地球科学进展 ›› 2022, Vol. 37 ›› Issue (7): 661 -679. doi: 10.11867/j.issn.1001-8166.2022.037

综述与评述    下一篇

地貌信息图谱研究述评与展望
程维明 1 , 2 , 3 , 4( ), 宋珂钰 1 , 2, 周成虎 1 , 2 , 3 , 4, 汤国安 3 , 5   
  1. 1.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
    2.中国科学院大学,北京 100049
    3.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
    4.中国南海研究协同创新中心,江苏 南京 210093
    5.南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210023
  • 收稿日期:2022-03-23 修回日期:2022-06-14 出版日期:2022-07-10
  • 基金资助:
    国家自然科学基金重点项目“基于地貌信息图谱的地貌类型分类与制图研究”(42130110)

Commentaries and Prospect on the Geomorphic Information Spectrum

Weiming CHENG 1 , 2 , 3 , 4( ), Keyu SONG 1 , 2, Chenghu ZHOU 1 , 2 , 3 , 4, Guoan TANG 3 , 5   

  1. 1.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Jiangsu Collaborative Innovation Center for Development and Utilization of Geographic Information Resources, Nanjing 210023, China
    4.Collaborative Innovation Center for South China Sea Research, Nanjing 210093, China
    5.Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, Nanjing 210023, China
  • Received:2022-03-23 Revised:2022-06-14 Online:2022-07-10 Published:2022-07-21
  • About author:CHENG Weiming (1973-), male, Tianshui City, Gansu Province, Professor. Research areas include digital geomorphology and planetary geomorphology. E-mail: chengwm@lreis.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Geomorphic classification and mapping based on geomorphic information spectrum”(42130110)

从地貌信息图谱概念的起源——地学信息图谱开始介绍,论述了地貌信息图谱的概念与发展历程,从具体研究的角度归纳了包括地貌形态特征图谱(地面坡谱、剖面谱、二维格局谱系、地形纹理谱)和地貌发育谱在内的地貌信息图谱研究类型及研究现状。结合遥感、计算机和人工智能等技术的发展,分析了知识图谱与信息图谱结合的研究方法在未来地貌研究中的前景,总结了地貌信息提取、地貌信息分类和地貌制图等地貌信息图谱关键技术研究进展,并从构建完备的地貌信息图谱体系、提升地貌信息图谱关键技术、加强全球地貌格局与演变的精细化与定量化研究三方面对未来地貌信息图谱的发展进行了展望,以期为地貌研究工作的数字化、信息化和智能化提供参考,进而服务于国家资源环境重大战略并推进地貌学科的发展。

Geo-information Tupu, which is the origin of the geomorphic information spectrum, is introduced and the concept and development of the geomorphic information spectrum are then discussed. From the perspective of specific research, the research types and status of the geomorphic information spectrum are summarized, including the geomorphic morphological characteristic spectrum (such as, surface slope spectrum, section spectrum, two-dimensional pattern spectrum, and topographic texture spectrum) and the geomorphic development spectrum. Combined with the development of remote sensing, computers, artificial intelligence, and other technologies, the prospect of the combination of knowledge graph and information spectrum in future geomorphic research is analyzed, and the research progress and key technologies of geomorphic information spectrum such as geomorphic information extraction, geomorphic information classification, and geomorphic mapping are summarized. The future development of geomorphic information spectrum is prospected using three aspects: constructing a complete geomorphic information spectrum system, improving key technologies of geomorphic information spectrum, and strengthening the refinement and quantitative research of global geomorphic patterns and evolution. This study can provide a reference for the digitization, informatization, and intellectualization of digital geomorphology to serve as the major strategy for the management of national resources and the environment and promote the development of geomorphology.

中图分类号: 

图1 地学信息图谱与地貌信息图谱研究框架及进展
Fig. 1 Study frame and profect on geo-informatic Tupu and geomorphic information spectrum
1 CHEN Shupeng, YUE Tianxiang, LI Huiguo. Studies on geo-informatic Tupu and its application[J]. Geographical Research, 2000, 19(4): 337-343.
陈述彭, 岳天祥, 励惠国. 地学信息图谱研究及其应用[J]. 地理研究, 2000, 19(4): 337-343.
2 ZHANG Hongyan, ZHOU Chenghu, Guonian LÜ, et al. The connotation and inheritance of geo-information Tupu[J]. Journal of Geo-Information Science, 2020, 22(4): 653-661.
张洪岩, 周成虎, 闾国年, 等. 试论地学信息图谱思想的内涵与传承[J]. 地球信息科学学报, 2020, 22(4): 653-661.
3 CHEN Shupeng. Graphic methodology for geo-information sciences[M]. Beijing: The Commercial Press, 2001.
陈述彭. 地学信息图谱探索研究[M]. 北京: 商务印书馆, 2001.
4 CHEN Yan, QI Qingwen, YANG Guishan. Basic theories of geo-info-Tupu[J]. Scientia Geographica Sinica, 2006, 26(3): 306-310.
陈燕, 齐清文, 杨桂山. 地学信息图谱的基础理论探讨[J]. 地理科学, 2006, 26(3): 306-310.
5 LIAO Ke. The discussion and prospect for geo-informatic Tupu[J]. Geo-Information Science, 2002, 4(1): 14-20.
廖克. 地学信息图谱的探讨与展望[J]. 地球信息科学, 2002, 4(1): 14-20.
6 CHEN Shupeng. Shi Jianwen Cun—selection of academician Chen Shupeng’s scientific essays [M]. Beijing: China Environmental Science Press,1999:386-387.
陈述彭.石坚文存——陈述彭院士科学小品选集[M].北京:中国环境科学出版社,1999:386-387.
7 CHEN Shupeng. Geo-info-Tupu case and diagnostic Tupu method [M]// CHEN Shupeng.Explorations in Earth science (Vol. 6): geo-information science.Beijing: Science Press,2003:204-208.
陈述彭.地学信息图谱案例与诊断图谱方法[M]//陈述彭.地学的探索(第六卷):地球信息科学.北京:科学出版社,2003:204-208.
8 LIAO Ke, QIN Jianxin, ZHANG Qingnian. On geo-informatic Tupu and digital Earth[J]. Geographical Research, 2001, 20(1): 55-61.
廖克, 秦建新, 张青年. 地球信息图谱与数字地球[J]. 地理研究, 2001, 20(1): 55-61.
