地球科学进展 ›› 2017, Vol. 32 ›› Issue (8): 800 -809. doi: 10.11867/j.issn.1001-8166.2017.08.0800

上一篇    下一篇

镁同位素体系在河流中的研究进展
董爱国( ), 韩贵琳 *( )   
  1. 中国地质大学(北京)科学研究院,北京 100083
  • 收稿日期:2017-03-23 修回日期:2017-05-31 出版日期:2017-10-20
  • 通讯作者: 韩贵琳 E-mail:aiguo.dong@cugb.edu.cn;hanguilin@cugb.edu.cn
  • 基金资助:
    国家自然科学基金项目“环境地质”(编号:41325010);国家自然科学基金国际合作项目“泰国Mun河流域物质循环的生物地球化学过程及水环境效应”(编号:41661144029)资助

A Review of Magnesium Isotope System in Rivers

Aiguo Dong( ), Guilin Han *( )   

  1. School of Scientific Research, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2017-03-23 Revised:2017-05-31 Online:2017-10-20 Published:2017-08-20
  • Contact: Guilin Han E-mail:aiguo.dong@cugb.edu.cn;hanguilin@cugb.edu.cn
  • About author:

    First author:Dong Aiguo(1982-), male, Xilinhaote City,Nei Monggol Autonomous Region, Lecturer. Research areas include stable isotope geochemistry.E-mail:aiguo.dong@cugb.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Environmental geology” (No.41325010) and “Biogeochemical processes of the material cycle and the effect of the water environment in Mun River, Thailand” (No.41661144029)

近年来风化过程中镁同位素的研究取得了一系列重要进展,这些进展不仅有利于准确理解河流中镁同位素组成变化的机理,还为深入探讨镁同位素地球化学循环奠定了基础。河流既是风化过程中镁的汇,也是海洋中镁的源。流域河水的镁同位素组成主要与物源和迁移过程中镁同位素分馏有关。河水的镁主要来源于流域的岩石,也受风尘沉积、地下水、植物残骸、降雨降雪等因素的影响。河水迁移过程中镁同位素分馏过程主要为碳酸盐矿物沉淀和溶解、硅酸盐矿物水解、矿物或胶体物质的吸附作用以及植物的吸收作用。此外,水体中次生矿物的形成还可能反映了河流水化学参数(主量元素、CO2溶解度、pH等)的突变。因此,分析河水的镁同位素组成,探讨其主要的分馏过程,不仅是应用镁同位素示踪地表物质循环的基础,还对深入认识镁同位素的地球化学循环具有重要意义。

In recent years, a series of important progresses have been made in the aspect of magnesium isotopes behavior in weathering processes. These progresses are not only favorable to understand the change of the magnesium isotopic compositions in rivers, but also establish the foundation to further reveal the magnesium isotope geochemical cycle. The magnesium in rivers is both magnesium sink for weathering and magnesium source for the ocean. The Mg isotopic compositions in rivers are dominated by the magnesium sources and Mg isotope fractionations processes. The sources of magnesium in rivers originate mainly from draining rocks, as well as less contribution from the eolian deposition, groundwater, plant debris, and precipitation. The Mg isotope fractionations in rivers are mainly related to precipitation and dissolution of carbonate minerals, silicate mineral hydrolysis, adsorption on mineral or colloidal matter surface, and plant uptake. Generally, the contribution of carbonate minerals dissolution or precipitation is equal to add or reduce magnesium from carbonate endmember, which has a remarkably negative δ26Mg value. Based on the fact that most clay minerals are rich in 26Mg during nature silicate mineral hydrolysis, then it is possible to infer that residual weathering products enrich in 26Mg. However, there is no significant Mg isotope fractionation causing by the adsorption on mineral or colloidal matter surface during river water migration. For the plant uptake, the root prefers to have 26Mg, leading the plant itself rich in heavier Mg isotopic composition. In addition, formation of secondary minerals in rivers could also reflect the changes of chemical parameters in rivers (such as major elements, CO2 solubility, pH, etc.). Hence, Mg isotopic composition in rivers and associated isotope fractionations are not only the basis for the application of magnesium isotope to trace surface material cycle, but also have important significance for the further understanding the geochemical cycle of magnesium isotopes.

