地球科学进展 ›› 2022, Vol. 37 ›› Issue (7): 692 -708. doi: 10.11867/j.issn.1001-8166.2022.040

综述与评述 上一篇    下一篇

花岗岩风化过程中稀土元素迁移富集机制研究进展
雒恺 1 , 2 , 3( ), 马金龙 1 , 2( )   
  1. 1.中国科学院广州地球化学研究所 同位素地球化学国家重点实验室,广东 广州 510640
    2.中国 科学院深地科学卓越创新中心,广东 广州 510640
    3.中国科学院大学,北京 100049
  • 收稿日期:2022-03-07 修回日期:2022-06-10 出版日期:2022-07-10
  • 通讯作者: 马金龙 E-mail:luokai@gig.ac.cn;jlma@gig.ac.cn
  • 基金资助:
    广东省基础与应用基础研究重大项目“广东省稀土资源与环境风险”子课题“风化淋积与稀土成矿”(2019B030302013)

Recent Advances in Migration and Enrichment of Rare Earth Elements During Chemical Weathering of Granite

Kai LUO 1 , 2 , 3( ), Jinlong MA 1 , 2( )   

  1. 1.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    2.CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
    3.University of Chinese Academy Sciences, Beijing 100049, China
  • Received:2022-03-07 Revised:2022-06-10 Online:2022-07-10 Published:2022-07-21
  • Contact: Jinlong MA E-mail:luokai@gig.ac.cn;jlma@gig.ac.cn
  • About author:LUO Kai (1996-), male, Tianshui City, Gansu Province, Ph.D student. Research area include non-traditional stable isotope geochemistry. E-mail: luokai@gig.ac.cn
  • Supported by:
    the Fundamental and Applied Fundamental Research Major Program of Guangdong Province “Rare earth resources and environmental risks in Guangdong Province” a sub-project “Weathering eluviation and rare earth mineralization”(2019B030302013)

风化壳淋积型稀土矿床的矿化与化学风化作用密切相关,华南风化壳淋积型稀土矿床是一种重要的稀土资源类型,具有储量大、分布范围广和富含重稀土等特点。近年来,风化过程中稀土元素迁移富集机制和风化壳淋积型稀土矿床成矿机理问题被越来越多的人关注,已成为地球科学研究的热点问题之一。通过系统总结前人工作,归纳出风化壳淋积型稀土矿床成矿特点及过程、花岗岩风化壳的结构特征、稀土元素在风化剖面中的分布、迁移与赋存方式、稀土元素在风化剖面中迁移和富集的主要影响因素以及Eu和Ce元素异常特征,旨在进一步理解表生风化过程中稀土元素的行为,并对当前化学风化过程中稀土研究的一些问题进行了展望。非传统稳定同位素示踪化学风化新颖有效且优势明显,目前已成功建立Ce和Nd等稀土稳定同位素分析测试方法,未来研究工作应将稀土元素和同位素手段有效结合,有望在示踪化学风化过程、揭示稀土矿化以及研究环境演化等方面取得重要认识。

The mineralization process of elution-deposited Rare Earth Element (REE) deposits is closely related to chemical weathering. Elution-deposited REE deposits in South China are an extremely important type of rare resource, with large reserves, a wide distribution, and a high content of Heavy REEs (HREE). In recent years, the migration and enrichment mechanism of earth elements during the chemical weathering process and the ore-forming mechanism of elution-deposited REE deposits has garnered great research interest. This subject has become one of the central issues in geoscience research. Multiple aspects, such as the metallogenic characteristics and processes of elution-deposited REE deposits, structural characteristics of granite weathering crust, distribution characteristics of REEs, occurrence and migration modes of REEs, main factors affecting the migration and enrichment of REEs, and the characteristics of Eu and Ce anomalies are systematically summarized in this paper. The purpose of this study is to comprehensively summarize knowledge centered on the behavior of REEs in the process of supergene weathering, to provide novel directions for future research. Non-traditional stable isotope tracing of chemical weathering is novel and effective; specifically, stable isotope analysis methods for Ce and Nd have been successfully established. Therefore, future research should explore earth elements through the lens of isotopic methods, as this approach could provide important insights for tracing chemical weathering, revealing the mineralization process of REE deposits, and studying environmental evolution.

中图分类号: 

图1 典型的风化剖面和稀土含量变化 12 15 - 16
Fig. 1 Schematic weathering profile and the variation of REEs concentration along the profile 12 15 - 16
图2 风化剖面中稀土元素总量变化示意图 46 - 47
Fig. 2 The diagram of ΣREE content change in granitic rock weathering profile 46 - 47
图3 风化壳型稀土矿床的迁移和富集模式 12 15
Fig. 3 Schematic model for mobilization and enrichment of REEs in weathered crust elution-deposited REE deposit 12 15
图4 表生地质过程和地下水对风化壳型稀土矿床成矿的控制 12 38
Fig. 4 Controls of supergene processes and groundwater on the formation of weathered crust elution-deposited REE deposit 12 38
图5 地下水控制风化壳淋积型稀土矿床的形成模式 70
Fig. 5 Schematic model of weathered crust elution-deposited REE deposit controlled by groundwater 70
9 LINTJEWAS L, SETIAWAN I. Mobility of Rare Earth Element in hydrothermal process and weathering product: a review[J]. IOP Conference Series: Earth and Environmental Science, 2018, 118: 012076.
