地球科学进展 ›› 2022, Vol. 37 ›› Issue (6): 641 -659. doi: 10.11867/j.issn.1001-8166.2022.031

研究简报 上一篇    

川北韩家店组页岩风化过程的矿物学与元素地球化学研究
段美铃 1( ), 宋昊 1 , 2( ), 胡伟 2, 廖昕 3   
  1. 1.成都理工大学 地球科学学院,四川 成都 610059
    2.地质灾害防治与地质环境保护 国家重点实验室(成都理工大学),四川 成都 610059
    3.西南交通大学 地球科学与环境工程学院,四川 成都 611756
  • 收稿日期:2022-01-07 修回日期:2022-04-08 出版日期:2022-06-10
  • 通讯作者: 宋昊 E-mail:duanmeiling@stu.cdut.edu.cn;songhao2014@cdut.edu.cn
  • 基金资助:
    国家自然科学基金重大项目“重大滑坡孕育机制及启滑分类”(42090051)

Mineral and Element Geochemical Characteristics of Shale Weathering in Hanchiatien Formation, North Sichuan

Meiling DUAN 1( ), Hao SONG 1 , 2( ), Wei HU 2, Xin LIAO 3   

  1. 1.College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
    2.State Key Laboratory of Geo-Hazard Prevention and Geo-Environment Protection (Chengdu University of Technology), Chengdu 610059, China
    3.Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2022-01-07 Revised:2022-04-08 Online:2022-06-10 Published:2022-06-20
  • Contact: Hao SONG E-mail:duanmeiling@stu.cdut.edu.cn;songhao2014@cdut.edu.cn
  • About author:DUAN Meiling (1998-), female, Jiujiang City, Jiangxi Province, Master student. Research areas include geochemistry and geological engineering. E-mail: duanmeiling@stu.cdut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Formation mechanism and initiation classification of major landslides”(42090051)

风化作为一种重要的地表作用,能造成岩石崩解或分解,并使岩石在结构或成分上不同于基岩。为研究页岩风化过程中矿物转变机制及主微量元素变化规律,以四川北部江油地区韩家店组页岩风化剖面为实例,采用薄片鉴定、全岩X射线衍射、X射线荧光光谱和等离子体质谱等方法,对不同风化层及基岩层的矿物成分及主微量元素进行研究。结果表明,与基岩相比,风化层中方解石和长石等矿物占比降低,石膏和黏土矿物等次生矿物生成;根据元素地球化学质量迁移系数计算得出:与基岩相比,风化层中Mg、Ca、Fe、Mn、Sr和U等元素明显亏损,Pb、Zn、Cu、Rb和Cs等元素富集。风化层中稀土元素含量增加,可能是风化生成的黏土矿物吸附稀土元素导致的。根据化学蚀变指数(CIA=69.51~76.21)判断该剖面属于中等风化程度,A-CN-K图解显示剖面处于脱Ca和Na早期风化阶段。根据垂向剖面上Si/Al、Ca/Al、Mg/Al、Na/Al、K/Al和P/Al等元素比值变化规律及样品中元素Pearson相关分析得出,方解石和磷灰石等矿物发生了不同程度的分解,次生矿物铁锰氧化物和伊利石等生成。因此,风化剖面矿物转变及元素活动耦合性研究对于揭示页岩风化过程及机制具有重要意义。

Weathering is an important surface process that can cause the disintegration or decomposition of rocks that differ from unweathered rocks in structure or composition. To study the mechanism of mineral transition and the variation of major and trace elements in the weathering process of shale, the field weathering profile of the Silurian Hanchiatien Formation shale in northern Sichuan, thin section identification, whole-rock X-ray diffraction, X-ray fluorescence spectroscopy, inductively coupled plasma mass spectrometry, and other methods were used. The mineral composition and major and trace elements of different degrees of weathering of the rock samples were studied. The results show that the calcite and feldspar contents in the weathered samples noticeably decreased compared with the unweathered samples. Secondary minerals such as gypsum and clay were formed. According to the mass transfer coefficients of major and trace elements, it was concluded that Mg, Ca, Fe, Mn, Sr, and U were depleted. At the same time, Pb, Zn, Cu, Rb, and Cs were enriched simultaneously due to the weathering process. The content of rare earth elements increased in the regolith and resulted from absorption by clay minerals formed during the weathering process. According to the chemical alteration index (CIA=69.51~76.21), it can be judged that the weathering profile belongs to a moderate weathering degree. The A-CN-K diagram shows that the profile has reached the weak-to-moderate chemical weathering stage, the initial Ca and Na removal stage. According to the ratio variation diagram of Si/Al, Ca/Al, Mg/Al, Na/Al, K/Al, and P/Al in the vertical section and the element Pearson correlation analysis of samples, it can be found that calcite, apatite, and other minerals have undergone different degrees of decomposition. Secondary minerals such as iron-manganese oxides and illite are formed, and the elements occurring in the minerals also migrate. Therefore, the study of the coupling of mineral transition and element activity in weathering profiles is of great significance for revealing the weathering process and mechanism of shale.

