1 |
BEVEN K. Rainfall-Runoff modelling: the primer [M]. second edition. Chichester, UK: John Wiley & Sons, Inc., 2012.
|
2 |
XU Zongxue. Hydrological models[M].Beijing:Science Press,2009.
|
|
徐宗学.水文模型[M].北京:科学出版社,2009.
|
3 |
JIA Yangwen, WANG Hao, NI Guangheng. Principle and practice of distributed watershed hydrological model [M]. Beijing:China Water & Power Press,2005.
|
|
贾仰文,王浩,倪广恒.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
|
4 |
PEEL M C, MCMAHON T A. Historical development of rainfall-runoff modeling[J]. Wiley Interdisciplinary Reviews: Water, 2020, 7(5): e1471.
|
5 |
CLARK M P, KAVETSKI D, FENICIA F. Pursuing the method of multiple working hypotheses for hydrological modeling[J]. Water Resources Research, 2011, 47(9): W09301.
|
6 |
HRACHOWITZ M, CLARK M P. HESS opinions: the complementary merits of competing modelling philosophies in hydrology[J]. Hydrology and Earth System Sciences, 2017, 21(8): 3 953-3 973.
|
7 |
THOMPSON S E, SIVAPALAN M, HARMAN C J, et al. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene[J]. Hydrology and Earth System Sciences, 2013, 17(12): 5 013-5 039.
|
8 |
PANICONI C, PUTTI M. Physically based modeling in catchment hydrology at 50: survey and outlook[J]. Water Resources Research, 2015, 51(9): 7 090-7 129.
|
9 |
MAXWELL R M, CONDON L E, KOLLET S J. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3[J]. Geoscientific Model Development, 2015, 8(3): 923-937.
|
10 |
VALLIS G K. Geophysical fluid dynamics: whence,whither and why?[J]. Proceedings of the Royal Society A—Mathematical Physical and Engineering Sciences,2016,472(2 192):20160140.
|
11 |
SIVAPALAN M, BLÖSCHL G. Time scale interactions and the coevolution of humans and water[J]. Water Resources Research,2015,51(9): 6 988-7 022.
|
12 |
SHEN C P, PHANIKUMAR M S. A process-based,distributed hydrologic model based on a large-scale method for surface-subsurface coupling[J]. Advances in Water Resources,2010,33(12): 1 524-1 541.
|
13 |
HAQUE A, SALAMA A, LO K, et al. Surface and groundwater interactions: a review of coupling strategies in detailed domain models[J]. Hydrology, 2021, 8(1): 35.
|
14 |
FREEZE R A, HARLAN R L. Blueprint for a physically-based, digitally-simulated hydrologic response model[J]. Journal of Hydrology, 1969, 9(3): 237-258.
|
15 |
MAXWELL R M, PUTTI M, MEYERHOFF S, et al. Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research, 2014, 50(2): 1 531-1 549.
|
16 |
QU Y Z, DUFFY C J. A semidiscrete finite volume formulation for multiprocess watershed simulation[J]. Water Resources Research, 2007, 43(8): W08419.
|
17 |
BIXIO A C, GAMBOLATI G, PANICONI C, et al. Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone[J]. Environmental Geology, 2002, 42(2/3): 162-177.
|
18 |
AQUANTY I. HydroGeoSphere user manual[R]. Waterloo,Ontario, 2013.
|
19 |
DELFS J O, PARK C H, KOLDITZ O. A sensitivity analysis of Hortonian flow[J]. Advances in Water Resources, 2009, 32(9): 1 386-1 395.
|
20 |
KOLLET S J, MAXWELL R M. Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model[J]. Advances in Water Resources, 2006, 29(7): 945-958.
|
21 |
IVANOV V Y, VIVONI E R, BRAS R L, et al. Catchment hydrologic response with a fully distributed triangulated irregular network model[J]. Water Resources Research, 2004, 40(11): W11102.
|
22 |
REFSGAARD J C, STORM B. MIKE SHE[G]// Computer models of watershed hydrology. 1995: 809-846.
|
23 |
REFSGAARD J C. Parameterisation, calibration and validation of distributed hydrological models[J]. Journal of Hydrology, 1997, 198(1/2/3/4): 69-97.
|
24 |
SHU L L, ULLRICH P A, DUFFY C J. Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method[J]. Geoscientific Model Development, 2020, 13(6): 2 743-2 762.
|
25 |
DUFFY C J. A two-state integral-balance model for soil moisture and groundwater dynamics in complex terrain[J]. Water Resources Research, 1996, 32(8): 2 421-2 434.
|
26 |
COBOURN K M, CAREY C C, BOYLE K J,et al. From concept to practice to policy: modeling coupled natural and human systems in lake catchments[J]. Ecosphere,2018,9(5):e02209.
