地球科学进展 ›› 2006, Vol. 21 ›› Issue (1): 70 -76. doi: 10.11867/j.issn.1001-8166.2006.01.0070

综述与评述 上一篇    下一篇

气候变化对中国农业温度阈值影响研究及其不确定性分析
熊伟,居辉,许吟隆,林而达   
  1. 中国农业科学院农业环境与可持续发展研究所,北京 100081
  • 收稿日期:2005-04-01 修回日期:2005-07-18 出版日期:2006-01-15
  • 通讯作者: 熊伟 E-mail:xiongw@ami.ac.cn
  • 基金资助:

    国家“十五”攻关项目“气候变化对我国农业的阈值研究和综合评估”(编号:2004-BA611B-02)资助.

The Threshold of Temperature Increase Due to Climate Change for Chinese Agriculture and Its Uncertainties

Xiong Wei, Ju Hui, Xu Yinlong, Lin Erda   

  1. Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2005-04-01 Revised:2005-07-18 Online:2006-01-15 Published:2006-01-15

气候变化影响的温度阈值已经成为国际谈判的焦点问题。利用区域气候模式和作物模型相连接的方法,在50 km×50 km的网格尺度上模拟了IPCC (International Panel of Climate Change) SRES (Special Report on Emissions Scenarios) A2和B2情景下2011—2040年、2041—2070年和2071—2100年我国3种主要粮食作物(水稻、小麦和玉米)的平均单产变化情景,结合同时段的中国地区温度升高状况分析了造成我国主要粮食作物产量持续下降的升温阈值,并对阈值研究中的不确定性进行了初步分析。结果表明:如果同时考虑升温和CO2的肥效作用对作物的影响,目前预测的气温升高范围(0.9~3.9℃)中将不存在威胁我国粮食生产的温度阈值;而如果仅考虑升温对作物的影响时,全国平均温度升高2℃以后,将导致我国粮食单产水平的持续下降,威胁未来的粮食生产;气候变化适应措施如充分灌溉、播种期的调整和品种更替对阈值的确定有一定的影响,如单考虑充分灌溉可以使上述升温阈值延后到2.5℃左右,而播种期的调整和品种的更替也会对产量和产量变率造成一定的影响,进而调整温度阈值;目前研究的不确定性主要来源于情景、方法和适应措施3个方面。

The determination of critical thresholds' is an essential task for informed policy decisions on establishing greenhouse emission targets. The threshold of temperature increase due to greenhouse gas enrichment has become the key point of negotiation of climate change. By using the A2 and B2 climate scenarios produced by Regional Climate Model PRCIS, modified crop model-CERES, the threshold of temperature increase under climate change for Chinese food production and its uncertainties were simulated and analyzed based on the yield variation of three main food crops (rice, wheat and maize). Result shows: there is no temperature increase threshold if the interactive effects of temperature increase and elevated CO2 concentration were considered in the analysis; the temperature increase threshold emerges in 2℃ if only the effect of temperature increase was included in the simulation; the adaptation can mitigate the negative effect of climate change on grain production. If irrigation pushes the above-mentioned threshold to 2.5℃, early sowing and changing to middle-growth cultivars increase the yield and decrease the yield variability, and modify the threshold also. There are three kinds of uncertainties in this assessment: scenarios, methods, and adaptation. The effects of CO2 enrichment and climate change need further study.

中图分类号: 

[1] Intergovermental Panel on Climate Change (IPCC).Climate Change 2001: The Scientific Basic[M]. Cambridge, UK: Cambridge University Press, 2001.1-15.

[2] Kenny G J, Warrick R A, Campbell B D, et al. Investigating climate Change and thresholds: An application of the CLIMPACTS integrated assessment model for New Zealand agriculture [J]. Climatic Change, 2000, 46: 91-113.

[3] Naki?enovi?N. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change [R]. Cambridge, UK, New York, USA: Cambridge University Press, 2000:599-600.

[4] IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [R].Cambridge: Cambridge University Press, 2001:881-883.

[5] Cholaw B, Cubasch U, Lin Y H, et al. The change of North China climate in Transient simulation using the IPCC SRES A2 and B2 scenarios with a coupled atmosphere-ocean General Circulation Model [J]. Advances in Atmospheric Sciences, 2003, 20(5): 755-766.

