地球科学进展 ›› 2022, Vol. 37 ›› Issue (7): 680 -691. doi: 10.11867/j.issn.1001-8166.2022.025

综述与评述 上一篇    下一篇

SHUD数值方法分布式水文模型介绍
舒乐乐 1 , 2( ), 常燕 1 , 2, 王建 1 , 3, 陈昊 1 , 2, 李照国 1 , 2, 赵林 1 , 2, 孟宪红 1 , 2( )   
  1. 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院寒旱区陆面过程与 气候变化重点实验室,甘肃 兰州 730000
    3.甘肃省遥感重点实验室,甘肃 兰州 730000
  • 收稿日期:2022-01-12 修回日期:2022-06-16 出版日期:2022-07-10
  • 通讯作者: 孟宪红 E-mail:shulele@lzb.ac.cn;mxh@lzb.ac.cn
  • 基金资助:
    中国科学院“百人计划”“数值方法水文模型”(E0290304);国家自然科学基金项目“气候变化背景下三江源区域水循环演变过程及机理研究”(41930759);青海省防灾减灾重点实验室开放基金重点项目“布哈河流域径流变化及水循环机理研究”(QFZ-2021-Z02)

A Brief Review of Numerical Distributed Hydrological Model SHUD

Lele SHU 1 , 2( ), Yan CHANG 1 , 2, Jian WANG 1 , 3, Hao CHEN 1 , 2, Zhaoguo LI 1 , 2, Lin ZHAO 1 , 2, Xianhong MENG 1 , 2( )   

  1. 1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
    3.Key Laboratory of Remote Sensing of Gansu Province, Lanzhou 730000, China
  • Received:2022-01-12 Revised:2022-06-16 Online:2022-07-10 Published:2022-07-21
  • Contact: Xianhong MENG E-mail:shulele@lzb.ac.cn;mxh@lzb.ac.cn
  • About author:SHU Lele (1983-), male, Xi’an City, Shaanxi Province, Associate professor. Research areas include numerical hydrological model and coupled landsurface-hydrology modeling. E-mail: shulele@lzb.ac.cn
  • Supported by:
    the Chinese Academy 100-Talent Program “Numerical hydrological model”(E0290304);The National Natural Science Foundation of China “The evolution of hydrological cycle and its mechanism under the climate change on the Sanjiangyuan region in China”(41930759);The Open Fund of Qinghai Key Laboratory of Disaster Prevention “Streamflow change and hydrological mechanism in Buha River”(QFZ-2021-Z02)

水文模型是高效且经济的科学实验工具,不仅能结合观测数据验证科学理论、指导观测网络布设,而且对社会水资源管理、灾害防治以及经济决策等有不可或缺的重要价值。数值方法水文模型依据达西定律、理查兹方程和圣维南方程等水文物理公式,充分表现水文参数空间异质性,精细化表达水文物理过程,是水文模型发展的重要方向之一。SHUD模型利用有限体积法求解地表—地下耦合的流域水文过程,采用不规则三角网构成流域模拟空间,可实现空间上米—公里、时间上秒—小时的超高分辨率的数值模拟。由SHUD模型、rSHUD工具和全球基础地理数据组成的AutoSHUD水文模拟系统,构建了数据制备—模型模拟—结果分析的标准范式,其有效性和适用性已得到验证。当前我国水文领域对于数值方法分布式水文模型的探讨、开发和应用较为薄弱,亟需更多探索;不仅需要支持新模型的研发,同时应丰富已有模型在全球不同区域的验证、推广和改进工作。

Hydrological models are efficient and economical tools for conducting scientific studies. They are not only useful in validating scientific theories and guiding the deployment of observation networks, but they also play an indispensable role in facilitating decision-making within socioeconomic spheres such disaster prevention and mitigation. Distributed hydrological modelling via numerical methods entail the application of hydrological equations to express the spatial heterogeneity of hydrological parameters at a fine-scale. This fine-scale analysis allows for a detailed characterization of hydrological processes, which is a critical step within the context of developing robust hydrological models. The SHUD model adopts the finite volume method to resolve integrated surface-subsurface hydrological processes. The model uses an irregular triangular network, which can rapidly realize an ultra-high-resolution numerical simulation (i.e., from meters to kilometers). The AutoSHUD automated hydrological simulation system, which consists of the SHUD model, rSHUD tool, and global essential terrestrial data, can facilitate pre- and post-processing of the model and has been applied to several research projects; hence, the validity and applicability of the model have been verified. At present, the exploration, development, and application of distributed hydrological models by numerical methods are limited in our hydrological community, and there is an urgent need for more original research in this field. The global development of new models as well as the validation, promotion, and improvement of existing models is a worthwhile goal.