中图分类号: 

图1 川北韩家店组页岩采样位置地形图
Fig. 1 Sampling location photo of Hanchiatien Formation shale in North Sichuan
图2 川北韩家店组页岩风化剖面及分带图
Fig. 2 Sampling profile and zoning photo of Hanchiatien Formation shale in North Sichuan
表1 川北韩家店组页岩剖面分层及采样表
Table 1 Sampling weathering profile and zoning of Hanchiatien Formation shale in North Sichuan
表2 川北韩家店组页岩剖面矿物百分含量 (%)
Table 2 Mineral concentrations of Hanchiatien Formation shale at all profile in North Sichuan
表3 川北韩家店组页岩主量元素含量及风化指标统计
Table 3 Concentration of major elements and chemical index values of Hanchiatien Formation shale at profiles in North Sichuan
表4 川北韩家店组页岩微量元素含量 (μg/g)
Table 4 Trace element content of Hanchiatien Formation shale at profiles in North Sichuan
样品编号

深度

/m

Mn Rb Sr Cs Ba Pb Th U Sc V Cr Co Ni Cu Zn Ga Zr Nb Hf Ta Ba/Sr
H01 0.2 6.58 182.00 84.70 10.90 486.00 28.70 17.60 6.08 15.60 93.40 86.70 16.30 38.20 35.90 99.50 21.40 128.00 15.00 3.68 1.21 5.74
H02 0.4 5.65 172.00 84.60 10.30 439.00 27.90 17.30 3.13 14.80 80.10 83.50 15.40 36.00 32.50 93.20 20.90 136.00 15.50 3.75 1.23 5.19
H03 0.6 6.82 173.00 79.90 10.20 425.00 27.70 17.10 2.92 14.70 82.30 85.30 15.60 35.70 32.90 92.70 20.70 127.00 15.50 3.68 1.21 5.32
H04 0.8 7.36 178.00 80.10 10.80 454.00 29.80 17.00 3.15 14.80 83.70 85.50 16.20 35.80 34.30 92.50 20.80 130.00 15.60 3.86 1.30 5.67
H05 1.1 8.05 168.00 77.40 10.10 426.00 30.30 16.20 2.89 14.20 75.80 81.50 15.80 34.80 50.10 155.00 19.60 128.00 14.50 3.61 1.18 5.50
H06 1.5 3.18 180.00 79.40 9.74 414.00 20.00 17.10 2.79 14.60 89.90 87.40 15.40 38.70 36.40 97.40 21.20 135.00 15.60 3.69 1.25 5.21
H07 1.9 16.26 85.40 58.20 5.43 262.00 16.30 13.40 2.30 11.00 48.90 45.10 11.90 24.40 17.60 62.00 11.50 125.00 11.20 3.69 0.95 4.50
H08 2.2 4.26 175.00 77.70 9.31 452.00 13.80 16.20 2.83 14.30 85.20 83.40 14.60 36.90 32.70 90.70 20.50 118.00 14.30 3.58 1.17 5.82
H09 2.8 8.60 187.00 77.60 10.60 514.00 14.80 17.20 2.83 14.40 94.10 89.90 16.80 37.00 54.10 161.00 21.20 130.00 14.50 3.62 1.16 6.62
H10 3.3 2.56 220.00 109.00 12.50 500.00 17.10 18.90 2.98 15.70 107.00 99.60 16.60 41.40 53.20 194.00 23.70 139.00 16.40 3.92 1.33 4.59
H11 4.0 5.27 141.00 267.00 8.82 347.00 9.31 14.90 2.37 11.60 70.00 67.10 14.00 31.90 28.00 76.10 15.10 99.80 12.40 2.95 1.07 1.30
Hs1 5.0 14.10 123.00 202.00 7.20 288.00 12.40 12.90 3.83 12.50 59.10 60.50 12.60 27.30 22.80 68.80 14.90 116.00 11.70 3.23 0.97 1.43
图3 川北韩家店组页岩薄片镜下鉴定
Py: 黄铁矿;Ill: 伊利石;Qtz: 石英;(a) 风化层黄铁矿;(b) 半风化层黄铁矿;(c)和(d) 基岩中黄铁矿;(e) 基岩层中伊利石;(f) 半风化层中伊利石; (a)~(d)均于光学显微镜反射单偏光拍摄;(e)于光学显微镜透射正交偏光拍摄;(f)于光学显微镜透射正交偏光拍摄
Fig. 3 Microscopic identification of Hanchiatien Formation shale in North Sichuan
Py: Pyrite; Ill: Illite; Qtz: Quartz; (a) Pyrite in regolith; (b) Pyrite in Semi-regolith; (c) and (d) Pyrite in bedrock; (e) Illite in bedrock; (f) Illite in semi-regolith; (a)~(d) Captured under a light microscope reflecting single polarized light; (e) Orthogonal polarized light transmission under an optical microscope; (f) Orthogonal polarized light transmission under an optical microscope
图4 川北韩家店组页岩剖面矿物百分含量沿深度变化
Fig. 4 Mineral concentrations with depth variation of Hanchiatien Formation shale in North Sichuan
图5 川北韩家店组页岩剖面XRD谱图
Fig. 5 XRD peak spectra of Hanchiatien Formation shale in North Sichuan
图6 川北韩家店组页岩不同风化带微量元素大陆上地壳标准化分配图
大陆上地壳数据来源于参考文献 [ 28
Fig. 6 Upper continental crust-standardization trace elements versus depth along Hanchiatien Formation shale at profiles in North Sichuan
Upper continental crust data from reference [ 28
表5 川北韩家店组页岩风化稀土元素含量
Table 5 Rare element content of Hanchiatien Formation shale at profiles in North Sichuan
样品编号

