地球科学进展 ›› 2005, Vol. 20 ›› Issue (4): 394 -406. doi: 10.11867/j.issn.1001-8166.2005.04.0394

研究论文 上一篇    下一篇

贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征
韩贵琳,刘丛强   
  1. 中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550002
  • 收稿日期:2004-02-25 修回日期:2004-08-23 出版日期:2005-04-25
  • 通讯作者: 韩贵琳
  • 基金资助:

    国家自然科学基金项目“西南乌江河水中SO2-4来源与流域化学侵蚀”(编号:40372108);中国科学院知识创新工程重要方向项目“乌江典型喀斯小流域土壤—植被生态系统生源要素生物地球化学循环研究”(编号:KZCX3-SW-140)资助

HYDROGEOCHEMISTRY OF RIVERS IN GUIZHOU PROVINCE, CHINA: CONSTRAINTS ON CRUSTAL WEATHERING IN KARST TERRAIN

HAN Guilin; LIU Congqiang   

  1. The State Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550002, China
  • Received:2004-02-25 Revised:2004-08-23 Online:2005-04-25 Published:2005-04-25

测量了喀斯特地区乌江、沅江两大水系的河流枯水期的主元素、Sr2+离子浓度和Sr同位素比值。这些河流的化学组成代表了流经碳酸盐岩地层的河水的化学组成。这些河流及其支流有高的溶解盐,TZ+变化范围为:2.1~6.3 meq/L,高于全球河流的平均值(TZ+=0.725 meq/L)。河水含有较高的溶质浓度,河水水化学组成以Ca2+和HCO-3为主,其次为Mg2+和SO2-4,Na++K+和Cl-+Si分别只占阳离子和阴离子组成的5%~10%。这些河流的化学和同位素组成主要受其自流盆地的地质特征控制。流经碳酸盐岩地层的乌江水系河流具有较高的Sr浓度(1.1~9.70 mol/L)和较低的87Sr/86Sr比值(0.7077~0.7110),与流经碎屑岩地层的沅江水系的清水江河流中较高的87Sr/86Sr比值(0.7090~0.7145)及较低的Sr浓度(0.28~1.32 mol/L)形成鲜明的对比。流域盆地的地理岩性控制了河水的化学组成和同位素组成。对河水的化学计量分析表明河水化学组成受碳酸盐岩溶解控制,而碳酸盐岩主要受碳酸和硫酸作用而溶解。乌江流域受硫酸作用特别明显,表明硫酸主要来源于燃煤或流域盆地硫化物矿物氧化而形成的大气输入。化学元素和同位素比值之间的相互关系表明3个主要来源为:石灰岩、白云岩和硅酸盐岩的风化。同时估计了碳酸盐岩和硅酸盐岩的化学风化速率,结果表明流域盆地的碳酸盐岩风化速率远远高于许多世界大河。岩石风化过程中硫酸的出现或土地的过度使用或土壤植被的退化等都可能是导致流域的碳酸盐岩风化速率如此高的原因。 

Major ions and Sr2+ concentrations and Sr isotopic compositions of two major river systems were measured in Guizhou karst region. The chemical composition of these rivers in the karst region represents that of river water from the typical carbonate areas. Its hydrogeochemical characteristics are different from those of global major rivers: The river and its tributaries have high total dissolved solid concentrations, with Ca2+ and HCO-3 being dominant, Ma2+ and SO2-4 coming next. Both Na++K+ and Cl-+Si account for 5%~10% of the cations and anions, respectively. These rivers have high total concentration (TZ+) ranging from 2.0 to 5.5 meq/L, which are significantly higher than those of the global river averge (TZ+=0.725meq/L). The chemical and isotopic compositions of these rivers are largely under controll by the geological signatures of their drainage areas. The Wujiang River system draining carbonate strata show high Sr2+ concentrations(1.07~9.70) and lower 87Sr/86Sr ratios of 0.7077~0.7110, as compared with the Yuanjiang River system (87Sr/86Sr=0.7090~0.7145, Sr2+=0.39~1.32) draining detrital strata. The end-member identification by the intercorrelations between chemical and isotopic ratios shows three main sources, which are derived from weathering of limestone, dolomite and silicates. The Wujiang River system has characterized by low Na/Ca, Mg/Ca mole ratios (0.05~0.34 and 0.18~0.79, respectively), showing a strong influence of limestone, about 96% of solutes derived from the weathering of carbonate. On the other hand, the Yuanjiang river system show high Na/Ca mole ratio from 0.06~1.80, Mg/Ca from 0.23~1.30, suggestive of a strong influence of limestone and dolomite weathering, about 90% of solutes derived from the weathering of dolomite in the Wuyanghe river system and about 54% of solutes derived from the weathering of limestone in the Qingshuijiang river system.