[6] Cholaw B. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios [J]. Chinese Science Bulletin, 2003, 48 (10): 1 024-1 030.

[7] Jones R G, Noguer M, Hassell D C, et al. Generating High Resolution Climate Change Scenarios Using PRECIS [M]. Exeter, UK: Met Office Hadley Centre, 2004:35-40.

[8] Liu Yongqiang, Ding Yihui. A review of the study on simulation of regional climate [J].Quarterly Journal of Applied Meteorology,1995, 6(2): 228-239. [刘永强,丁一汇.区域气候模式研究[J].应用气象学报,1995,6 (2): 228-239.]

[9] Xu Yinlong, Richard J. Validating PRECIS with ECMWF reanalysis data over China [J]. Chinese Journal of Agro-Meteorology, 2004, 25(1): 5-9. [许吟隆,Richard J. 利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力[J].中国农业气象,2004,25(1):5-9.]

[10] Lin Erda, Xu Yinlong, et al. UK-China Collaboration Project: Investigating the Impacts Climate Change on Chinese Agriculture [R]. Beijing: Crown, 2004:1-2. [林而达,许吟隆,.英合作项目:评价气候变化对中国农业的影响[R].北京: Crown, 2004:1-2.]

[11] Hulme M, Sheard N. Climate Change Scenarios for China Climatic Research Unit [R]. Norwich, UK: 1999. 6-8.

[12] Xiong Wei. Spatial crop yield simulation using GIS-based crop production model [J]. Chinese Journal of Agro-Meteorology, 2004, 25(2):28-32. [熊伟.GIS和作物模型对作物生产进行区域模拟方法[J].中国农业气象,2004,25(2):28-32.]

[13] Gordon Y T, Goro U, Sharon B. DSSAT Version 3 Volume 4 [M]. Honolulu, Hawaii: University of Hawaii, 1999.

[14] Ritchie J T, Baer B D, Chou T Y. Effect of global climate change on agriculture Great Lakes Region [A]. In: Smith J B, Tirpak D A, eds. The Potential Effects of Global Climate Change on the United States: Appendix C Agriculture [C]. Washington DC: US EPA, 1989:1-25.

[15] John H, Retchie J T. Modeling Plant and Soil Systems Madison [M]. USA : Wiscons,1991.

[16] Ritchie J T, Singh U, Godwin D C, et al. Cereal growth, development and yield [A]. In: Gordon Y T, Gerrit H, Philip K T, eds. Understanding Options for Agricultural Production [C]. The Netherlands: Kluwer Academic Publishers, 1998:79-98.

[17] Xiong Wei, Xu Yinlong, Lin Erda, et al. Regional simulation of maize yield under IPCC SRES A2 and B2 scenarios [J]. Chinese Journal of Agro-Meteorology, 2005, 26(1): 11-15. [熊伟,许吟隆 林而达,.IPCC SRES A2B2情景下我国玉米产量变化模拟[J].中国农业气象,2005,26(1):11-15.]

[18] Xiong Wei, Xu Yinlong, Lin Erda, et al. Regional simulation of rice yield change under two emission scenarios of greenhouse gases [J]. Chinese Journal of Applied Ecology,2005, 16(1): 65-69. [熊伟,许吟隆,林而达,.两种温室气体排放方案下我国水稻产量变化模拟[J].应用生态学报,2005,16(1):65-69.]

[19] The Office of China Statistic Yearbook. China Statistic Yearbook 1982—2004 [M]. Beijing: China Statistic Press,2001.[中国统计年鉴编辑部. 中国统计年鉴1982—2001[M].北京:中国统计出版社,2001.]

[20] Bai Liping, Lin Erda. The effects of CO2 concentration enrichment and climate change on the agriculture[J]. Chinese Journal of Eco-Agriculture,2003, 11(2): 132-134. [白莉萍,林而达.CO2浓度升高与气候变化对农业的影响研究进展[J].中国生态农业学报,2003,11(2):132-134.]

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[8] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[9] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[10] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[11] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[12] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[13] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[14] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[15] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
阅读次数
全文


摘要