深度

/m

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE (Gd/Yb)N (La/Yb)N (La/Sm)N
/(μg/g) /(μg/g)
H01 0.2 47.3 88.7 10.60 39.2 7.18 1.28 5.85 1.08 6.01 1.17 3.45 0.53 3.24 0.49 33.6 216.08 194.26 21.82 1.49 10.47 4.25
H02 0.4 46.2 85.8 10.20 38.6 7.20 1.30 5.66 0.97 5.84 1.14 3.26 0.51 3.23 0.49 33.0 210.40 189.30 21.10 1.45 10.26 4.14
H03 0.6 47.0 86 10.30 39.1 7.10 1.34 5.64 1.02 5.72 1.14 3.28 0.50 3.33 0.47 32.8 211.94 190.84 21.10 1.40 10.12 4.27
H04 0.8 48.5 89.6 10.80 40.7 7.44 1.43 5.86 1.07 6.24 1.23 3.41 0.53 3.43 0.49 34.2 220.72 198.47 22.25 1.41 10.14 4.21
H05 1.1 45.4 85.3 10.40 39.3 7.25 1.39 5.78 1.08 6.02 1.11 3.21 0.51 3.41 0.48 33.6 210.64 189.04 21.60 1.40 9.55 4.04
H06 1.5 48.3 91.3 11.30 43.3 7.87 1.40 6.27 1.12 6.54 1.25 3.50 0.57 3.51 0.49 34.9 226.72 203.47 23.25 1.48 9.87 3.96
H07 1.9 30.1 66.8 6.86 27.8 6.00 1.19 4.88 0.90 4.99 1.01 2.74 0.43 2.82 0.37 28.3 156.88 138.75 18.13 1.43 7.66 3.24
H08 2.2 46.5 87.2 10.50 41.5 7.22 1.38 6.07 1.09 6.40 1.23 3.31 0.53 3.29 0.50 35.1 216.71 194.30 22.41 1.53 10.14 4.16
H09 2.8 46.9 89.7 10.50 37.9 6.94 1.31 6.00 1.03 6.14 1.12 3.51 0.54 3.49 0.49 31.9 215.57 193.25 22.32 1.42 9.64 4.36
H10 3.3 52.1 99.0 11.00 40.5 6.21 0.93 5.30 0.87 4.83 0.94 2.96 0.49 3.07 0.43 28.3 228.64 209.74 18.89 1.43 12.17 5.42
H11 4.0 41.1 74.5 8.49 32.4 6.14 1.16 5.22 0.87 5.13 0.95 2.77 0.42 2.68 0.41 26.6 182.23 163.79 18.44 1.61 11.00 4.32
Hs1 5.0 36.6 71.6 9.13 36.2 7.81 1.57 6.42 1.18 6.52 1.23 3.15 0.47 2.92 0.39 32.3 185.19 162.91 22.28 1.82 8.99 3.03
图7 川北韩家店组页岩不同风化带稀土元素球粒陨石标准化配分图(球粒陨石数据来源于参考文献[ 24 ])
Fig. 7 Chondrite-standardization REE versus depth along Hanchiatien Formation shale in North Sichuanchondrite data from reference 24 ])
图8 川北韩家店组页岩化学风化CIACIW值随深度关系
Fig. 8 Relationships of CIA versus CIW with depth variation of Hanchiatien Formation shale in North Sichuan
图9 川北韩家店组页岩大陆化学风化趋势(据参考文献[ 34 ]修改)
UCC为上地壳,PAAS为澳大利亚后太古代平均页岩,数据来自参考文献 [ 24 ];ES为欧洲平均页岩,NASC为北美页岩,数据各来自参考文献[ 23 35 ];A: Al 2O 3;CN: CaO*+Na 2O;K: K 2O
Fig. 9 Continental weathering trend line of Hanchiatien Formation shale in North Sichuanmodified after reference 34 ])
UCC is the upper crust, PAAS is the post Archean average shale in Australia, and the data from reference [ 24 ]; ES is the average shale in Europe and NASC is the average shale in North America. The data from references [23,35] respectively; A: Al 2O 3;CN: CaO*+Na 2O;K: K 2O
图10 川北韩家店组页岩化学风化CIA值与Ba/Sr关系
Fig. 10 Relationships of CIA versus Ba/Sr of Hanchiatien Formation shale in North Sichuan
表6 川北韩家店组页岩主量元素在不同风化带处的 τ N b , j 质量迁移系数
Table 6 The τ N b , j values plotted versus depth along Hanchiatien Formation shale in North Sichuan for main element
图11 川北韩家店组页岩主量元素在不同风化带的质量迁移
Fig. 11 The τ N b , j values plotted versus depth along Hanchiatien Formation shale in North Sichuan for main element
表7 川北韩家店组页岩微量元素在不同风化带的 τ N b , j 质量迁移系数
Table 7 The τ N b , j values plotted versus depth along Hanchiatien Formation shale in North Sichuan for trace element
