地球科学进展 ›› 2017, Vol. 32 ›› Issue (7): 731 -743. doi: 10.11867/j.issn.1001-8166.2017.07.0731

研究论文 上一篇    下一篇

干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例
李育, 刘媛   
  1. 兰州大学西部环境教育部重点实验室,兰州大学资源环境学院,兰州大学干旱区水循环与水资源研究中心,甘肃 兰州 730000
  • 收稿日期:2017-03-15 修回日期:2017-06-25 出版日期:2017-07-20
  • 基金资助:
    国家自然科学基金面上项目“石羊河流域千年尺度垂直地带性规律与定量重建模型构建”(编号:41571178)和“风成沉积环境与水循环对流域性千年尺度气候变化的响应——以石羊河流域为例”(编号:41371009)资助

Long-term Reconstructions and Simulations of the Hydrological Cycle in the Inland Rivers, Arid China: A Case Study of the Shiyang River Drainage Basin

Li Yu, Liu Yuan   

  1. Key Laboratory of Western China’s Environmental Systems(Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region,Lanzhou University,Lanzhou 730000,China
  • Received:2017-03-15 Revised:2017-06-25 Online:2017-07-20 Published:2017-07-20
  • About author:Li Yu(1981-), male, Lanzhou City, Gansu Province, Professor. Reserch area include paleoclimate change.E-mail:liyu@lzu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Construction of millennium scale vertical zonality laws and quantitative reconstruction model in the Shiyang River drainage basin”(No.41571178) and “The response of aeolian sediments environment and hydrologic cycle to millennial-scale climate change of basin: A case study of the Shiyang River drainage basin”(No.41371009)
干旱区内流河流域水循环是干旱区古气候研究的热点,前人做了大量研究,但大部分研究主要利用气候代用指标重建古气候与古环境演化规律,长时间尺度模拟与重建对比研究较少。以石羊河流域为研究对象,在石羊河流域古环境记录基础上结合古气候模拟、全新世古季风模拟、湖泊能量与水量平衡模拟,古降水量和古径流量定量重建等方法,系统地模拟重建全新世时期石羊河流域水循环。可以看出模拟结果与重建结果具有很好的一致性,均指示中全新世是全新世“气候适宜期”。为干旱区流域性气候变化重建与模拟研究提供了新的视角。
Hydrological cycles of inland rivers are highlighted in paleoclimate studies of arid regions. A great number of studies have been published in this regard, but most of the studies have mainly used climate proxies to reconstruct the evolution of paleoclimate and paleoenvironment, and there have been little long-term simulation and reconstruction experiments. Concerning this issue, we systematically carried out the long-term reconstruction and simulation experiments of hydrological cycle based on paleoenvironment records of the Shiyang River drainage basin with a lot of methods such as paleoclimate simulations, the Holocene monsoon simulations, lake water and energy balance model and quantitative reconstruction of paleo-precipitation and paleo-runoff. The results showed that the simulation results had a good consistency with the reconstruction results, indicating that mid-Holocene was “climatic optimum” in the Holocene. This research provided a new perspective for reconstruction and simulation studies of climate change in arid areas.

中图分类号: 