中图分类号: 

表1 SHUD模型所用的控制方程和水量平衡公式
Table 1 The governing equations and mass-balance equations used in SHUD model
水文过程 控制方程 计算方法 一阶水量平衡公式
冠层截留 水量平衡 水桶模型

d S i c d t = P - E i c - P t f

S i c 为冠层水储量(m), P 为降水量[m3/(m2⋅d)], E i c 为冠层截留水蒸发量[m3/(m2⋅d)], P t f 为穿透冠层的降水量[m3/(m2⋅d)]

积雪模型 水量平衡 度日模型

d S s n d t = P s n - E s n - q s m

S s n 为积雪储量(m), P s n 为降雪量[m3/(m2⋅d)], E s n 为积雪升华[m3/(m2⋅d)], q s m 为积雪融化量[m3/(m2⋅d)]

蒸散发 PM公式 PM公式,水分胁迫

λ E 0 = Δ ( R n - G ) + ρ a c p e s - e a r a Δ + γ ( 1 + r s r a )

E 0 为彭曼—蒙迪斯公式计算的潜在蒸散发[m3/(m2⋅s)], λ 为汽化潜热(MJ/kg), Δ 为饱和蒸气压曲线的斜率(kPa/K), R n 为净辐射[MJ/(m2⋅s)], G 为地面热传导[MJ/(m2⋅s)], ρ a 为空气密度(kg/m3), c p 为空气热容[MJ/(kg⋅K)], e s 为气温下的空气饱和水汽压(kPa), e a 为气温下的空气水汽压(kPa), γ 为湿度常数(kPa/K), r a 为总体空气动力学扩散阻抗(s/m), r s 为总体冠层扩散阻抗(s/m)

地表水流 圣维南方程 扩散波或动力波

d Y 1 d t = P n - E s p - q i - j = 1 3 Q s j A c

Y 1 为地表积水高度(m), P n 为到达地面的净降水量[m3/(m2⋅d)], E s p 为地表水面蒸发量[m3/(m2⋅d)], q i 为入渗量[m3/(m2⋅d)], Q s j 为三角形沿方向j的坡面漫流量(m3/d), A c 为三角形坡面单元面积(m2

非饱和层流动 理查兹方程 理查兹方程

S y d Y 2 d t = q i - q r - E s m

S y 为储水系数(m/m), Y 2 为非饱和水基势(m), q i 为入渗量[m3/(m2⋅d)], q r 为地下水补给量[m3/(m2⋅d)], E s m 为土壤蒸发蒸腾量[m3/(m2⋅d)]

饱和层流动 达西定律 达西定律,Dupuit假设

S y d Y 3 d t = q r - E t g - j = 1 3 Q g j A c

S y 为储水系数(m/m), Y 3 为饱和层(自基岩以上)水头高度(m), q r 为地下水补给量[m3/(m2⋅d)], E t g 为植被由饱和层进行的蒸腾量[m3/(m2⋅d)], Q g j 为三角形沿方向j的饱和地下水基流(m3/d), A c 为三角形坡面单元面积(m2

河道水流动 圣维南方程 扩散波或动力波

d Y 4 d t = 1 A r j = 1 N c Q s r j + j = 1 N c Q g r j + j = 1 N u Q u p j + Q d n

Y 4 为河道水位(m), A r 为河道顶部面积(m2), Q s r j 为由坡面单元通过地表漫流流入河道的流量(m3/d), Q g r j 为由坡面单元通过地下基流流入河道的流量(m3/d), Q u p j 为由上游河道进入当前河道的流量(m3/d), Q d n 为由当前河道进入下游河道的流量(m3/d), N c 为与河道相交的三角数量, N u 为上游河道数量

