Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (1): 70-76    DOI: 10.11867/j.issn.1001-8166.2006.01.0070
综述与评述     
气候变化对中国农业温度阈值影响研究及其不确定性分析
熊伟,居辉,许吟隆,林而达
中国农业科学院农业环境与可持续发展研究所,北京 100081
The Threshold of Temperature Increase Due to Climate Change for Chinese Agriculture and Its Uncertainties
Xiong Wei, Ju Hui, Xu Yinlong, Lin Erda
Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 全文: PDF(164 KB)  
摘要:

气候变化影响的温度阈值已经成为国际谈判的焦点问题。利用区域气候模式和作物模型相连接的方法,在50 km×50 km的网格尺度上模拟了IPCC (International Panel of Climate Change) SRES (Special Report on Emissions Scenarios) A2和B2情景下2011—2040年、2041—2070年和2071—2100年我国3种主要粮食作物(水稻、小麦和玉米)的平均单产变化情景,结合同时段的中国地区温度升高状况分析了造成我国主要粮食作物产量持续下降的升温阈值,并对阈值研究中的不确定性进行了初步分析。结果表明:如果同时考虑升温和CO2的肥效作用对作物的影响,目前预测的气温升高范围(0.9~3.9℃)中将不存在威胁我国粮食生产的温度阈值;而如果仅考虑升温对作物的影响时,全国平均温度升高2℃以后,将导致我国粮食单产水平的持续下降,威胁未来的粮食生产;气候变化适应措施如充分灌溉、播种期的调整和品种更替对阈值的确定有一定的影响,如单考虑充分灌溉可以使上述升温阈值延后到2.5℃左右,而播种期的调整和品种的更替也会对产量和产量变率造成一定的影响,进而调整温度阈值;目前研究的不确定性主要来源于情景、方法和适应措施3个方面。

关键词: 温度阈值模拟气候变化粮食生产    
Abstract:

The determination of critical thresholds' is an essential task for informed policy decisions on establishing greenhouse emission targets. The threshold of temperature increase due to greenhouse gas enrichment has become the key point of negotiation of climate change. By using the A2 and B2 climate scenarios produced by Regional Climate Model PRCIS, modified crop model-CERES, the threshold of temperature increase under climate change for Chinese food production and its uncertainties were simulated and analyzed based on the yield variation of three main food crops (rice, wheat and maize). Result shows: there is no temperature increase threshold if the interactive effects of temperature increase and elevated CO2 concentration were considered in the analysis; the temperature increase threshold emerges in 2℃ if only the effect of temperature increase was included in the simulation; the adaptation can mitigate the negative effect of climate change on grain production. If irrigation pushes the above-mentioned threshold to 2.5℃, early sowing and changing to middle-growth cultivars increase the yield and decrease the yield variability, and modify the threshold also. There are three kinds of uncertainties in this assessment: scenarios, methods, and adaptation. The effects of CO2 enrichment and climate change need further study.

Key words: Threshold    Simulation.    Food production    Climate change
收稿日期: 2005-04-01 出版日期: 2006-01-15
:  S165.27  
基金资助:

国家“十五”攻关项目“气候变化对我国农业的阈值研究和综合评估”(编号:2004-BA611B-02)资助.

通讯作者: 熊伟     E-mail: xiongw@ami.ac.cn
作者简介: 熊伟(1974-),男,湖北孝感人,助研,博士,主要从事气候变化影响、作物模型研究.E-mail: xiongw@ami.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许吟隆
熊伟
林而达
居辉

引用本文:

熊伟,居辉,许吟隆,林而达. 气候变化对中国农业温度阈值影响研究及其不确定性分析[J]. 地球科学进展, 2006, 21(1): 70-76.

Xiong Wei, Ju Hui, Xu Yinlong, Lin Erda. The Threshold of Temperature Increase Due to Climate Change for Chinese Agriculture and Its Uncertainties. Advances in Earth Science, 2006, 21(1): 70-76.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.01.0070        http://www.adearth.ac.cn/CN/Y2006/V21/I1/70

[1] Intergovermental Panel on Climate Change (IPCC).Climate Change 2001: The Scientific Basic[M]. Cambridge, UK: Cambridge University Press, 2001.1-15.

[2] Kenny G J, Warrick R A, Campbell B D, et al. Investigating climate Change and thresholds: An application of the CLIMPACTS integrated assessment model for New Zealand agriculture [J]. Climatic Change, 2000, 46: 91-113.

[3] Naki?enovi?N. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change [R]. Cambridge, UK, New York, USA: Cambridge University Press, 2000:599-600.