9 QI Qingwen. The latest development on geo-info-Tupu [J]. Science of Surveying and Mapping,2004,29(6):15-23.
齐清文.地学信息图谱的最新进展[J].测绘科学,2004,29(6):15-23.
10 ZHOU Chenghu, LI Baolin. A preliminary study on geo-info-Tupu [J]. Geographical Research,1998,17():10-16.
周成虎,李宝林.地球空间信息图谱初步探讨[J].地理研究,1998,17():10-16.
11 CHEN Yufen, LIAO Ke. Research on complex informatic Tupu of natural landscape in China[J]. Geo-Information Science, 2003, 5(3): 97-102.
陈毓芬, 廖克. 中国自然景观综合信息图谱研究[J]. 地球信息科学, 2003, 5(3): 97-102.
12 TIAN Yongzhong, YUE Tianxiang. Discussions on geo-info Tupu and its development and application[J]. Geo-Information Science, 2003, 5(3): 103-106.
田永中, 岳天祥. 地学信息图谱的研究及其模型应用探讨[J]. 地球信息科学, 2003, 5(3): 103-106.
13 CHEN Shupeng. Some forward thinking about map science[J]. Science of Surveying and Mapping, 2001,26(1): 1-6.
陈述彭.地图科学的几点前瞻性思考[J].测绘科学, 2001,26(1): 1-6.
14 ZHANG Hongyan, WANG Qinmin, LU Xuejun, et al. Perspectives on geo-informatic graphic methodology[J]. Advances in Earth Science, 2004, 19(6): 997-1 001.
张洪岩, 王钦敏, 鲁学军, 等. 地学信息图谱方法前瞻[J]. 地球科学进展, 2004, 19(6): 997-1 001.
15 CHEN Yan, QI Qingwen, YANG Guishan. Explanation and application on the spatial and temporal attribution of the geo-info-Tupu[J]. Advances in Earth Science, 2006, 21(1): 10-13.
陈燕, 齐清文, 杨桂山. 地学信息图谱时空维的诠释与应用[J]. 地球科学进展, 2006, 21(1): 10-13.
16 YANG Cunjian. The idea of geo-information Tupu and its practices[J]. Journal of Geo-Information Science, 2020, 22(4): 697-704.
杨存建. 地学信息图谱思想与实践探索[J]. 地球信息科学学报, 2020, 22(4): 697-704.
17 ZHOU Jiangping, CUI Gonghao, ZHANG Jingxiang, et al. A perliminary discussion on the study of transportation network’s geo-informative Tupu of urban system[J]. Geographical Research, 2001, 20(4): 397-406.
周江评, 崔功豪, 张京祥, 等. 城镇交通网络信息图谱研究刍议[J]. 地理研究, 2001, 20(4): 397-406.
18 YE Qinghua, LIU Gaohuan, TIAN Guoliang, et al. Analysis of spatial-temporal complex changes of land use in the Yellow River Delta[J]. Science in China Series D: Earth Sciences, 2004,34(5):461-474.
叶庆华,刘高焕,田国良,等.黄河三角洲土地利用时空复合变化图谱分析[J].中国科学D辑:地球科学, 2004,34(5):461-474.
19 ZHANG Baiping, ZHOU Chenghu, CHEN Shupeng. The geo-info-spectrum of montane altitudinal belts in China[J]. Acta Geographica Sinica, 2003, 58(2): 163-171.
张百平, 周成虎, 陈述彭. 中国山地垂直带信息图谱的探讨[J]. 地理学报, 2003, 58(2): 163-171.
20 HU Zui, LIU Peilin, CHEN Ying. A research on graphic methodology unit model of traditional settlement landscape[J]. Geography and Geo-Information Science, 2009, 25(5): 79-83.
胡最, 刘沛林, 陈影. 传统聚落景观基因信息图谱单元研究[J]. 地理与地理信息科学, 2009, 25(5): 79-83.
21 LUO Jiancheng, WU Tianjun, XIA Liegang. The theory and calculation of spatial-spectral cognition of remote sensing[J]. Journal of Geo-Information Science, 2016, 18(5): 578-589.
骆剑承, 吴田军, 夏列钢. 遥感图谱认知理论与计算[J]. 地球信息科学学报, 2016, 18(5): 578-589.
22 DU Guoming, ZHANG Rui, YU Fengrong.Analysis of cropping pattern in black soil region of northeast China based on geo-information Tupu[J]. Chinese Journal of Applied Ecology,202,33(3):694-702.
杜国明,张瑞,于凤荣.基于地学信息图谱的东北黑土区种植模式分析应用[J]. 生态学报,2022,33(3):694-702.
23 HAN Lei, HUO Hong, LIU Zhao, et al. Spatial and temporal variations of vegetation coverage in the middle section of Yellow River Basin based on terrain gradient: taking Yan’an City as an example[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1 581-1 592.
韩磊, 火红, 刘钊, 等. 基于地形梯度的黄河流域中段植被覆盖时空分异特征: 以延安市为例[J]. 应用生态学报, 2021, 32(5): 1 581-1 592.
24 SHI Yangyang, Xiao LÜ, HUANG Xianjin, et al. Arable land use transitions and its response of ecosystem services value change in Jiangsu coastal areas[J]. Journal of Natural Resources, 2017, 32(6): 961-976.
史洋洋, 吕晓, 黄贤金, 等. 江苏沿海地区耕地利用转型及其生态系统服务价值变化响应[J]. 自然资源学报, 2017, 32(6): 961-976.
25 TANG Changchun, LI Yaping. Geo-information Tupu process of land use/cover change in polycentric urban agglomeration: a case study of Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Geographical Research, 2020, 39(11): 2 626-2 641.
唐常春, 李亚平. 多中心城市群土地利用/覆被变化地学信息图谱研究: 以长株潭城市群为例[J]. 地理研究, 2020, 39(11): 2 626-2 641.
26 ZHANG Wenhui, Xiao LÜ, SHI Yangyang, et al. Graphic characteristics of land use transition in the Yellow River Basin[J]. China Land Science, 2020, 34(8): 80-88.
张文慧, 吕晓, 史洋洋, 等. 黄河流域土地利用转型图谱特征[J]. 中国土地科学, 2020, 34(8): 80-88.