10 XU C, KYNICKY J, SMITH M P, et al. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 2017, 8:1-7.
11 YANG Meijun. REE enrichment and fractionation by typical clay minerals and iron (oxyhydr) oxides [D]. Beijing:University of Chinese Academy of Sciences, 2021.
杨美君. 典型黏土矿物与铁(氢)氧化物对稀土元素的富集和分异[D]. 北京:中国科学院大学, 2021.
12 ZHOU Meifu, LI Martinyanhei, WANG Zhenchao, et al. The genesis of regolith-hosted Rare Earth Element and scandium deposits: current understanding and outlook to future prospecting[J]. Chinese Science Bulletin, 2020, 65(33):3 809-3 824.
周美夫, 李欣禧, 王振朝, 等. 风化壳型稀土和钪矿床成矿过程的研究进展和展望[J]. 科学通报, 2020, 65(33):3 809-3 824.
13 SIMANDL G J. Geology and market-dependent significance of Rare Earth Element resources[J]. Mineralium Deposita, 2014, 49(8):889-904.
14 SANEMATSU K, EJIMA T, KON Y, et al. Fractionation of Rare-Earth Elements during magmatic differentiation and weathering of calc-alkaline granites in southern Myanmar[J]. Mineralogical Magazine, 2016, 80(1):77-102.
15 LI M Y H, ZHOU M F, WILLIAMS-JONES A E. The genesis of regolith-hosted heavy Rare Earth Element deposits: insights from the world-class Zudong deposit in Jiangxi Province, South China[J]. Economic Geology, 2019, 114(3):541-568.
16 LI Y H M, ZHAO W W, ZHOU M F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 2017, 148:65-95.
17 SANEMATSU K, WATANABE Y, Characteristics and genesis of ion adsorption-type Rare Earth Element deposits[J]. Reviews in Economic Geology, 2016, 18:55-79.
18 SANEMATSU K, KON Y, IMAI A. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand[J]. Journal of Asian Earth Sciences, 2015, 111:14-30.
19 ESTRADE G, MARQUIS E, SMITH M, et al. REE concentration processes in ion adsorption deposits: evidence from the Ambohimirahavavy alkaline complex in Madagascar[J]. Ore Geology Reviews, 2019, 112: 103027.
20 FU W, LI X T, FENG Y Y, et al. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: critical control of lithology[J]. Chemical Geology, 2019, 520: 33-51.
21 XIE Y L, HOU Z Q, GOLDFARB R, et al. Rare Earth Element deposits in China[J]. Reviews in Economic Geology, 2016, 18:115-136.
22 SANEMATSU K, KON Y. Geochemical characteristics determined by multiple extraction from ion-adsorption type REE ores in Dingnan County of Jiangxi Province, South China[J]. Bulletin of the Geological Survey of Japan, 2013, 64(11/12):313-330.
23 BERGER A, JANOTS E, GNOS E, et al. Rare Earth Element mineralogy and geochemistry in a laterite profile from Madagascar[J]. Applied Geochemistry, 2014, 41:218-228.
24 HU J Y, DAUPHAS N, TISSOT F L H, et al. Heating events in the nascent solar system recorded by Rare Earth Element isotopic fractionation in refractory inclusions[J]. Science Advances, 2021, 7(2): eabc2962.
25 DIETZEL C A F, KRISTANDT T, DAHLGREN S, et al. Hydrothermal processes in the Fen alkaline-carbonatite complex, southern Norway[J]. Ore Geology Reviews, 2019, 111:102969.
26 LIU S, DING L, FAN H R, et al. Hydrothermal genesis of Nb mineralization in the giant Bayan Obo REE-Nb-Fe deposit (China): implicated by petrography and geochemistry of Nb-bearing minerals[J]. Precambrian Research, 2020, 348:105864.
27 CAETANO-FILHO S, PAULA-SANTOS G M, DIAS-BRITO D. Carbonate REE+Y signatures from the restricted early marine phase of South Atlantic Ocean (late Aptian-Albian): the influence of early anoxic diagenesis on shale-normalized REE+Y patterns of ancient carbonate rocks[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 500: 69-83.
28 LUMISTE K, MÄND K, BAILEY J, et al. REE+Y uptake and diagenesis in recent sedimentary apatites[J]. Chemical Geology, 2019, 525: 268-281.
1 HU Z Y, HANEKLAUS S, SPAROVEK G, et al. Rare Earth Elements in soils[J]. Communications in Soil Science and Plant Analysis, 2006, 37(9/10): 1 381-1 420.
2 LAVEUF C, CORNU S. A review on the potentiality of Rare Earth Elements to trace pedogenetic processes[J]. Geoderma, 2009, 154(1/2): 1-12.
3 FAN Hongrui, NIU Hecai, LI Xiaochun, et al. The types, ore genesis and resource perspective of endogenic REE deposits in China[J]. Chinese Science Bulletin, 2020, 65(33):3 778-3 793.
范宏瑞, 牛贺才, 李晓春, 等. 中国内生稀土矿床类型、成矿规律与资源展望[J]. 科学通报, 2020, 65(33):3 778-3 793.