图12 川北韩家店组页岩微量元素在不同风化带的质量迁移
Fig. 12 The τ N b , j values plotted versus depth along Hanchiatien Formation shale in North Sichuan for trace element
表8 川北韩家店组页岩稀土元素在不同风化带的质量迁移系数 τ N b , j
Table 8 The τ N b , j values plotted versus depth along Hanchiatien Formation shale in North Sichuan for rare element
表9 川北韩家店组页岩主微量元素 Pearson相关性
Table 9 Pearson correlation coefficients of elements of Hanchiatien Formation shale in North Sichuan
微量元素 SiO2 Al2O3 TFe2O3 K2O Na2O CaO MgO MnO P2O5 TiO2 LOI
Rb -0.543 0.963** 0.468 0.994** -0.467 -0.124 0.332 -0.619* -0.115 0.922** -0.144
Sr -0.766** 0.178 -0.020 0.131 -0.042 0.783** 0.763** -0.422 0.290 0.050 0.741**
Cs -0.599* 0.938** 0.674* 0.868** -0.682* 0.131 0.162 -0.499 -0.124 0.836** 0.038
Ba -0.491 0.932** 0.528 0.896** -0.578* -0.061 0.248 -0.372 -0.229 0.727** -0.125
Pb 0.200 0.284 0.696* 0.204 -0.721** -0.272 -0.674* 0.039 -0.408 0.355 -0.091
Th -0.519 0.898** 0.598* 0.865** -0.534 -0.085 0.118 -0.603* -0.034 0.913** -0.166
U -0.283 0.427 0.495 0.329 -0.595* 0.347 0.068 -0.056 0.166 0.209 0.438
Sc -0.515 0.879** 0.691* 0.825** -0.659* 0.073 0.148 -0.601* -0.015 0.837** 0.017
V -0.517 0.950** 0.446 0.994** -0.425 -0.154 0.350 -0.642* -0.122 0.909** -0.175
Cr -0.548 0.950** 0.440 0.970** -0.477 -0.113 0.311 -0.616* -0.089 0.944** -0.117
Co -0.495 0.899** 0.512 0.865** -0.613* -0.007 0.147 -0.305 -0.237 0.762** -0.008
Ni -0.471 0.899** 0.437 0.958** -0.401 -0.241 0.349 -0.777** -0.093 0.942** -0.184
Cu -0.339 0.811** 0.338 0.845** -0.449 -0.198 0.167 -0.381 -0.340 0.758** -0.113
Zn -0.407 0.853** 0.371 0.857** -0.433 -0.083 0.196 -0.499 -0.210 0.808** -0.095
Ga -0.578* 0.954** 0.527 0.958** -0.528 -0.082 0.291 -0.667* -0.019 0.952** -0.063
Zr -0.157 0.751** 0.387 0.700* -0.423 -0.301 -0.089 -0.413 0.042 0.815** -0.412
Nb -0.464 0.798** 0.592* 0.773** -0.598* -0.022 0.144 -0.698* -0.211 0.871** -0.023
Hf -0.062 0.551 0.426 0.474 -0.349 -0.217 -0.292 -0.265 0.154 0.668* -0.482
Ta -0.441 0.774** 0.647* 0.739** -0.627* -0.015 0.122 -0.717** -0.247 0.835** -0.024
REE -0.254 0.729** 0.471 0.814** -0.463 -0.350 0.183 -0.681* -0.274 0.826** -0.167
图13 川北韩家店组页岩各主量元素与Al比值随深度变化图
Fig. 13 The main elements and Al ratio with depth variation of Hanchiatien Formation shale in North Sichuan
1 BRANTLEY S L, GOLDHABER M B, RAGNARSDOTTIR K V. Crossing disciplines and scales to understand the critical zone[J]. Elements, 2007, 3(5): 307-314.
2 XU Zemin, HUANG Runqiu, TANG Zhengguang, et al. The discontinuity of rockmass chemical weathering and its scientific significance[J]. Advances in Earth Science, 2006, 21(7): 706-712.
徐则民, 黄润秋, 唐正光, 等. 岩体化学风化的非连续性及其科学意义[J]. 地球科学进展, 2006, 21(7): 706-712.
3 PERCIVAL L M E, COHEN A S, DAVIES M K, et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change[J]. Geology, 2016, 44(9): 759-762.
4 LI Xusheng, HAN Zhiyong, YANG Shouye, et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang[J]. Acta Geographica Sinica, 2007, 62(11): 1 174-1 184.