27 ZHU Lei, YANG Aimin, XIA Xinxin, et al. Spatial distribution pattern and change characteristics analysis of cultivated land in the Manas River Basin from 1975 to 2015[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 887-899.
朱磊, 杨爱民, 夏鑫鑫, 等. 基于空间自相关的1975—2015年玛纳斯河流域耕地时空特征变化分析[J]. 中国生态农业学报, 2020, 28(6): 887-899.
28 CHEN Zhu, HUANG Yabing, ZHU Zhipeng, et al. Landscape pattern evolution along terrain gradient in Fuzhou City,Fujian Province,China[J]. Chinese Journal of Applied Ecology,2018,29(12):4 135-4 144.
陈铸,黄雅冰,朱志鹏,等.基于地形梯度特征的福州市景观格局演变[J].应用生态学报,2018,29(12):4 135-4 144.
29 LI Huiguo, YUE Tianxiang. An application of geo-informatic graphic analysis (Tupu) in modelling regional sustainable development[J]. Geo-Information Science, 2000, 2(1): 48-52.
励惠国, 岳天祥. 地学信息图谱与区域可持续发展虚拟[J]. 地球信息科学, 2000, 2(1): 48-52.
30 TANG Guoan, NA Jiaming, CHENG Weiming. Progress of digital terrain analysis on regional geomorphology in China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1 570-1 591.
汤国安, 那嘉明, 程维明. 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 2017, 46(10): 1 570-1 591.
31 KEITH J T. A short history of geomorphology[M]. London: Croom Helm, 1985.
32 ZHOU Chenghu. A dictionary of geomorphology[Z]. Beijing: China Water & Power Press, 2006.
周成虎. 地貌学辞典[Z]. 北京: 中国水利水电出版社, 2006.
33 Nation-wide Technical Standardization Committee of Geographic Information. Terms of cartography: [S]. Beijing:China Quality and Standards Publishing & Media Co., Ltd.
全国地理信息标准化技术委员会. 地图学术语: [S].北京:中国标准出版社,2009.
34 HU Shixiong, WANG Ke. Development and tendency of modern geomorphology[J]. Earth Science Frontiers, 2000, 7(): 67-78.
胡世雄, 王珂. 现代地貌学的发展与思考[J]. 地学前缘, 2000, 7(): 67-78.
35 MO Zhongda. A review of foreign theoretical systems of geomorphic development[J].Tropical Geomorphology,1988,9(1):56-64.
莫仲达.外国地貌发育理论系统述评[J].热带地貌,1988,9(1):56-64.
36 EMBLETON C. Geomorphology,present problems and future prospects[M]. Oxford:Oxford University Press,1978.
37 HART M G. Geomorphology,pure and applied[M]. London: Allen & Unwin Ltd.,1986:265-279.
38 LU Huayu. Progress in geomorphology and future study: a brief review[J]. Progress in Geography, 2018, 37(1): 8-15.
鹿化煜. 试论地貌学的新进展和趋势[J]. 地理科学进展, 2018, 37(1): 8-15.
39 TANG Guoan, LI Fayuan, YANG Xin, et al. Exploration and practice of digital terrain analysis in Loess Plateau [M]. Beijing: Science Press, 2015.
汤国安,李发源,杨昕,等.黄土高原数字地形分析探索与实践[M].北京:科学出版社,2015.
40 THAGARD P. Conceptual revolution [M]. New Jersey: Princeton University Press, 1992.
41 LI Siguang. Coiling structure and other complex problems of tectonic system in northwest China[J]. Acta Geological Sinica, 1954, 34(4): 339-410.
李四光. 旋卷构造及其他有关中国西北部大地构造体系复合问题[J]. 地质学报, 1954, 34(4): 339-410.
42 CHEN Shupeng. A discuss on geo-info-Tupu [J]. Geographical Research, 1998, 17(): 5-9.
陈述彭. 地学信息图谱刍议[J]. 地理研究, 1998, 17(): 5-9.
43 JI Cuiling, QI Qingwen, ZHANG Keli. Indexes system of 3D symbols on the landscapes Tupu of loess plateau and its application[J]. Geo-Information Science, 2005, 7(1): 47-52.
纪翠玲, 齐清文, 张科利. 黄土高原地貌形态图谱三维符号指标体系与应用[J]. 地球信息科学, 2005, 7(1): 47-52.
44 CHEN Yan, QI Qingwen, TANG Guoan. Research on slope-conversion-atlas in Loess Plateau[J]. Agricultural Research in the Arid Areas, 2004, 22(3): 180-185.
陈燕, 齐清文, 汤国安. 黄土高原坡度转换图谱研究[J]. 干旱地区农业研究, 2004, 22(3): 180-185.
45 CAO Jianjun, TANG Guoan, FANG Xuan, et al. Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China[J]. Frontiers of Earth Science,2019,13(2): 410-421.
46 ZHANG Baiping, YAO Yonghui, MO Shenguo, et al. Digital spectra of altitudinal belts and their hierarchical system[J]. Journal of Mountain Research, 2002,20(6): 660-665.
张百平,姚永慧,莫申国,等.数字山地垂直带谱及其体系的探索[J].山地学报, 2002,20(6): 660-665.
47 YAO Yonghui, ZHANG Baiping, HAN Fang, et al. Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China[J]. Journal of Mountain Science, 2010, 7(2): 123-132.
48 HOGAN A. The semantic web: two decades on[J]. Semantic Web, 2020, 11(1): 169-185.
49 SOWA J F. Principles of semantic networks: exploration in the representation of knowledge[M]. San Mateoornia, California: Morgan Kaufmann, 1991: 135-157.
50 MICHIE D. Expert systems[J]. The Computer Journal,1980,23(4). DOI: 10.1093/comjnl/23.4.369 .
51 POLI R, HEALY M, KAMEAS A. Theory and applications of ontology: computer applications[M].Dordrecht: Springer, 2010.
52 BERNERS-LEE T, HENDLER J, LASSILA O. The semantic web[J]. Scientific American,2001,284(5):34-43.
53 TIM B L, HENDLER J. Publishing on the semantic web[J]. Nature,2001,410(6 832):1 023-1 024.
54 CHRISTIAN B, TOM H, TIM B L. Linked data-the story so far[J]. International Journal on Semantic Web and Information Systems,2009,5(3). DOI:10.4018/jswis.2009081901 .