4 HOU X Z, YANG Z F, WANG Z J. The occurrence characteristics and recovery potential of middle-heavy Rare Earth Elements in the Bayan Obo deposit, northern China[J]. Ore Geology Reviews, 2020, 126: 103737.
5 WANG Xueqiu, ZHOU Jian, CHI Qinghua, et al. Geochemical background and distribution of Rare Earth Elements in China: implications for potential prospects[J]. Acta Geoscientica Sinica, 2020, 41(6):747-758.
王学求, 周建, 迟清华, 等. 中国稀土元素地球化学背景与远景区优选[J]. 地球学报, 2020, 41(6):747-758.
6 HENDERSON P. Rare Earth Element geochemistry: developments in geochemistry (volumn 2) [M]. Amsterdam: Elsevier, 1984: 510.
7 JHA M K, KUMARI A, PANDA R, et al. Review on hydrometallurgical recovery of rare earth metals[J]. Hydrometallurgy, 2016, 165:2-26.
8 WENG Z H, JOWITT S M, MUDD G M, et al. A detailed assessment of global Rare Earth Element resources: opportunities and challenges[J]. Economic Geology, 2015, 110(8): 1 925-1 952.
29 LIU Congqiang, TANG Hongfeng. Redistribution of REEs during metamorphism and its indicative significance for fluid processes—a study on the trace element composition of the Xingzi Group metamorphic rocks in the Lushan area,SE China[J]. Science in China Series D: Earth Sciences, 1999, 29(6):520-526.
刘丛强, 唐红峰. 变质作用中稀土元素再分配及其对流体作用的指示意义——庐山星子群变质岩的微量元素组成研究[J]. 中国科学D辑:地球科学, 1999, 29(6):520-526.
30 DING Zhenju, LIU Congqiang, YAO Shuzhen, et al. Rare Earth Elements compositions of high-temperature hydrothermal fluids in sea floor and control factors[J]. Advances in Earth Science, 2000, 15(3):307-312.
丁振举, 刘丛强, 姚书振, 等. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展, 2000, 15(3):307-312.
31 WANG Zhongliang, LIU Congqiang, XU Zhifang, et al. Advances in reserach on geochemistry of Rare Earth Elements in rivers[J]. Advances in Earth Science, 2000, 15(5):553-558.
王中良, 刘丛强, 徐志方, 等. 河流稀土元素地球化学研究进展[J]. 地球科学进展, 2000, 15(5):553-558.
32 ZHAO Zhenhua, MASUDA A, SHABANI M B. Tetrad effects of Rare-Earth Elements in rare-mental granites[J]. Geochimica, 1992, 3:221-233.
赵振华, 增田彰正, SHABANI M B. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, 3:221-233.
33 WEN Qizhong, YU Suhua, GU Xiongfei, et al. A preliminary investigation of REE in loess[J]. Geochimica, 1981, 10(2): 151-157.
文启忠, 余素华, 顾雄飞, 等. 黄土中稀土元素的初步探讨[J]. 地球化学, 1981, 10(2): 151-157.
34 ZHANG Zheru. Rare Earth Elements of extraterrestrial material[J]. Geocheimica, 1985, 13():60-64.
张哲儒. 地球外物质的稀土元素[J]. 地球化学, 1985, 13():60-64.
35 HUANG Zhilong, LIU Congqiang, XIAO Huayun, et al. REE geochemistry of eclogites from the ultra-high pressure metamorphic belt in central China[J]. Acta Mineralogica Sinica, 2000, 20(3):250-256.
黄智龙, 刘丛强, 肖化云, 等. 华中超高压变质带中榴辉岩的稀土元素地球化学[J]. 矿物学报, 2000, 20(3):250-256.
36 FENG Jia, ZHANG Hui, ZHU Weifang, et al. Bio-effect of rare earths in RE-high background region Ⅰ.some blood biochemical indices from population resided in light REE district[J]. Journal of the Chinese Rare Earth Society, 2000, 18(4):356-359.
冯嘉, 张辉, 朱为方, 等. 稀土高背景区稀土生物学效应研究Ⅰ 轻稀土区人群血液生化指标[J]. 中国稀土学报, 2000, 18(4):356-359.
37 WANG Xianjue, CHEN Yuwei, WU Mingqing. Geochemistry of RE and trace elements in ferromanganese nodules and their genesis[J]. Oceanologia et Limnologia Sinica, 1984, 15(6):501-514.
王贤觉, 陈毓蔚, 吴明清. 铁锰结核的稀土和微量元素地球化学及其成因[J]. 海洋与湖沼, 1984, 15(6):501-514.
38 LI M Y H, ZHOU M F. The role of clay minerals in formation of the regolith-hosted Heavy Rare Earth Element deposits[J]. American Mineralogist, 2020, 105(1):92-108.
39 ZHAO Xu, LI Ningbo, HUIZENGA J M, et al. Rare Earth Element enrichment in the ion-adsorption deposits associated granites at Mesozoic extensional tectonic setting in South China[J]. Ore Geology Reviews, 2021, 137:104317.
40 HUANG Jian. REE enrichment and fractionation mechanism of the Renju ion adsorption type REE deposit in Guangdong Province [D]. Beijing:University of Chinese Academy of Sciences, 2021.