李徐生, 韩志勇, 杨守业, 等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1 174-1 184.
5 YAN Yani, ZHANG Wei, ZHANG Junwen, et al. Advances in magnesium isotope geochemistry during weathering of continental silicate rocks[J]. Advances in Earth Science, 2021, 36(3): 325-334.
闫雅妮, 张伟, 张俊文, 等. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
6 PENG Bo, SONG Zhaoliang, TU Xiangling, et al. Release of heavy metals during weathering of the Lower Cambrian Black Shales in western Hunan, China[J]. Environmental Geology, 2004, 45(8): 1 137-1 147.
7 WU Xiyong, LING Sixiang, REN Yong, et al. Elemental migration characteristics and chemical weathering degree of black shale in northeast Chongqing, China[J]. Earth Science, 2016, 41(2): 218-233.
巫锡勇, 凌斯祥, 任勇, 等. 渝东北黑色页岩元素迁移特征及化学风化程度[J]. 地球科学, 2016, 41(2): 218-233.
8 LING Sixiang, WU Xiyong, SUN Chunwei, et al. Mineralogy and geochemistry of three weathered Lower Cambrian black shale profiles in Northeast Chongqing, China[J]. Geosciences Journal, 2016, 20(6): 793-812.
9 JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3/4): 339-353.
10 TANG Xuan, ZHANG Jinchuan, LIU Yang, et al. Geochemistry of organic matter and elements of black shale during weathering in Northern Guizhou, Southwestern China: their mobilization and inter-connection[J]. Geochemistry, 2018, 78(1): 140-151.
11 LIAO Xin. Study on weathering characteristics of black shale and oxidation kinetics of pyrite embedded in rocks[D]. Chengdu: Southwest Jiaotong University, 2013.
廖昕. 黑色页岩化学风化特征及其黄铁矿氧化动力学研究[D]. 成都: 西南交通大学, 2013.
12 WU Xiyong, LIAO Xin, ZHAO Siyuan, et al. Experimental study of the water-rock chemical reaction in black shale[J]. Acta Geoscientica Sinica, 2014, 35(5): 573-581.
巫锡勇, 廖昕, 赵思远, 等. 黑色页岩水岩化学作用实验研究[J]. 地球学报, 2014, 35(5): 573-581.
13 WU Beijuan, PENG Bo, ZHANG Kun, et al. A new chemical index of identifying the weathering degree of black shales[J]. Acta Geologica Sinica, 2016, 90(4): 818-832.
吴蓓娟, 彭渤, 张坤, 等. 黑色页岩化学风化程度指标研究[J]. 地质学报, 2016, 90(4): 818-832.
14 GU Xin, REMPE D M, DIETRICH W E, et al. Chemical reactions, porosity, and microfracturing in shale during weathering: the effect of erosion rate[J]. Geochimica et Cosmochimica Acta, 2020, 269: 63-100.
15 PENG Bo, TANG Xiaoyan, YU Changxun, et al. Geochemical study of heavy metal contamination of soils derived from black shales at the HJC uranium mine in central Hunan, China[J]. Acta Geologica Sinica, 2009, 83(1): 89-106.
彭渤, 唐晓燕, 余昌训, 等. 湘中HJC铀矿区黑色页岩土壤重金属污染地球化学分析[J]. 地质学报, 2009, 83(1): 89-106.
16 CHERMAK J A, SCHREIBER M E. Mineralogy and trace element geochemistry of gas shales in the United States: environmental implications[J]. International Journal of Coal Geology, 2014, 126: 32-44.
17 PI Daohui, LIU Congqiang, SHIELDS-ZHOU G A, et al. Trace and Rare Earth Element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China: constraints for redox environments and origin of metal enrichments[J]. Precambrian Research, 2013, 225: 218-229.