[1] Allen M R, Ingram W J. Constraints on future changes in climate and the hydrologic cycle[J]. Nature , 2002, 419(6 903): 224-232.
[2] Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Earth and Planetary Sciences , 1996, 24(24): 225-262.
[3] Chen F, Xu Q, Chen J, et al . East Asian summer monsoon precipitation variability since the Last Deglaciation[J]. Scientific Reports , 2015, 5: 11 186.
[4] Zhao Y, An C B, Mao L, et al . Vegetation and climate history in arid western China during MIS2: New insights from pollen and grain-size data of the Balikun lake, eastern Tien Shan[J]. Quaternary Science Reviews , 2015, 126: 112-125.
[5] An Z, Colman S M, Zhou W, et al . Interplay between the Westerlies and Asian monsoon recorded in lake Qinghai sediments since 32 ka[J]. Scientific Reports , 2012, 2(8): 619.
[6] Zhou W, Liu T, Wang H, et al . Geological record of meltwater events at Qinghai Lake, China from the past 40 ka[J]. Quaternary Science Reviews , 2016, 149: 279-287.
[7] Liu Z, Wen X, Brady E C, et al . Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews , 2014, 83(1): 115-128.
[8] Liu X, Vandenberghe J, An Z, et al . Grain size of Lake Qinghai sediments: Implications for riverine input and Holocene monsoon variability[J]. Palaeogeography Palaeoclimatology Palaeoecology , 2016, 449: 41-51.
[9] An Z, Clemens S C, Shen J, et al . Glacial-interglacial Indian summer monsoon dynamics[J]. Science , 2011, 333(6 043): 719-723.
[10] Li Y, Wang N, Morrill C, et al . Millennial-scale erosion rates in three inland drainage basins and their controlling factors since the Last Deglaciation, arid China[J]. Palaeogeography Palaeoclimatology Palaeoecology , 2012,365/366(9): 263-275.
[11] Mischke S, Lai Z, Long H, et al . Holocene climate and landscape change in the northeastern Tibetan Plateau foreland inferred from the Zhuyeze Lake record[J]. Holocene , 2016, 26(4):643-654.
[12] Yu L P, Lai Z P. Holocene climate change inferred from stratigraphy and OSL chronology of aeolian sediments in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Research , 2014, 81(3): 488-499.
[13] Zhang H C, Ma Y Z, Wunnemann B, et al . A Holocene climatic record from arid northwestern China[J]. Palaeogeography Palaeoclimatology Palaeoecology , 2000, 162(3): 389-401.
[14] Bibi M H, Ahmed F, Ishiga H. Distribution of arsenic and other trace elements in the Holocene sediments of the Meghna River Delta, Bangladesh[J]. Environmental Geology , 2006, 50(8): 1 243-1 253.
[15] Li Y, Wang N A, Cheng H Y, et al . Holocene environmental change in the marginal area of the Asian monsoon: A record from Zhuye lake, NW China[J]. Boreas , 2009, 38(2): 349-361.
[16] Li Y,Wang N A,Morrill C, et al .Environmental change implied by the relationship between pollen assemblages and grain-size in N.W.Chinese lake sediments since the Late Glacial[J]. Review of Palaeobotany & Palynology ,2009,154(1/4):54-64.
[17] Long H, Lai Z P, Fuchs M, et al . Timing of Late Quaternary palaeolake evolution in Tengger Desert of northern China and its possible forcing mechanisms[J]. Global & Planetary Change , 2012, 92/93(4): 119-129.
[18] Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50 000 years[J]. Quaternary Science Reviews , 2006, 25(1/2): 163-178.
[19] An C B, Feng Z D, Barton L. Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China[J]. Quaternary Science Reviews , 2006, 25(3): 351-361.
[20] Qin B, Yu G. Implications of lake level variations at 6 ka and 18 ka in mainland Asia[J]. Global & Planetary Change , 1998, 18(1/2): 59-72.
[21] Yu G, Xue B, Liu J, et al . LGM lake records from China and an analysis of climate dynamics using a modelling approach[J]. Global & Planetary Change , 2003, 38(3/4): 223-256.
[22] Huo Z L, Feng S Y, Kang S Z, et al . Effect of climate changes and water-related human activities on annual stream flows of the Shiyang River Basin in arid north-west China[J]. Hydrological Processes , 2008, 22(16): 3 155-3 167.
