地球科学进展 ›› 2006, Vol. 21 ›› Issue (1): 77 -82. doi: 10.11867/j.issn.1001-8166.2006.01.0077

综述与评述 上一篇    下一篇

微生物对砷的地球化学行为的影响——暨地下水砷污染机制的最新研究进展
洪斌   
  1. 中国医学科学院医药生物技术研究所,北京 100050
  • 收稿日期:2005-03-17 修回日期:2005-07-18 出版日期:2006-01-15
  • 通讯作者: 洪斌 E-mail:binhong69@hotmail.com

Influence of Microbes on Biogeochemistry of Arsenic—Mechanism of Arsenic Mobilization in Groundwater

Hong Bin   

  1. Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
  • Received:2005-03-17 Revised:2005-07-18 Online:2006-01-15 Published:2006-01-15

砷在自然界中广泛存在,近年来砷污染对人类健康造成的危害越来越引人关注。微生物在自然界中长期与砷共存,进化出不同的生物转化机制,在自然水体中微生物主要参与砷的不同氧化价态之间的转化过程,即As(V)和As(III)之间的氧化还原作用。砷酸盐异化还原菌(Dissimilatory Arsenate-Respiring Prokaryote, DARP)可以将As(V)还原为As(III),化能自养亚砷酸盐氧化菌(Chemoautotrophic Arsenite Oxidizer, CAO)和异养亚砷酸盐氧化菌(Heterotrophic Arsenite Oxidizer, HAO)可以将As(III)氧化为As(V)。这些砷代谢微生物在分类和代谢能力上都具有很大的多样性,它们广泛参与了砷的生物地球化学循环的关键步骤,对特定环境条件下砷的地球化学行为产生重要影响,进而参与了砷的全球循环。在盐碱湖莫诺(Mono)湖中砷的不同价态分层存在,CAO与DARP的紧密偶联共同参与了莫诺湖中的砷的地球化学循环。在孟加拉三角洲的地下含水层中,微生物参与了将砷从固相迁移到水相的关键步骤,最终导致了地下水中的砷污染。

Arsenic is widely distributed in nature and its pollution is an important issue of current public health. Although arsenic is toxic to organisms, microbes have evolved biotransformation mechanisms to live with arsenic, including gaining energy for growth from the redox of arsenic. Dissimilatory arsenate-respiring prokaryotes (DARPs) can reduce As(V) to As(III), chemoautotrophic arsenite oxidizers (CAOs) and heterotrophic arsenite oxidizers (HAOs) can oxidize As(III) to As(V). These microbes are phylogenetically diverse and remarkable in their arsenic metabolic diversity. They take part in the key steps of arsenic biogeochemical cycles, have potential impact in speciation and mobilization of arsenic in nature, and are involved in a global arsenic geocycle. The chemical speciation of arsenic in the stratified water column in Mono Lake may be explained by microbial arsenic cycling by tight coupling between CAOs and DARPs. In Bengal delta plain subsurface aquifers, these microbial reactions may mobilize arsenic from the solid phase into the aqueous phase, resulting in contaminated underground water.

中图分类号: 

[1] Cullen W R, Reimer K J. Arsenic speciation in the environment [J]. Chemical Reviews, 1989, 89:713-764.

[2] Mandal B K, Suzuki K T. Arsenic round the world: A review [J]. Talanta, 2002, 58:201-235.

[3] Ng J C, Wang J, Shraim A. A global health problem caused by arsenic from natural sources [J]. Chemosphere, 2003, 52:1 353-1 359.

[4] Nordstrom D K. Worldwide occurrences of arsenic in ground water [J]. Science, 2002, 296:2 143-2 144.

[5] Oremland R S, Stolz J F. The Ecology of Arsenic [J]. Science, 2003, 300:939-944.

[6] Tallman D E, Shaikh A U. Redox stability of inorganic arsenic(III) and arsenic(V) in aqueous solution [J]. Analytical Chemistry, 1980, 52:199-201.

[7] Mukhopadhyay R, Rosen B P, Phung L T, et al. Microbial arsenic: From geocycles to genes and enzymes [J]. FEMS Microbiology Review, 2002, 26:311-325.

[8] Bissen M, Frimmel F H. Arsenic a review. Part I: Occurrence, toxicity, speciation, mobility [J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1):9-18.

[9] Dembitsky V M, Rezanka T. Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms [J]. Plant Science,2003, 165:1 177-1 192.

[10] Croal L R, Gralnick J A, Malasarn D, et al. The genetics of geochemistry [J]. Annual Review of Genetics, 2004, 38:175-202.

[11] Ahmann D, Roberts A L, Krumholz L R, et al. Microbe grows by reducing arsenic [J]. Nature, 1994, 371:750.

[12] Oremland R S, Stolz J F. Arsenic, microbes and contaminated aquifers [J]. Trends in Microbiology, 2005, 13:45-49.

[13] Oremland R S, Blum J S, Bindi A B, et al. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria [J]. Applied and Environmental Microbiology, 1999, 65(10):4 385-4 392.

[14] Gihring T M, Banfield J F. Arsenite oxidation and arsenate respiration by a new Thermus isolate [J]. FEMS Microbiology Letters, 2001, 204(2):335-340.

[15] Nriagu J O. Arsenic in the environment: Human health and ecosystem effects[A]. In: Advances in Environmental Science and Technology[C]. New York: John Wiley and Sons, 1994:27.

[16] Oremland R S, Stolz J F, Hollibaugh J T. The microbial arsenic cycle in Mono lake, California [J]. FEMS Microbiology Ecology, 2004, 48:15-27.

[17] Humayoun S B, Bano N, Hollibaugh J T. Depth distribution of microbial diversity in Mono lake, a meromictic soda lake in California [J]. Applied and Environmental Microbiology, 2003, 69:1 030-1 042.

[18] Oremland R S, Dowdle P R, Hoeft S, et al. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono lake, California [J]. Geochimica et Cosmochimica Acta, 2000, 64(18):3 073-3 084.

[19] Switzer Blum J, Burns Bindi A, Buzzelli J, et al. Bacillus arsenicoselenatis sp. nov., and Bacillus selenitireducens sp. nov: Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic [J]. Archives of Microbiology, 1998, 171:19-30.

[20] Oremland R S, Hoeft S E, Santini J M, et al. Anaerobic oxidation of arsenite in Mono lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1 [J]. Applied and Environment Microbiology, 2002, 68:4 795-4 802.

[21] Duker A A, Carranza E J M, Hale M. Arsenic geochemistry and health [J]. Environment International, 2005, 31:631-641.

[22] McArthur J M, Banerjee D M, Hudson-Edwards K A, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The example of west Bengal and its worldwide implications [J]. Applied Geochemistry, 2004, 19:1 255-1 293.

[23] Harvey C F, Swartz C H, Badruzzaman A B, et al. Arsenic mobility and groundwater extraction in Bangladesh [J]. Science, 2002, 298:1 602-1 606.

[24] Cummings D E, Caccavo Jr F, Fendorf S, et al. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY [J]. Environmental Science and Technology, 1999, 33:723-729.

[25] Islam F S, Gault A G, Boothman C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments [J]. Nature,2004, 430(6 995):68-71.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[3] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[4] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[5] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[6] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[7] 潘敖然, 单慧媚, 彭三曦, 赵超然, 黄健, 闫志为. 基于热力学模拟河套平原高砷地下水中硫代砷形态分布特征 *[J]. 地球科学进展, 2018, 33(11): 1169-1180.
[8] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[9] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[10] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[11] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[12] 王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4): 347-356.
[13] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[14] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[15] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
阅读次数
全文


摘要