黄健. 广东仁居风化壳离子吸附型稀土矿床中稀土元素的富集分异机制研究[D]. 北京:中国科学院大学, 2021.
41 YANG Meijun, LIANG Xiaoliang, LI Ying, et al. Ferrihydrite transformation impacted by adsorption and structural incorporation of Rare Earth Elements[J]. ACS Earth and Space Chemistry, 2021, 5(10):2 768-2 777.
42 YANG M J, LIANG X L, MA L Y, et al. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 2019, 525:210-217.
43 LIU Rong, WANG Rucheng, LU Xiancai, et al. Nano-sized rare earth minerals from granite-related weathering-type REE deposits in southern Jiangxi[J]. Acta Petrologica et Mineralogica, 2016, 35(4):617-626.
刘容, 王汝成, 陆现彩, 等. 赣南花岗岩风化壳型稀土矿床中纳米级稀土矿物的研究[J]. 岩石矿物学杂志, 2016, 35(4):617-626.
44 CHI Ru'an, TIAN Jun. Review of weathered crust rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2007, 25(6): 641-650.
池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007, 25(6): 641-650.
45 LI Shehong, YAN Song, MIAO Bingkui, et al. Forecast on ion-adsorption type REE deposit related with granite in central-south China[J]. Journal of Guilin University of Technology, 2016, 36(1): 9-16.
李社宏, 严松, 缪秉魁, 等. 中南地区与花岗岩有关的离子吸附型稀土矿床成矿预测[J]. 桂林理工大学学报, 2016, 36(1):9-16.
46 CHI Ru'an, TIAN Jun, LUO Xianping, et al. The basic research on the weathered crust elution-deposited rare earth ores[J]. Nonferrous Metals Science and Engineering, 2012, 3(4): 1-13.
池汝安, 田君, 罗仙平, 等. 风化壳淋积型稀土矿的基础研究[J]. 有色金属科学与工程, 2012, 3(4): 1-13.
47 WANG Denghong, ZHAO Zhi, YU Yang, et al. Progress, problems and research orientation of ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 2013, 32(5): 796-802.
王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5): 796-802.
48 ZHAO Zhi, WANG Denghong, LIU Xinxing, et al. Geochemical features of Rare Earth Elements in different weathering stage of the Guangxi Huashan granite and its influence factors[J]. Chinese Rare Earths, 2015, 36(3): 14-20.
赵芝, 王登红, 刘新星, 等. 广西花山岩体不同风化阶段稀土元素特征及其影响因素[J]. 稀土, 2015, 36(3): 14-20.
49 NESBITT W H, MARKOVICS G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1 653-1 670.
50 SANEMATSU K, KON Y, IMAI A, et al. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand[J]. Mineralium Deposita, 2013, 48(4):437-451.
51 MUKAI H, KON Y, SANEMATSU K, et al. Microscopic analyses of weathered granite in ion-adsorption rare earth deposit of Jianxi Province, China[J]. Scientific Reports, 2020, 10(1):20194.
52 COPPIN F, BERGER G, BAUER A, et al. Sorption of lanthanides on smectite and kaolinite[J]. Chemical Geology, 2002, 182(1): 57-68.
53 FU W, LUO P, HU Z Y, et al. Enrichment of ion-exchangeable Rare Earth Elements by felsic volcanic rock weathering in South China: genetic mechanism and formation preference[J]. Ore Geology Reviews, 2019, 114: 103120.
54 BOLANZ R M, KIEFER S, GÖTTLICHER J, et al. Hematite (α-Fe2O3)—a potential Ce4+ carrier in red mud[J]. Science of the Total Environment, 2018, 622/623: 849-860.
55 LI M X, LIU H B, CHEN T H, et al. Adsorption of europium on Al-substituted goethite[J]. Journal of Molecular Liquids, 2017, 236: 445-451.
56 TANG J W, JOHANNESSON K H. Ligand extraction of Rare Earth Elements from aquifer sediments: implications for Rare Earth Element complexation with organic matter in natural waters[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 690-6 705.
57 POURRET O, DAVRANCHE M, GRUAU G, et al. Competition between humic acid and carbonates for Rare Earth Elements complexation[J]. Journal of Colloid and Interface Science, 2007, 305(1): 25-31.
58 HUANG J, TAN W, LIANG X L, et al. REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province, South China[J]. Ore Geology Reviews, 2021, 134: 104172.
59 BORST A M, SMITH M P, FINCH A A, et al. Adsorption of Rare Earth Elements in regolith-hosted clay deposits[J]. Nature Communications, 2020, 11(1): 4386.
60 ICHIMURA K, SANEMATSU K, KON Y, et al. REE redistributions during granite weathering: implications for Ce anomaly as a proxy for paleoredox states[J]. American Mineralogist, 2020, 105(6): 848-859.
61 KIM H, STINCHCOMB G, BRANTLEY S L. Feedbacks among O2 and CO2 in deep soil gas, oxidation of ferrous minerals, and fractures: a hypothesis for steady-state regolith thickness[J]. Earth and Planetary Science Letters, 2017, 460: 29-40.
62 BRAY A W, OELKERS E H, BONNEVILLE S, et al. The effect of pH, grain size, and organic ligands on biotite weathering rates[J]. Geochimica et Cosmochimica Acta, 2015, 164: 127-145.