55 EDER J S. Knowledge graph based search system:U S,US20120158633A1[P/OL]. (2012-06-21)[2021-09-30]. .
56 ZHU Yunqiang, SUN Kai, HU Xiumian, et al. Research and practice on the framework for the construction, sharing, and application of large-scale geoscience knowledge graphs [J/OL].The Earth Information Science Journals. [2022-03-21]. .
诸云强,孙凯,胡修棉,等.大规模地球科学知识图谱构建与共享应用框架研究与实践[J/OL].地球信息科学学报.[2022-03-21]. .
57 WANG Zhihua, YANG Xiaomei, ZHOU Chenghu. Geographic knowledge graph for remote sensing big data[J]. Journal of Geo-Information Science, 2021, 23(1): 16-28.
王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28.
58 XU Jun, PEI Tao, YAO Yonghui. Conceptual framework and representation of geographic knowledge map[J]. Journal of Geo-Information Science, 2010, 12(4): 496-502, 509.
许珺, 裴韬, 姚永慧. 地学知识图谱的定义、内涵和表达方式的探讨[J]. 地球信息科学学报, 2010, 12(4): 496-502, 509.
59 LU Feng, YU Li, QIU Peiyuan. On geographic knowledge graph[J]. Journal of Geo-Information Science, 2017, 19(6): 723-734.
陆锋, 余丽, 仇培元. 论地理知识图谱[J]. 地球信息科学学报, 2017, 19(6): 723-734.
60 LAXTON J L. Geological map fusion: OneGeology-Europe and INSPIRE[M]// RIDDICK A T, KESSLER H, GILES J R A. Integrated environmental modelling to solve real world problems: methods, vision and challenges. Geological Society of London, 2017.
61 ZHOU L, CHEATHAM M, KRISNADHI A, et al. GeoLink data set: a complex alignment benchmark from real-world ontology[J]. Data Intelligence, 2020, 2(3): 353-378.
62 WANG C S, HAZEN R M, CHENG Q M, et al. The Deep-Time Digital Earth program: data-driven discovery in geosciences[J]. National Science Review, 2021, 8(9): nwab027.
63 WANG J M, HU Y J, JOSEPH K. NeuroTPR: a neuro-net toponym recognition model for extracting locations from social media messages[J]. Transactions in GIS, 2020, 24(3): 719-735.
64 YU Li, LU Feng, LIU Xiliang. A bootstrapping based approach for open geo-entity relation extraction[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 616-622.
余丽, 陆锋, 刘希亮. 开放式地理实体关系抽取的Bootstrapping方法[J]. 测绘学报, 2016, 45(5): 616-622.
65 TRISEDYA B D, QI J Z, ZHANG R. Entity alignment between knowledge graphs using attribute embeddings[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 297-304.
66 YU L, QIU P Y, LIU X L, et al. A holistic approach to aligning geospatial data with multidimensional similarity measuring[J]. International Journal of Digital Earth, 2018, 11(8): 845-862.
67 MAI G C, JANOWICZ K, CAI L, et al. SE-KGE: a location-aware knowledge graph embedding model for geographic question answering and spatial semantic lifting[J]. Transactions in GIS, 2020, 24(3): 623-655.
68 BALLATORE A, WILSON D C, BERTOLOTTO M.A survey of volunteered open geo-knowledge bases in the semantic web [M]// PASI G,BORDOGNA G,JAIN L C. Quality issues in the management of web information. Berlin, Heidelberg: Springer, 2013:93-120.
69 MA Zhonggui, NI Runyu, YU Kaihang. Recent advances, key techniques and future challenges of knowledge graph[J]. Chinese Journal of Engineering, 2020, 42(10): 1 254-1 266.
马忠贵, 倪润宇, 余开航. 知识图谱的最新进展、关键技术和挑战[J]. 工程科学学报, 2020, 42(10): 1 254-1 266.
70 JIANG Bingchuan, WAN Gang, XU Jian, et al. Geographic knowledge graph building extracted from multi-sourced heterogeneous data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1 051-1 061.
蒋秉川, 万刚, 许剑, 等. 多源异构数据的大规模地理知识图谱构建[J]. 测绘学报, 2018, 47(8): 1 051-1 061.
71 LI Jijun. Studies on the geomorphological evolution of the Qinghai Xizang(Tibetan)Plateau and Asian monsoon[J]. Marine Geology & Quaternary Geology, 1999, 19(1): 1-11.
李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1): 1-11.
72 LU Huayu, AN Zhisheng, WANG Xiaoyong, et al. Geomorphic evidence of staged uplift in the northeastern margin of the Tibetan plateau during the last 14Ma [J]. Science in China Series D: Earth Sciences, 2004, 34(9): 855-857, 856.
鹿化煜,安芷生,王晓勇,等.最近14Ma青藏高原东北缘阶段性隆升的地貌证据[J].中国科学D辑:地球科学, 2004, 34(9): 855-857, 856.
73 XIN Z H, HAN J T, GAO R, et al. Electrical structure of the eastern segment of the Qilian orogenic belt revealed by 3-D inversion of magnetotelluric data: new insights into the evolution of the northeastern margin of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2021, 210: 104707.
74 XUE Xianwu, CHEN Xi, ZHANG Zhicai, et al. Categorization of karst landform on the basis of landform factor eigenvalue[J]. Carsologica Sinica, 2009, 28(2): 175-180.
薛显武, 陈喜, 张志才, 等. 基于地形因子特征值的喀斯特流域地貌类型判别[J]. 中国岩溶, 2009, 28(2): 175-180.
75 JIANG S, HUANG M, DENG A, et al. Theoretical solution for long-term settlement of a large step-tapered hollow pile in karst topography[J]. International Journal of Geomechanics,2021,21(8). DOI:10.1061/(ASCE)GM.1943-5622.0002062 .
76 QIAN Xuesen. On the development of geo-science[J]. Acta Geographica Sinica, 1989, 44(3):257-261.
钱学森.关于地学的发展问题[J].地理学报, 1989, 44(3):257-261.
77 WANG J, CHENG W M, ZHOU C H, et al. Automatic mapping of lunar landforms using DEM-derived geomorphometric parameters[J]. Journal of Geographical Sciences, 2017, 27(11): 1 413-1 427.
78 LIU Qiangyi, CHENG Weiming, YAN Guangjian, et al. Distribution characteristics and classification schemes of lunar surface elevation[J]. Acta Geographica Sinica, 2022, 77(1): 106-119.