[23] Liu Y, Li Y. Quantitative reconstruction of precipitation and runoff during MIS 5a, MIS 3a, and Holocene, arid China[J]. Theoretical & Applied Climatology , 2016,24(2): 1-8.
[24] Chen Fahu, Zhu Yan, Wunemann B, et al . Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales: Evidence from lake sediment document in Minqin Basin, NW China[J]. Chinese Science Bulletin , 2001, 46(23): 1 414-1 419.
. 科学通报, 2001, 46(17): 1 414-1 419.]
[25] Jiang Qingfeng, Shen Ji, Liu Xingqi, et al . Environmental changes recorded by lake sediments fromlake Jili, Xinjiang during the past 2500 years[J]. Journal of Lake Sciences , 2010, 22(1): 119-126.
. 湖泊科学, 2010, 22(1): 119-126.]
[26] Li Y, Wang Y, Zhang C. Interactions among millennial-scale geomorphic processes in different parts of a drainage basin, arid China[J]. Physical Geography , 2015,36(5): 1-28.
[27] Li Y, Zhang C, Wang Y. The verification of millennial-scale monsoon water vapor transport channel in northwest China[J]. Journal of Hydrology , 2016, 536: 273-283.
[28] Li Y,Wang N A,Zhang C Q, et al .Early Holocene environment at a key location of the northwest boundary of the Asian summer monsoon:A synthesis on chronologies of Zhuyelake,Northwest China[J]. Journal of Arid Land ,2014,6(5):511-528.
[29] Li Y, Morrill C. A Holocene East Asian winter monsoon record at the southern edge of the Gobi Desert and its comparison with a transient simulation[J]. Climate Dynamics , 2015, 45(5/6): 1 219-1 234.
[30] Li Y, Xu L. Asynchronous Holocene Asian monsoon vapor transport and precipitation[J]. Palaeogeography Palaeoclimatology Palaeoecology , 2016, 461: 195-200.
[31] Wang Y, Li Y, Zhang C. Holocene millennial-scale erosion and deposition processes in the middle reaches of inland drainage basins, arid China[J]. Environmental Earth Sciences , 2016, 75(6) :1-15.
[32] Li Yu, Wang Yue, Zhang Chengqi, et al . Changes of sedimentary facies and Holocene environments in the middle reaches of inland rivers, arid China: A case study of the Shiyang River[J]. Geographical Research , 2014, 33(10): 1 866-1 880.
. 地理研究, 2014, 33(10): 1 866-1 880.]
[33] Li Yu, Wang Naiang, Li Zhuolun, et al . The relationship among organic geochemical proxies and their palaeoenvironmental significances in the Zhuye Lake sediments[J]. Journal of Glaciology and Geocryology , 2011, 33(2): 334-341.
. 冰川冻土, 2011, 33(2): 334-341.]
[34] Li Yu, Wang Naiang, Li Zhuolun, et al .Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin[J]. Chinese Science Bulletin , 2011, 56(6): 535-546.
. 科学通报, 2011,56(2): 161-173.]
[35] Zhang Chengqi, Li Yu, Zhou Xuehua, et al . A sedimentological interpretation of the inverse correlation between saline mineral and detritals mineral in the Late Quaternary lake sediments[J]. Journal of Glaciology and Geocryology , 2015, 37(1): 95-108.
. 冰川冻土, 2015, 37(1): 95-108.]
[36] Berger A. Long-term variations of caloric insolation resulting from the Earth’s orbital elements[J]. Quaternary Research , 1978, 9(2): 139-167.
[37] Fluckiger J, Dallenbach A, Blunier T, et al . Variations in atmospheric N 2 O concentration during abrupt climatic changes[J]. Science , 1999, 285(5 425): 227-230.
[38] Flückiger J, Monnin E, Stauffer B, et al . High-resolution Holocene N 2 O ice core record and its relationship with CH 4 and CO 2 [J]. Global Biogeochemical Cycles , 2002, 16(1): 10-1-10-8.
[39] Monnin E, Steig E J, Siegenthaler U, et al . Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO 2 , in the Taylor Dome, Dome C and DML ice cores[J]. Earth & Planetary Science Letters , 2004, 224(1/2): 45-54.
[40] Peltier W R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and Grace[J]. Annual Review of Earth and Planetary Sciences , 2004, 20(32): 111-149.
[41] Jin Liya, Bette L O. Advances of PMIP in the last 10 years and its key themes of future research plan[J]. Quaternary Sciences , 2009, 29(6): 1 015-1 024.