63 YUSOFF Z M, NGWENYA B T, PARSONS I. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia[J]. Chemical Geology, 2013, 349/350: 71-86.
64 OU X L, CHEN Z B, CHEN Z Q, et al. Effects of organic matter on the distribution of Rare Earth Elements in red soil aggregates during ecological restoration[J]. Journal of Mountain Science, 2021, 18(11): 2 915-2 928.
65 KALINTSEV A, BRUGGER J, ETSCHMANN B, et al. An in situ, micro-scale investigation of inorganically and organically driven rare-earth remobilisation during weathering[J]. Mineralogical Magazine, 2021, 85(1): 105-116.
66 YANG Junxiong, LIU Congqiang, ZHAO Zhiqi, et al. Geochemical behavior of Rare-Earth Element during the weathering of granite under different climatic conditions[J]. Acta Mineralogica Sinica, 2016, 36(1): 125-137.
杨骏雄, 刘丛强, 赵志琦, 等. 不同气候带花岗岩风化过程中稀土元素的地球化学行为[J]. 矿物学报, 2016, 36(1): 125-137.
67 LI M Y H, ZHOU M F, WILLIAMS-JONES A E. Controls on the dynamics of Rare Earth Elements during subtropical hillslope processes and formation of regolith-hosted deposits[J]. Economic Geology, 2020, 115(5): 1 097-1 118.
68 ÖHLANDER B, LAND M, INGRI J, et al. Mobility and transport of Nd isotopes in the vadose zone during weathering of granitic till in a boreal forest[J]. Aquatic Geochemistry, 2014, 20(1): 1-17.
69 WALLRICH I L R, STEWART B W, CAPO R C, et al. Neodymium isotopes track sources of Rare Earth Elements in acidic mine waters[J]. Geochimica et Cosmochimica Acta, 2020, 269: 465-483.
70 HUANG J, HE H P, TAN W, et al. Groundwater controls REE mineralisation in the regolith of South China[J]. Chemical Geology, 2021, 577: 120295.
71 WANG Ming, PENG Zhen'an, LIANG Linghui, et al. Geochemical characteristics and ion adsorption type rare earth deposit of Dishui granite in Guangxi[J]. Mineral Exploration, 2013, 4(3): 273-282.
汪明, 彭振安, 梁玲慧, 等. 广西滴水花岗岩地球化学特征与离子吸附型稀土矿床[J]. 矿产勘查, 2013, 4(3): 273-282.
72 YUAN Y Y, LIU S L, WU M, et al. Effects of topography and soil properties on the distribution and fractionation of REEs in topsoil: a case study in Sichuan Basin, China[J]. Science of the Total Environment, 2021, 791: 148404.
73 OLIVA P, VIERS J, DUPRÉ B. Chemical weathering in granitic environments[J]. Chemical Geology, 2003, 202(3/4): 225-256.
74 GOODFELLOW B W, HILLEY G E, SCHULZ M S. Vadose zone controls on weathering intensity and depth: observations from grussic saprolites[J]. Applied Geochemistry, 2011, 26: S36-S39.
75 GRAHAM R C, ROSSI A M, HUBBERT R. Rock to regolith conversion: producing hospitable substrates for terrestrial ecosystems[J]. GSA Today, 2010, 20(2):4-9.
76 XU Cheng, SONG Wenlei, HE Chen, et al. The overview of the distribution, type and genesis of the exogenetic Rare Earth Elements (REE) deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):234-241.
许成, 宋文磊, 何晨, 等. 外生稀土矿床的分布、类型和成因概述[J]. 矿物岩石地球化学通报, 2015, 34(2):234-241.
77 ZHAO L, ZHOU X W, ZHAI M G, et al. Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane[J]. Gondwana Research, 2015, 28(1): 246-261.
78 ZHANG Lian, WU Kaixing, CHEN Lingkang, et al. Overview of metallogenic features of ion-adsorption type REE deposits in Southern Jiangxi Province[J]. Journal of the Chinese Society of Rare Earths, 2015, 33(1):10-17.
张恋, 吴开兴, 陈陵康, 等. 赣南离子吸附型稀土矿床成矿特征概述[J]. 中国稀土学报, 2015, 33(1):10-17.
79 BAO Z W, ZHAO Z H. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China[J]. Ore Geology Reviews, 2008, 33(3/4): 519-535.
80 BERN C R, YESAVAGE T, FOLEY N K. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration[J]. Journal of Geochemical Exploration, 2017, 172:29-40.
81 WANG L Z, XU C, ZHAO Z, et al. Petrological and geochemical characteristics of Zhaibei granites in Nanling region, Southeast China: implications for REE mineralization[J]. Ore Geology Reviews, 2015, 64:569-582.
82 ZHANG Zuhai. A study on weathering crust ion adsorption type ree deposits, South China[J]. Contributions to Geology and Mineral Resources Research, 1990, 5(1): 57-71.
张祖海. 华南风化壳离子吸附型稀土矿床[J]. 地质找矿论丛, 1990, 5(1): 57-71.
83 LU Lei, WANG Denghong, WANG Chenghui, et al. The metallogenic regularity of ion-adsorption type REE deposit in Yunnan Province[J]. Acta Geologica Sinica, 2020, 94(1): 179-191.