|
27 |
WARD N K, FITCHETT L, HART J A, et al. Integrating fast and slow processes is essential for simulating human-freshwater interactions[J]. Ambio, 2019, 48(10): 1 169-1 182.
|
28 |
GIL Y, GARIJO D, KHIDER D, et al. Artificial intelligence for modeling complex systems: taming the complexity of expert models to improve decision making[J]. ACM Transactions on Interactive Intelligent Systems, 2021, 11(2): 1-49.
|
29 |
GARIJO D, KHIDER D, RATNAKAR V,et al. An intelligent interface for integrating climate,hydrology,agriculture,and socioeconomic models[C]// Proceedings of the 24th international conference on intelligent user interfaces: companion. New York,NY,USA: Association for Computing Machinery,2019:111-112.
|
30 |
LADWIG R, HANSON P C, DUGAN H A, et al. Lake thermal structure drives interannual variability in summer Gnoxia dynamics in a eutrophic lake over 37 years[J]. Hydrology and Earth System Sciences, 2021, 25(2): 1 009-1 032.
|
31 |
KOLLET S, SULIS M, MAXWELL R M, et al. The integrated hydrologic model intercomparison project, IH-MIP2: a second set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research, 2017, 53(1): 867-890.
|
32 |
BROWN P N, HINDMARSH A C. Reduced storage matrix methods in stiff ODE systems[J]. Applied Mathematics and Computation, 1989, 31: 40-91.
|
33 |
COURANT R, FRIEDRICHS K, LEWY H. Über die partiellen differenzengleichungen der mathematischen physik[J]. Mathematische Annalen, 1928, 100(1): 32-74.
|
34 |
ARNOLD J G, FOHRER N. SWAT2000: current capabilities and research opportunities in applied watershed modelling[J]. Hydrological Processes, 2005, 19(3): 563-572.
|
35 |
SHI Y N, DAVIS K J, DUFFY C J, et al. Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory[J]. Journal of Hydrometeorology, 2013, 14(5): 1 401-1 420.
|
36 |
SHI Y N, BALDWIN D C, DAVIS K J, et al. Simulating high-resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model[J]. Hydrological Processes, 2015, 29(21): 4 624-4 637.
|
37 |
BAO C, LI L, SHI Y N, et al. Understanding watershed hydrogeochemistry: 1. development of RT-flux-PIHM[J]. Water Resources Research, 2017, 53(3): 2 328-2 345.
|
38 |
LI L, BAO C, SULLIVAN P L, et al. Understanding watershed hydrogeochemistry: 2. synchronized hydrological and geochemical processes drive stream chemostatic behavior[J]. Water Resources Research, 2017, 53(3): 2 346-2 367.
|
39 |
YU X, XU Z X, MORAETIS D, et al. Capturing hotspots of fresh submarine groundwater discharge using a coupled surface-subsurface model[J]. Journal of Hydrology, 2021, 598: 126356.
|
40 |
ZHANG Y, SLINGERLAND R, DUFFY C. Fully-coupled hydrologic processes for modeling landscape evolution[J]. Environmental Modelling & Software, 2016, 82: 89-107.
|
41 |
SHI Y N, EISSENSTAT D M, HE Y T, et al. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a critical zone observatory[J]. Ecological Modelling, 2018, 380: 8-21.
|
42 |
VAUCLIN M, KHANJI D, VACHAUD G. Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem[J]. Water Resources Research, 1979, 15(5): 1 089-1 101.
|
43 |
WÖSTEN J H M, PACHEPSKY Y A, RAWLS W J. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics[J]. Journal of Hydrology, 2001, 251(3/4): 123-150.
|
44 |
HANSEN N, OSTERMEIER A. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation[C]// Proceedings of IEEE international conference on evolutionary computation. IEEE,1996:312-317.
|
45 |
AUGER A, HANSEN N. A restart CMA evolution strategy with increasing population size[J]. IEEE Congress on Evolutionary Computation, 2005, 2: 1 769-1 776.
|
46 |
SHU L L. Impacts of urbanization and climate change on the hydrological cycle: a study in modern and ancient land use change[D]. Central County: The Pennsylvnia State University,2017.
|
47 |
DUAN S H, ULLRICH P, SHU L L. Using convolutional neural networks for streamflow projection in California[J]. Frontiers in Water, 2020, 2: 28.
|
48 |
KUFFOUR B N O, ENGDAHL N B, WOODWARD C S, et al. Simulating coupled surface-subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model[J]. Geoscientific Model Development, 2020, 13(3): 1 373-1 397.
|
49 |
MAXWELL R M, MILLER N L. Development of a coupled land surface and groundwater model[J]. Journal of Hydrometeorology, 2005, 6(3): 233-247.
|
50 |
GILBERT J M, JEFFERSON J L, CONSTANTINE P G, et al. Global spatial sensitivity of runoff to subsurface permeability using the active subspace method[J]. Advances in Water Resources, 2016, 92: 30-42.
|