中图分类号: 

图1 部分河流及其相关储库的镁同位素组成
(a)~(e)数据来源于参考文献[2];(f)数据来源于参考文献[23,30];(g)数据来源文献[31~34];(h)数据来源于参考文献[4,6,33~37];(i)来源于参考文献[31~35,38];(j)~(t)数据来源于参考文献[6~10,31,34,39~42]
Fig.1 Magnesium isotopic compositions of some rivers and their associated reservoirs
Data source (a)~(e)from reference[2];(f)from references[23,30];(g)from references[31~34];(h)from references[4,6,33~37]; (i)from references[31~35,38];(j)~(t)from references[6~10,31,34,39~42]
图2 河水镁同位素组成的主要影响因素
Fig.2 The controlling factors for the Mg isotopic composition of river water
[1] Liu Yingjun, Cao Liming, Li Zhaolin, et al.Elementary Geochemistry[M]. Beijing: Geological Publishing House, 1987.
[刘英俊, 曹励明, 李兆麟, 等. 元素地球化学导论[M].北京:地质出版社, 1987.]
[2] Dong Aiguo, Zhu Xiangkun.Mg isotope geochemical cycle in supergene environment[J]. Advances in Earth Science, 2016, 31(1): 43-58.
[董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.]
[3] Galy A, Belshaw N S, Halicz L, et al.High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208(1): 89-98.
[4] Galy A, Bar-Matthews M, Halicz L, et al.Mg isotopic composition of carbonate: Insight from speleothem formation[J]. Earth and Planetary Science Letters, 2002, 201(1): 105-115.
[5] Galy A, Young E D, Ash R D, et al.The formation of chondrules at high gas pressures in the solar nebula[J]. Science, 2000, 290(5 497): 1 751-1 753.
[6] Tipper E, Galy A, Gaillardet J, et al.The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 241-253.
[7] Brenot A, Cloquet C, Vigier N, et al.Magnesium isotope systematics of the lithologically varied Moselle River Basin, France[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 5 070-5 089.
[8] Fan B, Zhao Z-Q, Tao F, et al.The geochemical behavior of Mg isotopes in the Huanghe Basin, China[J]. Chemical Geology, 2016, 426: 19-27.
[9] Lee S W, Ryu J S, Lee K S.Magnesium isotope geochemistry in the Han River, South Korea[J]. Chemical Geology, 2014, 364: 9-19.
[10] Wimpenny J, Burton K W, James R H, et al.The behaviour of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland[J]. Earth and Planetary Science Letters, 2011, 304(1): 260-269.
[11] Lyons T W, Reinhard C T, Planavsky N J.The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7 488): 307-315.
[12] Torres M A, West A J, Li G.Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales[J]. Nature, 2014, 507(7 492): 346-349.
[13] Pu Junbing, Jiang Zhongcheng, Yuan Daoxian, et al.Some opinions on rock-weathering-related carbon sinks from the IPCC fifthassessment report[J]. Advances in Earth Science, 2015,30(10): 1 081-1 090.
[蒲俊兵, 蒋忠诚, 袁道先, 等.岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015,30(10): 1 081-1 090.]
[14] Liu Congqiang, Jiang Yingkui, Tao Faxiang, et al.Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Soutwest China[J]. Geochmica, 2008,37(4): 404-414.
[刘丛强, 蒋颖魁, 陶发祥, 等.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008,37(4): 404-414.]
[15] Chang V T C, Makishima A, Belshaw N S, et al. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(4): 296-301.
[16] Tipper E T, Louvat P, Capmas F, et al.Accuracy of stable Mg and Ca isotope data obtained by MC-ICP-MS using the standard addition method[J]. Chemical Geology, 2008, 257(1/2): 65-75.
[17] Teng F-Z, Wadhwa M, Helz R T.Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle[J]. Earth and Planetary Science Letters, 2007, 261(1): 84-92.
[18] An Y, Wu F, Xiang Y, et al.High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS[J]. Chemical Geology, 2014, 390: 9-21.
[19] Wombacher F, Eisenhauer A, Heuser A, et al.Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and double-spike TIMS[J].Journal of Analytical Atomic Spectrometry, 2009, 24(5): 627-636.
[20] Teng F Z, Li W Y, Ke S, et al.Magnesium isotopic compositions of international geological reference materials[J]. Geostandards and Geoanalytical Research, 2015, 39(3): 329-339.
[21] Huang F, Glessner J, Ianno A, et al.Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS[J]. Chemical Geology, 2009, 268(1): 15-23.