18 CHEN Liuqin, LIU Xin, LI Pengcheng. Paleosols: sensitive indicators of depositional environments and paleoclimate[J]. Acta Sedimentologica Sinica, 2018, 36(3): 510-520.
陈留勤, 刘鑫, 李鹏程. 古土壤: 沉积环境和古气候变化的灵敏指针[J]. 沉积学报, 2018, 36(3): 510-520.
19 BUFE A, HOVIUS N, EMBERSON R, et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion[J]. Nature Geoscience, 2021, 14(4): 211-216.
20 Sichuan Bureau of Geology and Mineral Resources. Geological special report of the Ministry of Geology and Mineral Resources of the People’s Republic of China: regional geology. 23, regional geology of Sichuan Province[M]. Beijing: Geological Publishing House, 1991.[四川省地质矿产局. 中华人民共和国地质矿产部地质专报:区域地质. 23,四川省区域地质志[M]. 北京:地质出版社,1991.]
21 ERNST A, LI Qijian, ZHANG Min, et al. Bryozoans from the lower Silurian (Telychian) Hanchiatien Formation from southern Chongqing, South China[J]. Journal of Paleontology, 2021, 95(2): 252-267.
22 GU Xueda, LIU Xiaohu. Stratigraphy(lithostratic) of Sichuan Province[M]. Wuhan: China University of Geosciences Press, 1997.
辜学达, 刘啸虎. 四川省岩石地层[M]. 武汉: 中国地质大学出版社, 1997.
23 MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
24 SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
25 SCHILLING J G. Iceland mantle plume: geochemical study of reykjanes ridge[J]. Nature, 1973, 242(5 400): 565-571.
26 JENNER G A. Trace element geochemistry of Ti, Y and Zr in ascot formation metabasalts, SE Quebec[J]. Contributions to Mineralogy and Petrology, 1996, 75: 79-87.
27 PANAHI A, YOUNG G M, RAINBIRD R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2 199-2 220.
28 TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265.
29 NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5 885): 715-717.
30 HARNOIS L. The CIW index: a new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
31 QI Liang, YU Wenchao, DU Yuansheng, et al. Paleoclimate evolution of the cryogenian Tiesi’ao Formation Datangpo Formation in eastern Guizhou Province: evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 2015, 34(6): 47-57.
齐靓, 余文超, 杜远生, 等. 黔东南华纪铁丝坳期—大塘坡期古气候的演变: 来自CIA的证据[J]. 地质科技情报, 2015, 34(6): 47-57.
32 GUO Yu, LI Yusheng, LING Yun, et al. The sedimentary geochemical characteristics and metallogenic mechanism of manganese-bearing rock series in southeastern Chongqing, China[J]. Acta Geologica Sinica, 2018, 92(11): 2 331-2 348.
郭宇, 李余生, 凌云, 等. 渝东南地区含锰岩系沉积地球化学特征及成因机制[J]. 地质学报, 2018, 92(11): 2 331-2 348.
33 LI Tingting, ZHU Guangyou, ZHAO Kun, et al. Geological, geochemical characteristics and organic matter enrichment of the black rock series in Datangpo Formation in Nanhua System, South China[J]. Acta Petrolei Sinica, 2021, 42(9): 1 142-1 162.
李婷婷, 朱光有, 赵坤, 等. 华南地区南华系大塘坡组黑色岩系地质地球化学特征与有机质富集机制[J]. 石油学报, 2021, 42(9): 1 142-1 162.
34 NESBITT H W, YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1 523-1 534.