陆蕾, 王登红, 王成辉, 等. 云南离子吸附型稀土矿成矿规律[J]. 地质学报, 2020, 94(1): 179-191.
84 LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7 388):198-200.
85 GRANADOS-CORREA F, VILCHIS-GRANADOS J, JIMÉNEZ-REYES M, et al. Adsorption behaviour of La(III) and Eu(III) ions from aqueous solutions by hydroxyapatite: kinetic, isotherm, and thermodynamic studies[J]. Journal of Chemistry, 2013. DOI:10.1155/2013/751696 .
86 ZHOU J M, LI M Y, YUAN P, et al. Partial rehydration of tubular halloysite (7 Å) immersed in La(NO33 solution for 3 years and its implication for understanding REE occurrence in weathered crust elution-deposited rare earth ores[J]. Applied Clay Science, 2021, 213: 106244.
87 WAINIPEE W, CUADROS J, SEPHTON M A, et al. The effects of oil on As(V) adsorption on illite, kaolinite, montmorillonite and chlorite[J]. Geochimica et Cosmochimica Acta, 2013, 121: 487-502.
88 YUAN P, TAN D Y, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes: recent research advances and future prospects[J]. Applied Clay Science, 2015, 112/113: 75-93.
89 YUAN Peng, SOUTHON P D, LIU Zongwen, et al. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane[J]. The Journal of Physical Chemistry C, 2008, 112(40): 15 742-15 751.
90 FAN Chenzi, ZHANG Yu, CHEN Zhenghui, et al. The study of clay minerals from weathered crust rare earth ores in southern Jiangxi Province[J]. Acta Petrologica et Mineralogica, 2015, 34(6):803-810.
范晨子, 张誉, 陈郑辉, 等. 江西赣南风化淋滤型稀土矿床中的粘土矿物研究[J]. 岩石矿物学杂志, 2015, 34(6):803-810.
91 da SILVA Y J A B, ARAÚJO do NASCIMENTO C W, BIONDI C M, et al. Rare Earth Element geochemistry during weathering of S-type granites from dry to humid climates of Brazil[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(6): 938-953.
92 GAO Yuhong, FAN Chenzi, XU Hong, et al. An experimental study of the characteristics of REE adsorption of kaolinite and halloysite-7Å[J]. Acta Petrologica et Mineralogica, 2018, 37(1):161-168.
高瑜鸿, 范晨子, 许虹, 等. 高岭石和埃洛石-7Å对稀土元素吸附特征的实验研究[J]. 岩石矿物学杂志, 2018, 37(1):161-168.
93 LI Hui, XU Zhigao, YU Junxia, et al. Study on ore properties of the weathered crust elution-deposited rare earth ore and rare earth contents in various grain-size[J]. Chinese Rare Earths, 2012, 33(2):14-18.
李慧, 徐志高, 余军霞, 等. 风化壳淋积型稀土矿矿石性质及稀土在各粒级上的分布[J]. 稀土, 2012, 33(2):14-18.
94 YUAN Hongqing, LI Shehong, CHENG Fei, et al. Weathered material granularity and geochemistry of weathering crust in ion-adsorption type REE deposit—a case from Yangminchong of Guposhan[J]. Journal of Guilin University of Technology, 2015, 35(2): 243-250.
苑鸿庆, 李社宏, 程飞, 等. 离子吸附型稀土矿床风化壳地球化学与风化物粒度研究: 以姑婆山养民冲稀土矿床为例[J]. 桂林理工大学学报, 2015, 35(2): 243-250.
95 CHI Ruan, XU Jingming, HE Peijiong, et al. REE geochemistry of granitoid weathering crust and properties of ores in southern China[J]. Geochimica, 1995, 24(3):261-269.
池汝安, 徐景明, 何培炯, 等. 华南花岗岩风化壳中稀土元素地球化学及矿石性质研究[J]. 地球化学, 1995, 24(3):261-269.
96 HE Yao, CHENG Liu, LI Yi, et al. The mineralization mechanism of the ion adsorption type rare earths ore and prospecting marks[J]. Chinese Rare Earths, 2015, 36(4):98-103.
何耀, 程柳, 李毅, 等. 离子吸附型稀土矿的成矿机理及找矿标志[J]. 稀土, 2015, 36(4):98-103.
97 YANG Dahuan, XIAO Guangming. Regional metallogenic regularities of the ion adsorption type of rare-earth deposits in Guangdong Province[J]. Geology and Resources, 2011, 20(6): 462-468.
杨大欢, 肖光铭. 广东省离子吸附型稀土矿区域成矿规律研究[J]. 地质与资源, 2011, 20(6): 462-468.
98 MA Yingjun, HUO Runke, XU Zhifang, et al. REE behavior and influence factors during chemical weathering[J]. Advances in Earth Science, 2004, 19(1): 87-94.
马英军, 霍润科, 徐志方, 等. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1): 87-94.
99 BAO Zhiwei. A geochemical study of the granitoid weathering crust in southeast China[J]. Geochimica, 1992, 21(2): 166-174.
包志伟. 华南花岗岩风化壳稀土元素地球化学研究[J]. 地球化学, 1992, 21(2): 166-174.
100 CONDIE K C, DENGATE J, CULLERS R L. Behavior of Rare Earth Elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA[J]. Geochimica et Cosmochimica Acta, 1995, 59:279-294.