[22] Bizzarro M, Paton C, Larsen K, et al.High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—Implications for the relative and absolute Mg-isotope composition of the bulk silicate earth[J]. Journal of Analytical Atomic Spectrometry,2011, 26(3): 565-577.
[23] He Xuexian, Zhu Xiangkun, Li Shizhen, et al.High-precision measurement of magnesium isotopes using MC- ICPMS[J]. Acta Petrologica et Mineralogica, 2008, 27(5): 441-448.
[何学贤, 朱祥坤, 李世珍,等.多接收器等离子体质谱 (MC-ICP-MS) 测定Mg同位素方法研究[J]. 岩石矿物学杂志, 2008, 27(5): 441-448.]
[24] Teng F Z, Yang W.Comparison of factors affecting the accuracy of high-precision magnesium isotope analysis by multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2014, 28(1): 19-24.
[25] Galy A, Yoffe O, Janney P E, et al.Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(11): 1 352-1 356.
[26] Zhu Xiangkun, Wang Yue, Yan Bin, et al.Developments of Non-traditional stable isotope geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2013, 32(6): 651-688.
[朱祥坤, 王跃, 闫斌, 等.非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013,32(6): 651-688.]
[27] Ling M X, Sedaghatpour F, Teng F Z, et al.Homogeneous magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2011, 25(19): 2 828-2 836.
[28] Foster G L, Pogge von Strandmann P A E, Rae J W B. Boron and magnesium isotopic composition of seawater[J]. Geochemistry Geophysics Geosystems, 2010, 11(8): Q08015,doi:10.1029/2010GC003201.
[29] Yan H, Harrington M D, Yang S, et al.Magnesium isotopic homogeneity of San Carlos olivine: A potential standard for Mg isotopic analysis by multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry Rcm, 2016, 30(19): 2 123-2 132.
[30] Shirokova L S, Mavromatis V, Bundeleva I A, et al.Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes[J]. Aquatic Geochemistry, 2013, 19(1): 1-24.
[31] Bolou-Bi E B, Vigier N, Poszwa A, et al. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France)[J]. Geochimica et Cosmochimica Acta, 2012, 87: 341-355.
[32] Riechelmann S, Buhl D, Schröder-Ritzrau A, et al.Hydrogeochemistry and fractionation pathways of Mg isotopes in a continental weathering system: Lessons from field experiments[J]. Chemical Geology, 2012,(300/301): 109-122.
[33] Tipper E T, Gaillardet J, Louvat P, et al.Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3 883-3 896.
[34] Tipper E T, Lemarchand E, Hindshaw R S, et al.Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream[J]. Chemical Geology, 2012,(312/313): 80-92.
[35] Ma L, Teng F Z, Jin L, et al.Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation[J]. Chemical Geology, 2015,(397): 37-50.
[36] Immenhauser A, Buhl D, Richter D, et al.Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—Field study and experiments[J]. Geochimica et Cosmochimica Acta, 2010, 74(15): 4 346-4 364.
[37] Jacobson A D, Zhang Z, Lundstrom C, et al.Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota[J]. Earth and Planetary Science Letters, 2010, 297(3): 446-452.
[38] Pogge von Strandmann P A E, Opfergelt S, Lai Y J, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters , 2012, 339/340: 11-23.
[39] Tipper E T, Galy A, Bickle M J.Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1 057-1 075.
[40] Tipper E T, Calmels D, Gaillardet J, et al.Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering[J]. Earth and Planetary Science Letters, 2012, 333: 35-45.
[41] Mavromatis V, Rinder T, Prokushkin A S, et al.The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood[J]. Geochimica et Cosmochimica Acta, 2016,191:32-46.
[42] Pogge von Strandmann P A E, Burton K W, James R H, et al. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain[J]. Earth and Planetary Science Letters, 2008, 276(1/2): 187-197.
[43] Chen Jun, Wang Henian.Geochemistry[M]. Beijing: Science Press, 2004.
[陈骏, 王鹤年. 地球化学[M]. 北京:科学出版社,2004.]
[44] Bolou-Bi B E, Dambrine E, Angeli N, et al. Magnesium isotope variations to trace liming input to terrestrial ecosystems: A case study in the Vosges Mountains[J]. Journal of Environmental Quality, 2016, 45(1): 276-284.