[4] IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [R].Cambridge: Cambridge University Press, 2001:881-883.

[5] Cholaw B, Cubasch U, Lin Y H, et al. The change of North China climate in Transient simulation using the IPCC SRES A2 and B2 scenarios with a coupled atmosphere-ocean General Circulation Model [J]. Advances in Atmospheric Sciences, 2003, 20(5): 755-766.

[6] Cholaw B. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios [J]. Chinese Science Bulletin, 2003, 48 (10): 1 024-1 030.

[7] Jones R G, Noguer M, Hassell D C, et al. Generating High Resolution Climate Change Scenarios Using PRECIS [M]. Exeter, UK: Met Office Hadley Centre, 2004:35-40.

[8] Liu Yongqiang, Ding Yihui. A review of the study on simulation of regional climate [J].Quarterly Journal of Applied Meteorology,1995, 6(2): 228-239. [刘永强,丁一汇.区域气候模式研究[J].应用气象学报,1995,6 (2): 228-239.]

[9] Xu Yinlong, Richard J. Validating PRECIS with ECMWF reanalysis data over China [J]. Chinese Journal of Agro-Meteorology, 2004, 25(1): 5-9. [许吟隆,Richard J. 利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力[J].中国农业气象,2004,25(1):5-9.]

[10] Lin Erda, Xu Yinlong, et al. UK-China Collaboration Project: Investigating the Impacts Climate Change on Chinese Agriculture [R]. Beijing: Crown, 2004:1-2. [林而达,许吟隆,.英合作项目:评价气候变化对中国农业的影响[R].北京: Crown, 2004:1-2.]

[11] Hulme M, Sheard N. Climate Change Scenarios for China Climatic Research Unit [R]. Norwich, UK: 1999. 6-8.

[12] Xiong Wei. Spatial crop yield simulation using GIS-based crop production model [J]. Chinese Journal of Agro-Meteorology, 2004, 25(2):28-32. [熊伟.GIS和作物模型对作物生产进行区域模拟方法[J].中国农业气象,2004,25(2):28-32.]

[13] Gordon Y T, Goro U, Sharon B. DSSAT Version 3 Volume 4 [M]. Honolulu, Hawaii: University of Hawaii, 1999.

[14] Ritchie J T, Baer B D, Chou T Y. Effect of global climate change on agriculture Great Lakes Region [A]. In: Smith J B, Tirpak D A, eds. The Potential Effects of Global Climate Change on the United States: Appendix C Agriculture [C]. Washington DC: US EPA, 1989:1-25.

[15] John H, Retchie J T. Modeling Plant and Soil Systems Madison [M]. USA : Wiscons,1991.

[16] Ritchie J T, Singh U, Godwin D C, et al. Cereal growth, development and yield [A]. In: Gordon Y T, Gerrit H, Philip K T, eds. Understanding Options for Agricultural Production [C]. The Netherlands: Kluwer Academic Publishers, 1998:79-98.

[17] Xiong Wei, Xu Yinlong, Lin Erda, et al. Regional simulation of maize yield under IPCC SRES A2 and B2 scenarios [J]. Chinese Journal of Agro-Meteorology, 2005, 26(1): 11-15. [熊伟,许吟隆 林而达,.IPCC SRES A2B2情景下我国玉米产量变化模拟[J].中国农业气象,2005,26(1):11-15.]

[18] Xiong Wei, Xu Yinlong, Lin Erda, et al. Regional simulation of rice yield change under two emission scenarios of greenhouse gases [J]. Chinese Journal of Applied Ecology,2005, 16(1): 65-69. [熊伟,许吟隆,林而达,.两种温室气体排放方案下我国水稻产量变化模拟[J].应用生态学报,2005,16(1):65-69.]

[19] The Office of China Statistic Yearbook. China Statistic Yearbook 1982—2004 [M]. Beijing: China Statistic Press,2001.[中国统计年鉴编辑部. 中国统计年鉴1982—2001[M].北京:中国统计出版社,2001.]

[20] Bai Liping, Lin Erda. The effects of CO2 concentration enrichment and climate change on the agriculture[J]. Chinese Journal of Eco-Agriculture,2003, 11(2): 132-134. [白莉萍,林而达.CO2浓度升高与气候变化对农业的影响研究进展[J].中国生态农业学报,2003,11(2):132-134.]

[1] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[2] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[3] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[4] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[5] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[6] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[7] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[8] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[9] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[10] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[11] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[12] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[13] 郝青振, 张人禾, 汪品先, 王斌. 全球季风的多尺度演化[J]. 地球科学进展, 2016, 31(7): 689-699.
[14] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[15] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.