101 CHEN Deqian, WU Jingshu. The metallogenic mechanism of ion-adsorbed REE deposits[J]. Journal of the Chinese Rare Earth Society, 1990, 8(2):175-179.
陈德潜, 吴静淑. 离子吸附型稀土矿床的成矿机制[J]. 中国稀土学报, 1990, 8(2):175-179.
102 BRAUN J J, PAGEL M, HERBILLN A, et al. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study[J]. Geochimica et Cosmochimica Acta, 1993, 57(18): 4 419-4 434.
103 LIU H Y, POURRET O, GUO H M, et al. Rare Earth Elements sorption to iron oxyhydroxide: model development and application to groundwater[J]. Applied Geochemistry, 2017, 87:158-166.
104 YU C X, DRAKE H, MATHURIN F A, et al. Cerium sequestration and accumulation in fractured crystalline bedrock: the role of Mn-Fe (hydr-)oxides and clay minerals[J]. Geochimica et Cosmochimica Acta, 2017, 199:370-389.
105 ZHAO Zhi, WANG Denghong, PAN Hua, et al. REE geochemistry of a weathering profile in Guangxi, southern China, and genesis of ion-adsorption type REE deposit[J]. Earth Science, 2017, 42(10): 1 697-1 706.
赵芝, 王登红, 潘华, 等. 广西某地花岗岩风化壳中稀土元素特征与iREE矿床成矿机制[J]. 地球科学, 2017, 42(10): 1 697-1 706.
106 COMPTON J S, WHITE R A, SMITH M. Rare Earth Element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa[J]. Chemical Geology, 2003, 201(3/4): 239-255.
107 SHEARD E R, WILLIAMS-JONES A E, HEILIGMANN M, et al. Controls on the concentration of zirconium, niobium, and the Rare Earth Elements in the Thor lake rare metal deposit, northwest territories, Canada[J]. Economic Geology, 2012, 107(1): 81-104.
108 MAO H R, LIU C Q, ZHAO Z Q, et al. Distribution of rare earth elements of granitic regolith under the influence of climate[J]. Acta Geochimica, 2017, 36(3):440-445.
109 JANOTS E, BERNIER F, BRUNET F, et al. Ce(III) and Ce(IV) (re)distribution and fractionation in a laterite profile from Madagascar: insights from in situ XANES spectroscopy at the Ce LIII-edge[J]. Geochimica et Cosmochimica Acta, 2015, 153: 134-148.
110 KOEPPENKASTROP D, de CARLO E H. Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach[J]. Chemical Geology, 1992, 95(3/4): 251-263.
111 DAVRANCHE M, POURRET O, GRUAU G, et al. Competitive binding of REE to humic acid and manganese oxide: impact of reaction kinetics on development of cerium anomaly and REE adsorption[J]. Chemical Geology, 2008, 247(1/2): 154-170.
112 DUZGOREN-AYDIN N S, AYDIN A. Distribution of rare earth elements and oxyhydroxide phases within a weathered felsic igneous profile in Hong Kong[J]. Journal of Asian Earth Sciences, 2009, 34(1):1-9.
113 FENG J L. Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots, and the surrounding Terra rossa over dolomite during chemical weathering[J]. Chemical Geology, 2010, 271(3/4): 112-132.
114 LAVEUF C, CORNU S, JUILLOT F. Rare Earth Elements as tracers of pedogenetic processes[J]. Comptes Rendus Geoscience, 2008, 340(8):523-532.
115 LIU F, ZHANG Z F, LI X, et al. Single-stage extraction technique for Ce stable isotopes and measurement by MC-ICP-MS[J]. Analytical Chemistry, 2021, 93(37):12 524-12 531.
116 BAI J H, LIU F, ZHANG Z F, et al. Simultaneous measurement stable and radiogenic Nd isotopic compositions by MC-ICP-MS with a single-step chromatographic extraction technique[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12):2 695-2 703.
117 MA Y J, HUO R K, LIU C Q. Speciation and fractionation of Rare Earth Elements in a lateritic profile from southern China: identification of the carriers of Ce anomalies. [J]. Geochimica et Cosmochimica Acta, 2002, 66(15A):471.
118 MA J L, WEI G J, XU Y G, et al. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China[J]. Geochimica et Cosmochimica Acta, 2007, 71(13):3 223-3 237.
119 COLMAN S M. Chemical weathering of basalts and andesites: evidence from wethering rinds[J]. Geological Survey Professional Paper, 1982(1 246):1-57.
120 NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of intites[J]. Nature, 1982, 299:715-717.
121 FU Hanjing, JIAN Xing, LIANG Hanghai. Research progress of sediment indicators and methods for evaluation of silicate chemical weathering intensity[J]. Journal of Palaeogeography, 2021, 23(6):1 192-1 209.
傅寒晶, 简星, 梁杭海. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展[J]. 古地理学报, 2021, 23(6):1 192-1 209.
122 GONG Q J, DENG J, WANG C M, et al. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition: a case study on Linglong biotite granite in Jiaodong peninsula, China[J]. Journal of Geochemical Exploration, 2013, 128:14-24.
123 ZHAO Zhi, WANG Denghong, CHEN Zhenyu, et al. Metallogenic specialization of rare earth mineralized igneous rocks in the eastern nanling region[J]. Geotectonica et Metallogenia, 2014, 38(2): 255-263.