刘樯漪, 程维明, 阎广建, 等. 月表高程分布特征及其分级标准初探[J]. 地理学报, 2022, 77(1): 106-119.
79 PRIMA O D A, YOSHIDA T. Characterization of volcanic geomorphology and geology by slope and topographic openness[J]. Geomorphology, 2010, 118(1/2): 22-32.
80 ZHAO Mudan, TANG Guoan, CHEN Zhengjiang, et al. Slope classification systems and their slope spectrum in hill and gully area of the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2002, 22(4): 33-36.
赵牡丹, 汤国安, 陈正江, 等. 黄土丘陵沟壑区不同坡度分级系统及地面坡谱对比[J]. 水土保持通报, 2002, 22(4): 33-36.
81 LI F Y, TANG G A, WANG C, et al. Slope spectrum variation in a simulated loess watershed[J]. Frontiers of Earth Science, 2016, 10(2): 328-339.
82 YUE Tianxiang, AI Nanshan, ZHANG Yingbao. Superentropy-a criterion for determining stability of drainage system[J]. Journal of Soil and Water Conservation, 1989, 3(2): 20-28.
岳天祥, 艾南山, 张英保. 论流域系统稳定性的判别指标: 超熵[J]. 水土保持学报, 1989, 3(2): 20-28.
83 SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423.
84 LI Fayuan, TANG Guoan, JIA Yini, et al. Scale effect and spatial distribution of slope spectrum’s information entropy[J]. Geo-Information Science, 2007, 9(4): 13-18.
李发源, 汤国安, 贾旖旎, 等. 坡谱信息熵尺度效应及空间分异[J]. 地球信息科学, 2007, 9(4): 13-18.
85 LIU Shuanglin, LI Fayuan, JIANG Ruqiao, et al. A method of loess landform automatic recognition based on slope spectrum[J]. Journal of Geo-Information Science, 2015, 17(10): 1 234-1 242.
刘双琳, 李发源, 蒋如乔, 等. 黄土地貌类型的坡谱自动识别分析[J]. 地球信息科学学报, 2015, 17(10): 1 234-1 242.
86 WANG Chun. The uncertainty of slope spectrum derived from DEM in the Loess Plateau of northern Shaanxi Province[D]. Xi’an: Northwest University, 2005.
王春. 基于DEM的陕北黄土高原地面坡谱不确定性研究[D]. 西安: 西北大学, 2005.
87 WU Rui, WANG Lanhui, TANG Guoan. Terrain profile spectrum of China land border[J]. Geography and Geo-Information Science, 2012, 28(5): 51-54.
吴瑞, 王兰辉, 汤国安. 中国陆地边界地形剖面谱研究初探[J]. 地理与地理信息科学, 2012, 28(5): 51-54.
88 LIU Mingguang. Atlas of physical geography of China [M]. Beijing: SinoMaps Press,2010.
刘明光.中国自然地理图集[M].北京:中国地图出版社,2010.
89 FONT M, AMORESE D, LAGARDE J L. DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France)[J]. Geomorphology, 2010, 119(3/4): 172-180.
90 LU Zhongchen, ZHOU Jinxing, CHEN Hao. River bed longitudinal profile morphology of the lower Yellow River and its implication in physiography[J]. Geographical Research, 2003, 22(1): 30-38.
陆中臣, 周金星, 陈浩. 黄河下游河床纵剖面形态及其地文学意义[J]. 地理研究, 2003, 22(1): 30-38.
91 RANTITSCH G, PISCHINGER G, KURZ W. Stream profile analysis of the Koralm Range (eastern Alps)[J]. Swiss Journal of Geosciences, 2009, 102(1): 31-41.
92 WITTKOP C, PERIGNON M. Decadal-scale evolution of the 2006 suncook river avulsion, new Hampshire, USA[J]. Geomorphology, 2021, 376: 107572.
93 TALUKDAR R, KOTHYARI G C, PANT C C. Evaluation of neotectonic variability along major Himalayan thrusts within the Kali River Basin using geomorphic markers, Central Kumaun Himalaya, India[J]. Geological Journal, 2020, 55(1): 821-844.
94 FIELDING E J, ISACKS B, BARAZANGI M, et al. How flat is Tibet[J]. Geology, 1994, 22:163-167.
95 XIAO F, LING F, DU Y, et al. Digital extraction of altitudinal belt spectra in the West Kunlun Mountains using SPOT-VGT NDVI and SRTM DEM[J]. Journal of Mountain Science, 2010, 7(2): 133-145.
96 PARTELI E J R, SCHWÄMMLE V, HERRMANN H J, et al. Profile measurement and simulation of a transverse dune field in the Lençóis Maranhenses[J]. Geomorphology, 2006, 81(1/2): 29-42.
97 DURAI P, SARUNJITH K J, BHASKAR A S. Demarcation of coastal dune morphology and dune patterns using geospatial models: a case study from manapad coastal stretch, Tamil Nadu, south India[J]. Journal of the Geological Society of India, 2021, 97(11): 1 408-1 414.
98 TANG Guoan, LI Fayuan, XIONG Liyang. Progress of digital terrain analysis in the Loess Plateau of China[J]. Geography and Geo-Information Science, 2017, 33(4): 1-7.
汤国安, 李发源, 熊礼阳. 黄土高原数字地形分析研究进展[J]. 地理与地理信息科学, 2017, 33(4): 1-7.
99 CAMILA K B, TANG Guoan, YANG Xin, et al. Fractal dimension features from Catchment Boundary Profile (CBP) of small watersheds in the northern Shaanxi Province of China [J]. Journal of Nanjing Normal University (Natural Science Edition),2019,42(4):131-144.
卡米拉,汤国安,杨昕,等.基于流域边界剖面线的陕北小流域分形特征[J].南京师大学报(自然科学版),2019,42(4):131-144.
100 KAN Aike, ZHU Lidong, GONG Jianhui, et al. Development of the swath profile tool based on ArcView GIS and its application in morphometric analysis[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006, 33(1): 64-69.
阚瑷珂, 朱利东, 龚建辉, 等. 基于ArcView的带状剖面工具开发及在地貌分析中的应用[J]. 成都理工大学学报(自然科学版), 2006, 33(1): 64-69.