图1 SHUD模型的水平空间结构、河流网络拓扑关系和垂直分层关系
(a)由不规则三角形构成的水文计算单元;(b)坡面三角形与河道单元的拓扑和流量交换关系;(c)坡面三角形单元的垂直分层以及水文过程;SHUD使用不规则三角形单元构成流域水平空间,河流网络与三角形单元呈交叉关系,垂直方向计算分为地表层、非饱和层和饱和层;
Fig. 1 The lateral spatial structureriver topology and vertical layers
(a) The hydrological computation domain is consisted of irregular triangles; (b) Crossing relation between triangular slope units and river units; (c) The vertical layering of a slope unit and hydrological processes in them;SHUD uses irregular triangles as hydrological computational units, where river cross the triangular units; The vertical profile is consisted of three layers: land-surface, unsaturated and saturated zones
图2 SHUD模型在指定时间步长内的迭代计算流程图
Fig. 2 The iteration workflow within user-specific time step in the SHUD model
图3 SHUD模型模拟的基本流程图
Fig. 3 The basic workflow of simulation with SHUD model
表2 用于构建 SHUD模型的基础数据列表
Table 2 The fundamental data used for deployment of SHUD model
图 4 原始的地形和河网数据以及生成的模型计算单元(以黄河源为例)
Fig. 4 The raw DEMriver networkand the model computational unitsthe Yellow River source is used as an example
表3 SHUD模型输出结果变量列表
Table 3 The variables of result files of SHUD model
1 BEVEN K. Rainfall-Runoff modelling: the primer [M]. second edition. Chichester, UK: John Wiley & Sons, Inc., 2012.
2 XU Zongxue. Hydrological models[M].Beijing:Science Press,2009.
徐宗学.水文模型[M].北京:科学出版社,2009.
3 JIA Yangwen, WANG Hao, NI Guangheng. Principle and practice of distributed watershed hydrological model [M]. Beijing:China Water & Power Press,2005.
贾仰文,王浩,倪广恒.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
4 PEEL M C, MCMAHON T A. Historical development of rainfall-runoff modeling[J]. Wiley Interdisciplinary Reviews: Water, 2020, 7(5): e1471.
5 CLARK M P, KAVETSKI D, FENICIA F. Pursuing the method of multiple working hypotheses for hydrological modeling[J]. Water Resources Research, 2011, 47(9): W09301.
6 HRACHOWITZ M, CLARK M P. HESS opinions: the complementary merits of competing modelling philosophies in hydrology[J]. Hydrology and Earth System Sciences, 2017, 21(8): 3 953-3 973.
7 THOMPSON S E, SIVAPALAN M, HARMAN C J, et al. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene[J]. Hydrology and Earth System Sciences, 2013, 17(12): 5 013-5 039.
8 PANICONI C, PUTTI M. Physically based modeling in catchment hydrology at 50: survey and outlook[J]. Water Resources Research, 2015, 51(9): 7 090-7 129.
9 MAXWELL R M, CONDON L E, KOLLET S J. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3[J]. Geoscientific Model Development, 2015, 8(3): 923-937.
10 VALLIS G K. Geophysical fluid dynamics: whence,whither and why?[J]. Proceedings of the Royal Society A—Mathematical Physical and Engineering Sciences,2016,472(2 192):20160140.
11 SIVAPALAN M, BLÖSCHL G. Time scale interactions and the coevolution of humans and water[J]. Water Resources Research,2015,51(9): 6 988-7 022.
12 SHEN C P, PHANIKUMAR M S. A process-based,distributed hydrologic model based on a large-scale method for surface-subsurface coupling[J]. Advances in Water Resources,2010,33(12): 1 524-1 541.
13 HAQUE A, SALAMA A, LO K, et al. Surface and groundwater interactions: a review of coupling strategies in detailed domain models[J]. Hydrology, 2021, 8(1): 35.
14 FREEZE R A, HARLAN R L. Blueprint for a physically-based, digitally-simulated hydrologic response model[J]. Journal of Hydrology, 1969, 9(3): 237-258.
15 MAXWELL R M, PUTTI M, MEYERHOFF S, et al. Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research, 2014, 50(2): 1 531-1 549.