35 GROMET L P, HASKIN L A, KOROTEV R L, et al. The “North American shale composite”: its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2 469-2 482.
36 XU Xiaotao, SHAO Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 2018, 20(3): 515-522.
徐小涛, 邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报, 2018, 20(3): 515-522.
37 FENG Lianjun, CHU Xuelei, ZHANG Qirui, et al. CIA (Chemical Index of Alteration)and its applications in the neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544.
冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544.
38 DING Haifeng, MA Dongsheng, YAO Chunyan, et al. Sedimentary environment of Ediacaran glacigenic diamictite in Guozigou of Xinjiang, China[J]. Chinese Science Bulletin, 2009, 54(18): 3 283-3 294.
39 PERRI F, OHTA T. Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds from Western-Central Mediterranean Alpine Chains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 144-157.
40 LEI Kaiyu, LIU Chiyang, ZHANG Long, et al. Element geochemical characteristics of the Jurassic Mudstones in the Northern Ordos Basin: implications for tracing sediment sources and paleoenvironment restoration[J]. Acta Sedimentologica Sinica, 2017, 35(3): 621-636.
雷开宇, 刘池洋, 张龙, 等. 鄂尔多斯盆地北部侏罗系泥岩地球化学特征: 物源与古沉积环境恢复[J]. 沉积学报, 2017, 35(3): 621-636.
41 MOU Chuanlong, GE Xiangying, YU Qian, et al. Palaeoclimatology and provenance of black shales from Wufeng-Longmaxi Formations in southwestern Sichuan Province: from geochemical records of Well Xindi-2[J]. Journal of Palaeogeography, 2019, 21(5): 835-854.
牟传龙, 葛祥英, 余谦, 等. 川西南地区五峰—龙马溪组黑色页岩古气候及物源特征: 来自新地2井地球化学记录[J]. 古地理学报, 2019, 21(5): 835-854.
42 CHEN Yang, CHEN Jun, LIU Lianwen. Chemical composition and characterization of chemical weathering of Late Tertiary red clay in Xifeng, Gansu Province[J]. Journal of Geomechanics, 2001, 7(2): 167-175.
陈旸, 陈骏, 刘连文. 甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J]. 地质力学学报, 2001, 7(2): 167-175.
43 HOSSAIN H M Z. Major, trace, and REE geochemistry of the Meghna River sediments, Bangladesh: constraints on weathering and provenance[J]. Geological Journal, 2020, 55(5): 3 321-3 343.
44 WHITE A F, BLUM A E, SCHULZ M S, et al. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates[J]. Geochimica et Cosmochimica Acta, 1996, 60(14): 2 533-2 550.
45 BRANTLEY S L, WHITE A F. Approaches to modeling weathered regolith[J]. Reviews in Mineralogy and Geochemistry, 2009, 70(1): 435-484.
46 MIDDELBURG J J, van der WEIJDEN C H, WOITTIEZ J R W. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks[J]. Chemical Geology, 1988, 68(3/4): 253-273.
47 JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3/4): 339-353.
48 SHELDON N D, TABOR N J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols[J]. Earth-Science Reviews, 2009, 95(1/2): 1-52.
49 DERE A L, WHITE T S, APRIL R H, et al. Climate dependence of feldspar weathering in shale soils along a latitudinal gradient[J]. Geochimica et Cosmochimica Acta, 2013, 122: 101-126.