101 ZOU Binwen, MA Weifeng, LONG Yu, et al. Extraction method of swath profile based on ArcGIS and its application in landform analysis[J]. Geography and Geo-Information Science, 2011, 27(3): 42-44.
邹斌文, 马维峰, 龙昱, 等. 基于ArcGIS的条带剖面提取方法在地貌分析中的应用[J]. 地理与地理信息科学, 2011, 27(3): 42-44.
102 Guonian LÜ, QIAN Yadong, CHEN Zhongming.Study on catchments structure info-Tupu[J]. Geographical Research, 1998, 19(): 23-32.
闾国年, 钱亚东, 陈钟明. 流域结构信息图谱研究[J]. 地理研究, 1998, 19(): 23-32.
103 YANG Kai, YUAN Wen, ZHAO Jun, et al. Stream structure characteristics and its urbanization responses to Tidal River system[J]. Acta Geographica Sinica, 2004, 59(4): 557-564.
杨凯, 袁雯, 赵军, 等. 感潮河网地区水系结构特征及城市化响应[J]. 地理学报, 2004, 59(4): 557-564.
104 QIN Yaochen, LIU Kai. Advancement of applied studies of fractal theory in geography[J]. Progress in Geography, 2003, 22(4): 426-436.
秦耀辰, 刘凯. 分形理论在地理学中的应用研究进展[J]. 地理科学进展, 2003, 22(4): 426-436.
105 TURCOTTE D L, BROWN S R. Fractals and chaos in geology and geophysics[J]. Physics Today, 1993, 46(5): 68.
106 CHEN Yanguang, LIU Jisheng. Fractals and fractal dimensions of structure of river systems: models reconstruction and parameters interpretation of Horton’s laws of network composition[J]. Advances in Earth Science, 2001, 16(2): 178-183.
陈彦光, 刘继生. 水系结构的分形和分维: Horton水系定律的模型重建及其参数分析[J]. 地球科学进展, 2001, 16(2): 178-183.
107 la BARBERA P, ROSSO R. On the fractal dimension of stream networks[J]. Water Resources Research, 1989, 25(4): 735-741.
108 JIANG Yongqing, SHAO Mingan, LI Zhanbin, et al. Horton’s order ratios of water course network of drainage basin and their fractal characters in the Loess Plateau[J]. Journal of Mountain Research, 2002, 20(2): 206-211.
姜永清, 邵明安, 李占斌, 等. 黄土高原流域水系的HORTON级比数和分形特性[J]. 山地学报, 2002, 20(2): 206-211.
109 LONG Tengwen, ZHAO Jingbo. A study on the fractal properties of a typical drainage basin on the Loess Plateau based on DEM[J]. Earth and Environment, 2008, 36(4): 304-308.
龙腾文, 赵景波. 基于DEM的黄土高原典型流域水系分形特征研究[J]. 地球与环境, 2008, 36(4): 304-308.
110 ZHANG Yanru, LI Guoqing, LIU Guan, et al. Fractal characteristics of water system and geomorphic erosion development of Yangou basin in Yan’an City of Shaanxi Province[J]. Research of Soil and Water Conservation, 2022, 29(2): 7-10.
张艳如, 李国庆, 刘冠, 等. 陕西省延安市燕沟流域水系分形与地貌侵蚀发育研究[J]. 水土保持研究, 2022, 29(2): 7-10.
111 STANKIEWICZ J. Fractal river networks of Southern Africa[J]. South African Journal of Geology, 2005, 108(3): 333-344.
112 WANG S W, JI H, LI P, et al. Growth diffusion-limited aggregation for basin fractal river network evolution model[J]. AIP Advances, 2020, 10(7): 075317.
113 LIU Kai, TANG Guoan, TAO Yang, et al. GLCM based quantitative analysis of terrain texture from DEMs[J]. Journal of Geo-Information Science, 2012, 14(6): 751-760.
刘凯, 汤国安, 陶旸, 等. 基于灰度共生矩阵的DEM地形纹理特征量化研究[J]. 地球信息科学学报, 2012, 14(6): 751-760.
114 ZHU Changqing, YANG Qihe, ZHU Wenzhong. Remote sensing relief image texture analysis and classification based on wavelet transform features[J]. Acta Geodaetica et Cartographica Sinica, 1996, 25(4): 252-256.
朱长青, 杨启和, 朱文忠. 基于小波变换特征的遥感地貌影像纹理分析和分类[J]. 测绘学报, 1996, 25(4): 252-256.
115 JIANG Sheng, TANG Guoan, YANG Xin, et al. Conceptual model of terrain texture in Loess Plateau based on DEM[J]. Journal of Geo-Information Science, 2021, 23(6): 959-968.
蒋圣, 汤国安, 杨昕, 等. 基于DEM的黄土高原地形纹理概念模型[J]. 地球信息科学学报, 2021, 23(6): 959-968.
116 LIU Kai, TANG Guoan, HUANG Xiaoli, et al. Research on the difference between textures derived from DEM and remote-sensing image for topographic analysis[J]. Journal of Geo-Information Science, 2016, 18(3): 386-395.
刘凯, 汤国安, 黄骁力, 等. 面向地形特征的DEM与影像纹理差异分析[J]. 地球信息科学学报, 2016, 18(3): 386-395.
117 DING H, NA J M, HUANG X L, et al. Stability analysis unit and spatial distribution pattern of the terrain texture in the northern Shaanxi Loess Plateau[J]. Journal of Mountain Science, 2018, 15(3): 577-589.
118 XU Y X, ZHANG S J, LI J Y, et al. Extracting terrain texture features for landform classification using wavelet decomposition[J]. ISPRS International Journal of Geo-Information, 2021, 10(10): 658.
119 QIU Z H, YUE L W, LIU X G. Void filling of digital elevation models with a terrain texture learning model based on generative adversarial networks[J]. Remote Sensing, 2019, 11(23): 2829.
120 JAFARPOUR G K, SHAMSODDINI A, MOUSAVI M N, et al. Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019-2049) Zarriné-Rūd River Basin in Iran[J]. Environmental Challenges, 2022, 6: 100399.
121 LIU Y K, BAAS A C W. Internal sedimentary structure of linear dunes modelled with a cellular automaton[J]. Sedimentology, 2020, 67(7): 3 718-3 734.