16 QU Y Z, DUFFY C J. A semidiscrete finite volume formulation for multiprocess watershed simulation[J]. Water Resources Research, 2007, 43(8): W08419.
17 BIXIO A C, GAMBOLATI G, PANICONI C, et al. Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone[J]. Environmental Geology, 2002, 42(2/3): 162-177.
18 AQUANTY I. HydroGeoSphere user manual[R]. Waterloo,Ontario, 2013.
19 DELFS J O, PARK C H, KOLDITZ O. A sensitivity analysis of Hortonian flow[J]. Advances in Water Resources, 2009, 32(9): 1 386-1 395.
20 KOLLET S J, MAXWELL R M. Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model[J]. Advances in Water Resources, 2006, 29(7): 945-958.
21 IVANOV V Y, VIVONI E R, BRAS R L, et al. Catchment hydrologic response with a fully distributed triangulated irregular network model[J]. Water Resources Research, 2004, 40(11): W11102.
22 REFSGAARD J C, STORM B. MIKE SHE[G]// Computer models of watershed hydrology. 1995: 809-846.
23 REFSGAARD J C. Parameterisation, calibration and validation of distributed hydrological models[J]. Journal of Hydrology, 1997, 198(1/2/3/4): 69-97.
24 SHU L L, ULLRICH P A, DUFFY C J. Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method[J]. Geoscientific Model Development, 2020, 13(6): 2 743-2 762.
25 DUFFY C J. A two-state integral-balance model for soil moisture and groundwater dynamics in complex terrain[J]. Water Resources Research, 1996, 32(8): 2 421-2 434.
26 COBOURN K M, CAREY C C, BOYLE K J,et al. From concept to practice to policy: modeling coupled natural and human systems in lake catchments[J]. Ecosphere,2018,9(5):e02209.
27 WARD N K, FITCHETT L, HART J A, et al. Integrating fast and slow processes is essential for simulating human-freshwater interactions[J]. Ambio, 2019, 48(10): 1 169-1 182.
28 GIL Y, GARIJO D, KHIDER D, et al. Artificial intelligence for modeling complex systems: taming the complexity of expert models to improve decision making[J]. ACM Transactions on Interactive Intelligent Systems, 2021, 11(2): 1-49.
29 GARIJO D, KHIDER D, RATNAKAR V,et al. An intelligent interface for integrating climate,hydrology,agriculture,and socioeconomic models[C]// Proceedings of the 24th international conference on intelligent user interfaces: companion. New York,NY,USA: Association for Computing Machinery,2019:111-112.
30 LADWIG R, HANSON P C, DUGAN H A, et al. Lake thermal structure drives interannual variability in summer Gnoxia dynamics in a eutrophic lake over 37 years[J]. Hydrology and Earth System Sciences, 2021, 25(2): 1 009-1 032.
31 KOLLET S, SULIS M, MAXWELL R M, et al. The integrated hydrologic model intercomparison project, IH-MIP2: a second set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research, 2017, 53(1): 867-890.
32 BROWN P N, HINDMARSH A C. Reduced storage matrix methods in stiff ODE systems[J]. Applied Mathematics and Computation, 1989, 31: 40-91.
33 COURANT R, FRIEDRICHS K, LEWY H. Über die partiellen differenzengleichungen der mathematischen physik[J]. Mathematische Annalen, 1928, 100(1): 32-74.
34 ARNOLD J G, FOHRER N. SWAT2000: current capabilities and research opportunities in applied watershed modelling[J]. Hydrological Processes, 2005, 19(3): 563-572.
35 SHI Y N, DAVIS K J, DUFFY C J, et al. Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory[J]. Journal of Hydrometeorology, 2013, 14(5): 1 401-1 420.
36 SHI Y N, BALDWIN D C, DAVIS K J, et al. Simulating high-resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model[J]. Hydrological Processes, 2015, 29(21): 4 624-4 637.