50 COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2 919-2 940.
51 WEI W, LING S X, WU X Y, et al. Investigations on mineralogy and geochemistry of a black shale profile on the northern Yangtze platform, China: weathering fate of Rare Earth Elements and Yttrium (REY) and its implications[J]. Applied Geochemistry, 2021, 126: 104897.
52 BOYNTON W V. Cosmochemistry of the Rare Earth Elements: meteorite studies[M]//Rare Earth Element geochemistry. Amsterdam: Elsevier, 1984: 63-114.
53 MA Yingjun, HUO Runke, XU Zhifang, et al. Ree behavior and influence factors during chemical weathering[J]. Advances in Earth Science, 2004, 19(1): 87-94.
马英军, 霍润科, 徐志方, 等. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1): 87-94.
54 WANG Daofang, FU Shanming, WU Liqin, et al. Speciation distribution characteristics of heavy metals in polluted river sediments of pyrite mine,Western Guangdong[J]. Advances in Earth Science, 2012, 27(): 419-422.
王道芳, 付善明, 吴丽琴, 等. 粤西某硫铁矿尾矿库纳污河沉积物重金属的形态分布特征[J]. 地球科学进展, 2012, 27(): 419-422.
55 HU Junjie, LI Qi, LI Juan, et al. Geochemical characteristics and depositional environment of the Middle Permian mudstones from central Qiangtang Basin, northern Tibet[J]. Geological Journal, 2016, 51(4): 560-571.
56 MA Jinlong, WEI Gangjian, XU Yigang, et al. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China[J]. Geochimica et Cosmochimica Acta, 2007, 71(13): 3 223-3 237.
57 JIN Lixin, MA Lin, DERE A, et al. REE mobility and fractionation during shale weathering along a climate gradient[J]. Chemical Geology, 2017, 466(5): 352-379.
58 LI Jianwu, ZHANG Ganlin, LI Ruan, et al. Sr-Nd elements and isotopes as tracers of dust input in a tropical soil chronosequence[J]. Geoderma, 2016, 262: 227-234.
59 MA Jianjun. Study on mechanism of water-rock interaction on mountain hazards induced by black stratum[J]. Journal of Railway Engineering Society, 2011, 28(10): 1-5, 37.
马建军. 黑色岩层诱发山地灾害的水—岩作用机理研究[J]. 铁道工程学报, 2011, 28(10): 1-5, 37.
[1] 雒恺, 马金龙. 花岗岩风化过程中稀土元素迁移富集机制研究进展[J]. 地球科学进展, 2022, 37(7): 692-708.
[2] 周龙政, 蔡进功, 李旭, 晁静, 李政. 泥页岩中水的赋存态研究进展及其意义[J]. 地球科学进展, 2022, 37(7): 709-725.
[3] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[4] 邓腾, 丁正鹏, 许德如. 浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用[J]. 地球科学进展, 2021, 36(10): 1077-1091.
[5] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[6] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[7] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[8] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[9] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[10] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[11] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[12] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[13] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[14] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[15] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
阅读次数
全文


摘要