122 GÁLVEZ G, MUÑOZ A. Three-dimensional cellular automata as a model of a seismic fault[J]. Journal of Physics: Conference Series, 2017, 792: 012087.
123 PIROLA M, BUSTOS S, MORALES M R, et al. The mid to late Holocene transition in Barrancas, Jujuy, Argentina: regional climate change, local environments and archaeological implications[J]. Journal of Archaeological Science: Reports, 2018, 18: 722-738.
124 ARPONEN V, GRIMM S, KÄPPEL L, et al. Between natural and human sciences: on the role and character of theory in socio-environmental archeology[J]. The Holocene, 2019, 29(10): 1 671-1 676.
125 STRAHLER A N. Hypsometric (area-altitude) analysis of erosional topography[J]. Geological Society of America Bulletin, 1952, 63(11): 1117.
126 LI Qiang, LU Zhongchen, YUAN Baoyin. Quantitative study of the stage afgeomorphological evolution[J]. Acta Geographica Sinica, 1990, 45(1): 110-120.
励强, 陆中臣, 袁宝印. 地貌发育阶段的定量研究[J]. 地理学报, 1990, 45(1): 110-120.
127 AI Nanshan. Comentropy in erosional-drainage-system[J]. Journal of Soil and Water Conservation, 1987, 1(2): 1-8.
艾南山. 侵蚀流域系统的信息熵[J]. 水土保持学报, 1987, 1(2): 1-8.
128 XIN Zhongbao, XU Jiongxin, MA Yuanxu. Hypsometric integral analysis and its sediment yield implications in the Loess Plateau, China[J]. Journal of Mountain Science, 2008, 26(3): 356-363.
信忠保, 许炯心, 马元旭. 黄土高原面积—高程分析及其侵蚀地貌学意义[J]. 山地学报, 2008, 26(3): 356-363.
129 WALCOTT R C, SUMMERFIELD M A. Scale dependence of hypsometric integrals: an analysis of southeast African Basins[J]. Geomorphology, 2008, 96(1/2): 174-186.
130 KORUP O, MONTGOMERY D R. Tibetan Plateau river incision inhibited by glacial stabilization of the Tsangpo gorge[J]. Nature, 2008, 455(7 214): 786-789.
131 ZHU Shijie, TANG Guoan, LI Fayuan, et al. Spatial variation of hypsometric integral in the Loess Plateau based on DEM [J].Acta Geographica Sinica,2013,68(7):921-932.
祝士杰,汤国安,李发源,等.基于DEM的黄土高原面积高程积分研究地理学报,2013,68(7):921-932.
132 LIU Dongsheng. Loess accumulation in China [M]. Beijing: Science Press,1965.
刘东生.中国的黄土堆积[M].北京:科学出版社,1965.
133 WILLIAMS P W. LIU Hong, SONG Linhua, translated. Geomorphic inheritance and the development of tower karst [J]. Progress in Geography,1990,9(1):11-16.
威廉姆斯.刘宏,宋林华,译.地貌继承性和塔状喀斯特的发育[J].地理译报,1990,9(1):11-16.
134 XIONG L Y, TANG G A, YUAN B Y, et al. Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models[J]. Science China Earth Sciences, 2014, 57(8): 1 944-1 952.
135 HALL A M, EBERT K, HÄTTESTRAND C. Pre-glacial landform inheritance in a glaciated shield landscape[J]. Geografiska Annaler: Series A, Physical Geography, 2013, 95(1): 33-49.
136 STOLAR D B, WILLETT S D, MONTGOMERY D R. Characterization of topographic steady state in Taiwan[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 421-431.
137 CERVANTES P, WILTSCHKO D V. Tip to midpoint observations on syntectonic veins, Ouachita orogen, Arkansas: trading space for time[J]. Journal of Structural Geology, 2010, 32(8): 1 085-1 100.
138 ZHANG Ouyang, JIN Desheng, CHEN Hao. An experimental study on spatial and temporal processes and complex response of river channel evolution[J]. Geographical Research, 2000, 19(2): 180-188.
张欧阳, 金德生, 陈浩. 游荡河型造床实验过程中河型的时空演替和复杂响应现象[J]. 地理研究, 2000, 19(2): 180-188.
139 HUANG Xiaoli, DING Hu, NA Jiaming, et al. Theories and methods of space-for-time substitution in geomorphology[J]. Acta Geographica Sinica, 2017, 72(1): 94-104.
黄骁力, 丁浒, 那嘉明, 等. 地貌发育演化研究的空代时理论与方法[J]. 地理学报, 2017, 72(1): 94-104.
140 SU Shiyu, LI Juzhang.Geomorphic mapping [M]. Beijing: Surveying and Mapping Press, 1999.
苏时雨, 李钜章. 地貌制图[M]. 北京: 测绘出版社, 1999.
141 Institute of Geography, Chinese Academy of Sciences. 1∶1,000,000 geomorphological mapping specification [M]. Beijing: Science Press, 1987.
中国科学院地理研究所. 中国1∶100万地貌图制图规范[M]. 北京: 科学出版社, 1987.
142 DEMEK J, EMBLETON C. Guide to medium-scale geomorphological mapping[M]. Stuttgart: E. Schweizerbart’s che Verlagsbuchhandlung (Nagele u.Obermiller), 1978.
143 DEMEK J. Manual of detailed geomorphological mapping[M]. Prague: Academia, 1972.
144 TANG Guoan. Progress of DEM and digital terrain analysis in China[J]. Acta Geographica Sinica, 2014, 69(9): 1 305-1 325.
汤国安. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014, 69(9): 1 305-1 325.
145 WHIPPLE K X, KIRBY E, BROCKLEHURST S H. Geomorphic limits to climate-induced increases in topographic relief[J]. Nature, 1999, 401(6 748): 39-43.
146 FAVALLI M, FORNACIAI A. Visualization and comparison of DEM-derived parameters. application to volcanic areas[J]. Geomorphology, 2017, 290: 69-84.
147 PATIL P L, DASOG G S, YERIMANI S A, et al. Morphometric analysis of landforms on basalt, granite gneiss and schist geological formations in north Karnataka, India—a comparison[J]. Geology, Ecology, and Landscapes, 2020, 4(4): 288-297.
148 SIDDIQ R, HASAN F, AGUSTIAN Y, et al. Morphometry study and integrated management of dibawah lake watershed solok regency[J]. Civil Engineering and Architecture, 2019, 7(3A): 19-26.