中图分类号: 

[1]Gibbs R J. Water chemistry of the Amazon River[J]. Geochimica et Cosmochimica Acta, 1972,36: 1 061-1 066.
[2]Chen Jun, Yang Jiedong, Li Chunlei. The continental weathering and the global climatic change[J]. Advances in Earth Science, 2001, 16(3):399-405.[陈骏, 杨杰东,李春雷. 大陆风化与全球气候变化[J]. 地球科学进展,2001,16(3):399-405.]
[3]Hu M, Stallard R F, Edmond J M. Major ion chemistry of some large Chinese rivers[J]. Nature, 1982,298: 550-553.
[4]Stallard R F, Edmond J M. Geochemistry of the Amazon: 2. Influence of geology and weathering environment on the dissolved load[J]. Journal of Geophysical Research, 1983,88: 9 671-9 688.
[5]Goldstein S J, Jacobsen S B. The Nd and Sr isotopic systematics of river water dissolved material: Implications for the sources of Nd and Sr in seawater[J]. Chemical Geology, 1987,48: 245-272.
[6]Elderfield H, Upstill-Goddard R, Sholkovitz E R. The Rare Earth Elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990,54: 971-997.
[7]Zhang J, Takahash K, Wushiki H, et al. Water geochemistry of the rivers around the Taklimakan Desert (NW China): Crustal weathering and evaporation processes in arid land[J]. Chemical Geology, 1995,119: 225-237.
[8]Huh Y, Tsoi M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton[J]. Geochimica et Cosmochimica Acta, 1998,62: 1 657-1 676.
[9]Palmer M R, Edmond J M. Controls over the strontium isotope composition of river water[J]. Geochimica et Cosmochimica Acta, 1992,56: 2 099-2 111.
[10]Fairchild I J, Bradby L, Sharp M, et al. Hydrogeochemistry of carbonate terrains in Alpine glacial settings[J]. Earth Surface Processes and Landforms, 1994,19: 33-54.
[11]Fairchild J, Killawee J A, Hubbard B, et al. Interactions of calcareous suspended sediment with glacial meltwater: A field test of dissolution behaviour[J]. Chemical Geology, 1999,155: 243-263.[12]Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records[J]. Chemical Geology, 2000,166: 255-269. 
[13]Gaillardet J, DupréB, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999,159: 3-30.
[14]Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000,39: 1 053-1 058.
[15]Zhang Licheng,She Zhongsheng,Zhang Shen, et al.Research on Chemical Elements in Aqueous Environment[M]. Beijing: China Environmental Science Press, 1996.119. [张立城,佘中盛,章申,等.水环境化学元素研究[M]. 北京:中国环境科学出版社, 1996-119.]
[16]Meybeck M. Pathways of major elements from land to ocean through rivers[A]. In: Martin J M, Burton J D, Eisma D, eds. River Inputs to Ocean Systems[C]. New York: United Nations Press, 1981.18-30.
[17]Stallard R F, Edmond J M. Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge[J]. Journal of Geophysical Research, 1981,86: 9 844-9 858.
[18]Négrel P, Allègre C J, DupréB, et al. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin Case[J]. Earth and Planetary Science Letters, 1993,120: 59-76.
[19]Roy S, Gaillarde J, Allègre C J. Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering[J]. Geochimical et Cosmochimica Acta, 1999,63: 1 277-1 292.
[20]Han Zhijun,Jin Zhansheng. Hydrology of Guizhou Province, China[M]. Beijing: Seismology Press, 1996.[韩至钧,金占省,主编. 贵州省水文地质志[M].北京:地震出版社,1996.]
[21]Hong Yetang, Zhang Hongbin, Zhu Yongxuan, et al. Sulfur isotopic compositions of precipitations in China[J]. Progress in Natural Science, 1994,4(6): 741-745.[洪业汤,张鸿斌,朱泳煊,等. 中国大气降水的硫同位素组成特征[J].自然科学进展, 1994,4(6):741-745.]
[22]Chen Jingsheng. Tendency of ion content variation and its analysis in the main course and branches of the Yangtze River in Sichuan and Guizhou Provinces[J]. China Environmental Science, 1998,18(2):131-135.[陈静生.川贵地区长江干支流河水主要离子含量变化趋势及分析[J].中国环境科学,1998,18(2):131-135.]
[23]Appelo C A J, Postma D. Geochemistry, Groundwater and Pollution[M]. The Netherlands: Balkema Rotterdam A A,1993.
[24]Brass G M. The variation of the marine 87Sr/86Sr ratio during Phanerozoic time: Interpretation using a flux model[J]. Geochimical et Cosmochimica Acta, 1976,40: 721-730.
[25]Wadleigh M A,Veizer J, Brooks C. Weathering rates and 87Sr/86Sr ratios: An isotopic approach[J]. Journal of Hydrology, 1985,109:65-78.
[26]Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 1989,92: 11-26.
[27]Aberg G, Jacks G, Hamilton P J. Strontium and its isotopes in Canadian rivers: Fluxes and global implication[J]. Geochimical et Cosmochimica Acta, 1985,49: 1 727-1 736.
[28]Blum J D, Erel R. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation[J]. Nature,1995,373: 415-418.
[29]Krishnaswami S, Trivedi J R, Sarin M M. Strontium isotopes and rubidium in the Ganga-Brahmaputra river system: Weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of ocean 87Sr/86Sr[J]. Earth and Planetary Science Letters, 1992,109: 243-253.
[30]Petelet E, Muck J M, Othman D B. Geochemistry and water dynamics of a medium-sized watershed: The Herault, south France 1. Organisation of the different water reservoirs as constrained by Sr isotopes, major and trace elements[J]. Chemical Geology, 1998,150: 63-83.
[31]Huang Sijing. Carbonic and strontium isotopes of late Paleozoic marine carbonate of the Yangtzu Platform[J]. Acta Geologica Sinica, 1997,71(1):45-53.[黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报,1997,71(1):45-53.]
[32]Galy A, France-Lanord C. Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget[J]. Chemical Geology, 1999,159: 31-60.

[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[3] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[4] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[5] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[6] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[7] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[8] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[9] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[10] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[11] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[12] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[13] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[14] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[15] 高江波, 吴绍洪, 戴尔阜, 侯文娟. 西南喀斯特地区地表水热过程研究进展与展望[J]. 地球科学进展, 2015, 30(6): 647-653.
阅读次数
全文


摘要