. 第四纪研究, 2009, 29(6): 1 015-1 024.]
[42] Wang T, Wang H, Jiang D. Mid-Holocene East Asian summer climate as simulated by the PMIP2 models[J]. Palaeogeography Palaeoclimatology Palaeoecology , 2010, 288(4): 93-102.
[43] Mason I M, Guzkowska M A J, Rapley C G, et al . The response of lake levels and areas to climatic change[J]. Climatic Change , 1994, 27(2): 161-197.
[44] Hostetler S W, Bartlein P J. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon[J]. Water Resources Research , 1990, 26(10): 2 603-2 612.
[45] Budyko M. Climate and Life[M].New York USA: Academic Press, 1974.
[46] Zheng W, Wu B, He J, et al . The East Asian Summer Monsoon at mid-Holocene: Results from PMIP3 simulations[J]. Climate of the Past Discussions , 2013, 8(4): 3 251-3 276.
[47] Chen Jian, Lu Dinghuang. Division of monsoon climatic regions in China[J]. Biomedical and Environmental Science , 1981,(4): 1-8.
. 北京林业大学学报, 1981,(4): 1-8.]
[48] Wang B, Ding Q. Changes in global monsoon precipitation over the past 56 years[J]. Geophysical Research Letters , 2006, 33(6): 272-288.
[49] Liu J, Kuang X Y, Wang B, et al . Centennial variations of the global monsoon precipitation in the Last Millennium: Results from ECHO-G Model[J]. Journal of Climate , 2009, 22: 2 356-2 371.
[50] Chen F H, Yu Z C, Yang M L, et al . Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews , 2008, 27(3): 351-364.
[51] Li Y, Morrill C. Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments[J]. Climate Dynamics , 2010, 35: 1 119-1 132.
[52] Wang Keli, Jiang Hao, Zhao Hongyan. Atmospheric water vapor transport from westerly and monsoon over the Northwest China[J]. Advances in Water Science , 2005, 16(3): 432-438.
. 水科学进展, 2005, 16(3): 432-438.]
[53] Li Jijun. The patterns of environmental changes since Late Pleistocene in northwestern China[J]. Quaternary Sciences , 1990,(3): 197-204.
. 第四纪研究, 1990,(3): 197-204.]
[54] Chen F H, Cheng B, Zhao Y, et al . Holocene environmental change inferred from a high-resolution pollen record, lake Zhuyeze, arid China[J]. Holocene , 2006, 16(5): 675-684.
[55] Li Y, Wang N A, Li Z L, et al. Comprehensive analysis of lake sediments in Yanchi Lake of Hexi Corridor since the late glacial[J]. Acta Geographica Sinica , 2013, 68(7): 933-944.
[56] Zhu L, Zhen X, Wang J, et al . A ~30,000-year record of environmental changes inferred from Lake Chen Co, southern Tibet[J]. Journal of Paleolimnology , 2009, 42(3): 343-358.
[57] Wang R L, Scarpitta S C, Zhang S C, et al . Later Pleistocene/Holocene climate conditions of Qinghai-Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments[J]. Earth and Planetary Science Letters , 2002, 203(1): 461-477.
[58] Shen J, Liu X, Wang S, et al . Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years[J]. Quaternary International , 2005, 136(1): 131-140.
[59] Dykoski C A, Edwards R L, Cheng H, et al . A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters , 2005, 233(1/2): 71-86.
[60] Yancheva G, Nowaczyk N R, Mingram J, et al . Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature , 2007, 445(7 123): 74-77.
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[3] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[4] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[5] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[6] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[7] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[8] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[9] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[10] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[11] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[12] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[13] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[14] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[15] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
阅读次数
全文


摘要