vigier N, Decarreau A, et al. Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation[J]. Chemical Geology , 2016,445:135-145.
[59] Ryu J S, Jacobson A D, Holmden C, et al. The major ion, δ 44/40 Ca, δ 44/42 Ca, and δ 26/24 Mg geochemistry of granite weathering at pH=1 and T=25 ℃: Power-law processes and the relative reactivity of minerals[J]. Geochimica et Cosmochimica Acta , 2011, 75(20): 6 004-6 026.
[60] Wimpenny J, Colla C A, Yin Q, et al. Investigating the behaviour of Mg isotopes during the formation of clay minerals[J]. Geochimica et Cosmochimica Acta , 2014, 128: 178-194.
[61] Bolou-Bi E B, Poszwa A, Leyval C, et al. Experimental determination of magnesium isotope fractionation during higher plant growth[J]. Geochimica et Cosmochimica Acta , 2010, 74(9): 2 523-2 537.
[62] Black J R, Epstein E, Rains W D, et al. Magnesium-isotope fractionation during plant growth[J]. Environmental Science & Technology , 2008, 42(21): 7 831-7 836.

[1] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[2] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[3] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[4] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[5] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[6] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[7] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[8] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[9] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[10] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[11] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[12] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[13] 张惠, 张志强. 民勤县经济发展与生态环境的定量关系研究[J]. 地球科学进展, 2014, 29(5): 632-639.
[14] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[15] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.