赵芝, 王登红, 陈振宇, 等. 南岭东段与稀土矿有关岩浆岩的成矿专属性特征[J]. 大地构造与成矿学, 2014, 38(2): 255-263.
124 YUAN Hongqing, LI Shehong, MIAO Bingkui, et al. Geochemical characteristics of ion-adsorption type Rare Earth Elements deposit in Huidong, Guangdong[J]. Geoscience, 2016, 30(6):1 267-1 275.
苑鸿庆, 李社宏, 缪秉魁, 等. 广东惠东地区离子吸附型稀土矿床地球化学特征[J]. 现代地质, 2016, 30(6):1 267-1 275.
125 LIU W S, WU L L, ZHENG M Y, et al. Controls on Rare-Earth Element transport in a river impacted by ion-adsorption rare-earth mining[J]. Science of the Total Environment, 2019, 660:697-704.
126 BIDDAU R, CIDU R, FRAU F. Rare Earth Elements in waters from the albitite-bearing granodiorites of Central Sardinia, Italy[J]. Chemical Geology, 2002, 182(1): 1-14.
127 WAN Y X, LIU C Q. The effect of humic acid on the adsorption of REEs on Kaolin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290(1/2/3): 112-117.
128 TAUNTON A E, WELCH S A, BANFIELD J F. Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation[J]. Chemical Geology, 2000, 169(3/4): 371-382.
129 YU C X, BOILY J F, SHCHUKAREV A, et al. A cryogenic XPS study of Ce fixation on nanosized manganite and vernadite: interfacial reactions and effects of fulvic acid complexation[J]. Chemical Geology, 2018, 483: 304-311.
130 TYLER G. Rare Earth Elements in soil and plant systems—a review[J]. Plant and Soil, 2004, 267(1/2): 191-206.
131 LIU W S, CHEN Y Y, HUOT H, et al. Phytoextraction of Rare Earth Elements from ion-adsorption mine tailings by Phytolacca americana: effects of organic material and biochar amendment[J]. Journal of Cleaner Production, 2020, 275: 122959.
132 YUAN M, GUO M N, LIU W S, et al. The accumulation and fractionation of Rare Earth Elements in hydroponically grown Phytolacca americana L.[J]. Plant and Soil, 2017, 421(1/2): 67-82.
133 STILLE P, STEINMANN M, PIERRET M C, et al. The impact of vegetation on REE fractionation in stream waters of a small forested catchment (the Strengbach case)[J]. Geochimica et Cosmochimica Acta, 2006, 70(13):3 217-3 230.
134 BREUKER A, RITTER S F, SCHIPPERS A. Biosorption of rare earth elements by different microorganisms in acidic solutions[J]. Metals, 2020, 10(7):954.
135 JIANG M Y, OHNUKI T, UTSUNOMIYA S. Biomineralization of middle Rare Earth Element samarium in yeast and bacteria systems[J]. Geomicrobiology Journal, 2018, 35(5): 375-384.
136 CORBETT M K, EKSTEEN J J, NIU X Z, et al. Syntrophic effect of indigenous and inoculated microorganisms in the leaching of Rare Earth Elements from Western Australian monazite[J]. Research in Microbiology, 2018, 169(10):558-568.
137 MIGOŃ P. 4.8 weathering mantles and long-term landform evolution[M]// Treatise on geomorphology. Amsterdam: Elsevier, 2013: 127-144.
138 LIU Xinxing, CHEN Yuchuan, WANG Denghong, et al. The metallogenic geomorphic condition analysis of the ion-absorbing type rare earths ore in the eastern Nanling region based on DEM data[J]. Acta Geoscientica Sinica, 2016, 37(2): 174-184.
刘新星, 陈毓川, 王登红, 等. 基于DEM的南岭东段离子吸附型稀土矿成矿地貌条件分析[J]. 地球学报, 2016, 37(2): 174-184.
139 SU N, YANG S Y, GUO Y L, et al. Revisit of Rare Earth Element fractionation during chemical weathering and river sediment transport[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3):935-955.
[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[3] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[4] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[5] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[6] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[7] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[8] 汪齐连,刘丛强,赵志琦,B.Chetelat,丁虎. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958.
[9] 徐则民,黄润秋,唐正光,费维水. 岩体化学风化的非连续性及其科学意义[J]. 地球科学进展, 2006, 21(7): 706-712.
[10] 韩贵琳;刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.
[11] 张华锋;叶青培;翟明国. 岩浆绿帘石特征及其地质意义研究进展[J]. 地球科学进展, 2005, 20(4): 442-448.
[12] 马英军;霍润科;徐志方;张辉;刘丛强. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1): 87-094.
[13] 杨坤光,刘强. 花岗岩构造与侵位机制研究进展[J]. 地球科学进展, 2002, 17(4): 546-550.
[14] 李晶莹,张经. 流域盆地的风化作用与全球气候变化[J]. 地球科学进展, 2002, 17(3): 411-419.
[15] 李春雷,陈 骏,季峻峰. 青藏高原的隆起与海洋锶同位素组成的演化[J]. 地球科学进展, 1999, 14(6): 582-588.
阅读次数
全文


摘要