37 BAO C, LI L, SHI Y N, et al. Understanding watershed hydrogeochemistry: 1. development of RT-flux-PIHM[J]. Water Resources Research, 2017, 53(3): 2 328-2 345.
38 LI L, BAO C, SULLIVAN P L, et al. Understanding watershed hydrogeochemistry: 2. synchronized hydrological and geochemical processes drive stream chemostatic behavior[J]. Water Resources Research, 2017, 53(3): 2 346-2 367.
39 YU X, XU Z X, MORAETIS D, et al. Capturing hotspots of fresh submarine groundwater discharge using a coupled surface-subsurface model[J]. Journal of Hydrology, 2021, 598: 126356.
40 ZHANG Y, SLINGERLAND R, DUFFY C. Fully-coupled hydrologic processes for modeling landscape evolution[J]. Environmental Modelling & Software, 2016, 82: 89-107.
41 SHI Y N, EISSENSTAT D M, HE Y T, et al. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a critical zone observatory[J]. Ecological Modelling, 2018, 380: 8-21.
42 VAUCLIN M, KHANJI D, VACHAUD G. Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem[J]. Water Resources Research, 1979, 15(5): 1 089-1 101.
43 WÖSTEN J H M, PACHEPSKY Y A, RAWLS W J. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics[J]. Journal of Hydrology, 2001, 251(3/4): 123-150.
44 HANSEN N, OSTERMEIER A. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation[C]// Proceedings of IEEE international conference on evolutionary computation. IEEE,1996:312-317.
45 AUGER A, HANSEN N. A restart CMA evolution strategy with increasing population size[J]. IEEE Congress on Evolutionary Computation, 2005, 2: 1 769-1 776.
46 SHU L L. Impacts of urbanization and climate change on the hydrological cycle: a study in modern and ancient land use change[D]. Central County: The Pennsylvnia State University,2017.
47 DUAN S H, ULLRICH P, SHU L L. Using convolutional neural networks for streamflow projection in California[J]. Frontiers in Water, 2020, 2: 28.
48 KUFFOUR B N O, ENGDAHL N B, WOODWARD C S, et al. Simulating coupled surface-subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model[J]. Geoscientific Model Development, 2020, 13(3): 1 373-1 397.
49 MAXWELL R M, MILLER N L. Development of a coupled land surface and groundwater model[J]. Journal of Hydrometeorology, 2005, 6(3): 233-247.
50 GILBERT J M, JEFFERSON J L, CONSTANTINE P G, et al. Global spatial sensitivity of runoff to subsurface permeability using the active subspace method[J]. Advances in Water Resources, 2016, 92: 30-42.
[1] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[2] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[3] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[4] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[5] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[6] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 2014(6): 674-682.
[7] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[8] 王艳娜, 刘东艳. 海洋沉积硅藻研究方法与应用综述[J]. 地球科学进展, 2013, 28(12): 1296-1304.
[9] 阳勇, 陈仁升. 冻土水文研究进展[J]. 地球科学进展, 2011, 26(7): 711-723.
[10] 胡庆武,林春峰,余 飞,曾力. 多维GIS矿产评价数据管理系统设计和实现[J]. 地球科学进展, 2010, 25(9): 990-996.
[11] 陈仁升,刘时银,康尔泗,韩海东,卿文武,王建. 冰川流域径流估算方法探索——以科其喀尔巴西冰川为例[J]. 地球科学进展, 2008, 23(9): 942-951.
[12] 李梦洁,郑建飞,曾燕,邱新法,杨羡敏. 浙江省高分辨率太阳直接辐射图的计算和绘制[J]. 地球科学进展, 2008, 23(3): 299-305.
[13] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[14] 冯筠;高峰;黄新宇. 构建天地一体化的全球对地观测系统——三次国际地球观测峰会与GEOSS[J]. 地球科学进展, 2005, 20(12): 1327-1333.
[15] 王建群,卢志华. 土地利用变化对水文系统的影响研究[J]. 地球科学进展, 2003, 18(2): 292-298.
阅读次数
全文


摘要