[45] Huang K J, Teng F Z, Wei G J, et al. Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China[J].Earth and Planetary Science Letters , 2012, 359/360: 73-83.
[46] Teng F Z, Li W Y, Rudnick R L, et al.Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters, 2010, 300(1): 63-71.
[47] Lara M C, Buss H L, Pogge von Strandmann P A E, et al. Controls on the Mg cycle in the tropics: Insights from a case study at the Luquillo Critical Zone observatory[J]. Procedia Earth and Planetary Science, 2014, 10: 200-203.
[48] Fan B, Zhao Z, Tao F, et al.The geochemical behavior of Mg isotopes in the Huanghe Basin, China[J]. Chemical Geology, 2016, 426: 19-27.
[49] De Villiers S, Dickson J, Ellam R.The composition of the continental river weathering flux deduced from seawater Mg isotopes[J]. Chemical Geology, 2005, 216(1): 133-142.
[50] Saulnier S, Rollion-Bard C, Vigier N, et al.Mg isotope fractionation during calcite precipitation: An experimental study[J]. Geochimica et Cosmochimica Acta, 2012, 91: 75-91.
[51] Mavromatis V, Gautier Q, Bosc O, et al.Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 2013, 114: 188-203.
[52] Pearce C R, Saldi G D, Schott J, et al.Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: Evidence from Mg isotopes[J]. Geochimica et Cosmochimica Acta, 2012, 92: 170-183.
[53] Li W, Beard B L, Li C, et al.Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J]. Geochimica et Cosmochimica Acta, 2015, 157: 164-181.
[54] Mavromatis V, Pearce C R, Shirokova L S, et al.Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria[J]. Geochimica et Cosmochimica Acta, 2012, 76: 161-174.
[55] Wang Z, Hu P, Gaetani G, et al.Experimental calibration of Mg isotope fractionation between aragonite and seawater[J]. Geochimica et Cosmochimica Acta, 2013,(102): 113-123.
[56] Geske A, Goldstein R, Mavromatis V, et al.The magnesium isotope (δ26Mg) signature of dolomites[J]. Geochimica et Cosmochimica Acta, 2015, 149: 131-151.
[57] Liu C, Wang Z, Raub T D, et al.Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume[J]. Earth and Planetary Science Letters, 2014, 404: 22-32.
[58] Ryu J S, Vigier N, Decarreau A, et al.Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation[J]. Chemical Geology, 2016,445:135-145.
[59] Ryu J S, Jacobson A D, Holmden C, et al.The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg geochemistry of granite weathering at pH=1 and T=25 ℃: Power-law processes and the relative reactivity of minerals[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6 004-6 026.
[60] Wimpenny J, Colla C A, Yin Q, et al.Investigating the behaviour of Mg isotopes during the formation of clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 128: 178-194.
[61] Bolou-Bi E B, Poszwa A, Leyval C, et al. Experimental determination of magnesium isotope fractionation during higher plant growth[J]. Geochimica et Cosmochimica Acta, 2010, 74(9): 2 523-2 537.
[62] Black J R, Epstein E, Rains W D, et al.Magnesium-isotope fractionation during plant growth[J]. Environmental Science & Technology, 2008, 42(21): 7 831-7 836.
[1] 袁媛, 庄光超, 毛士海, 刘佳睿, 刘喜停, 杨桂朋. 海洋环境中乙烷和丙烷的分布及生物转化[J]. 地球科学进展, 2022, 37(4): 370-381.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398.
[4] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[5] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[6] 刘芬良, 高红山, 李宗盟, 潘保田, 苏怀. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.
[7] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[8] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[9] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[10] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[11] 邓伟, 赵伟, 刘斌涛, 南希, 孔博. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.
[12] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[13] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[14] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[15] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
阅读次数
全文


摘要