149 CORREA-MUÑOZ N A, MURILLO-FEO C A, MARTÍNEZ-MARTÍNEZ L J. The potential of PALSAR RTC elevation data for landform semi-automatic detection and landslide susceptibility modeling[J]. European Journal of Remote Sensing, 2019, 52(): 148-159.
150 Guonian LÜ, QIAN Yadong, CHEN Zhongming. Study of automated extraction of shoulde rline of valley from grid digital elevation data[J]. Scientia Geographica Sinica,1998, 18(6):567-573.
闾国年,钱亚东,陈钟明.基于栅格数字高程模型自动提取黄土地貌沟沿线技术研究[J].地理科学,1998, 18(6):567-573.
151 XIAO Fei, ZHANG Baiping, LING Feng, et al. DEM based auto-extraction of geomorphic units[J]. Geographical Research, 2008, 27(2): 459-466.
肖飞, 张百平, 凌峰, 等. 基于DEM的地貌实体单元自动提取方法[J]. 地理研究, 2008, 27(2): 459-466.
152 LONG En, CHENG Weiming, ZHOU Chenghu, et al. Extraction of landform information in Changbai Mountains based on Srtm-DEM and TM data[J]. Journal of Mountain Science, 2007, 25(5): 557-565.
龙恩, 程维明, 周成虎, 等. 基于Srtm-DEM与遥感的长白山基本地貌类型提取方法[J]. 山地学报, 2007, 25(5): 557-565.
153 SREEKESH S, KAUR N, NAIK S R S. An OBIA and rule algorithm for coastline extraction from high- and medium-resolution multispectral remote sensing images[J]. Remote Sensing in Earth Systems Sciences, 2020, 3(1/2): 24-34.
154 BAMDADINEJAD M, KETABDARI M J, CHAVOOSHI S M H. Shoreline extraction using image processing of satellite imageries[J]. Journal of the Indian Society of Remote Sensing, 2021, 49(10): 2 365-2 375.
155 RHOADS B L, THORN C E. The scientific nature of geomorphology[M]. New York: John Wiley & Sons, 1996.
156 CHENG W M, ZHOU C H, LI B Y, et al. Structure and contents of layered classification system of digital geomorphology for China[J]. Journal of Geographical Sciences, 2011, 21(5): 771-790.
157 SHEN Yuchang, SU Shiyu, YIN Zesheng. Retrospect and prospect of the research work on the classification, regionalization and mapping of the geomorphology of China[J]. Scientia Geographica Sinica, 1982, 2(2): 97-105.
沈玉昌, 苏时雨, 尹泽生. 中国地貌分类、区划与制图研究工作的回顾与展望[J]. 地理科学, 1982, 2(2): 97-105.
158 ZHOU Chenghu, CHENG Weiming, QIAN Jinkai, et al. Research on the classification system of digital land geomorphology of 1∶1000000 in China[J]. Journal of Geo-Information Science, 2009, 11(6): 707-724.
周成虎, 程维明, 钱金凯, 等. 中国陆地1∶100万数字地貌分类体系研究[J]. 地球信息科学学报, 2009, 11(6): 707-724.
159 CHEN Zhiming. Explanations of geomorphological map of China and its adjacent areas(1: 4,000,000):an outline of China’s geomorphology[M]. Beijing:SinoMaps Press,1993.
陈志明. 1: 400万中国及其毗邻地区地貌图说明书·中国地貌纲[M]. 北京: 中国地图出版社,1993.
160 LI Jijun. The geomorphological atlas of the People’s Republic of China [M]. Beijing: Science Press,2009.
李吉均.中华人民共和国地貌图集(1∶100万)[M].北京:科学出版社,2009.
161 KRESLAVSKY M A, HEAD J W, NEUMANN G A, et al. Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: scale dependence and correlation with geologic features and units[J]. Icarus, 2013, 226(1): 52-66.
162 PIPAUD I, LEHMKUHL F. Object-based delineation and classification of alluvial fans by application of mean-shift segmentation and support vector machines[J]. Geomorphology, 2017, 293: 178-200.
163 YANG X W, TANG G A, MENG X, et al. Classification of Karst Fenglin and Fengcong landform units based on spatial relations of terrain feature points from DEMs[J]. Remote Sensing, 2019, 11(16): 1950.
164 EVANS I S, DIKAU R, TOKUNAGA E, et al. Concepts and modelling in geomorphology: international perspectives[M]. Tokyo: TERRAPUB, 2003.
165 SUMMERFIELD M A. Global geomorphology[M]. New York: Routledge, Taylor & Francis Group, 2013.
166 HAMMOND E H. Small-scale continental landform maps[J]. Annals of the Association of American Geographers, 1954, 44(1): 33-42.
167 EVANS I S. General geomorphometry, derivatives of altitude and descriptive statistics[M]// CHORLEY R J. Spatial analysis in geomorphology. London: Harper & Row, 1972.
168 LIU Q Y, CHENG W M, YAN G J, et al. A machine learning approach to crater classification from topographic data[J]. Remote Sensing, 2019, 11(21): 2594.
169 ARABAMERI A, CERDA A, PRADHAN B, et al. A methodological comparison of head-cut based gully erosion susceptibility models: combined use of statistical and artificial intelligence[J]. Geomorphology, 2020, 359: 107136.
170 ZHAO Y, MENG X M, QI T J, et al. AI-based identification of low-frequency debris flow catchments in the Bailong River Basin, China[J]. Geomorphology, 2020, 359: 107125.
171 SZABÓ Z C, MIKITA T, NÉGYESI G, et al. Uncertainty and overfitting in fluvial landform classification using laser scanned data and machine learning: a comparison of pixel and object-based approaches[J]. Remote Sensing, 2020, 12(21): 3652.
172 LI X M, YAN P, LIU B L. Geomorphological classification of aeolian-fluvial interactions in the desert region of North China[J]. Journal of Arid Environments, 2020, 172: 104021.
173 HAMMOND E H. Analysis of properties in land form geography: an application to broad-scale land form mapping[J]. Annals of the Association of American Geographers, 1964, 54(1): 11-19.
174 MACMILLAN R A, PETTAPIECE W W, NOLAN S C, et al. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic[J]. Fuzzy Sets and Systems, 2000, 113(1): 81-109.
175 MITCHELL C W. Terrain evaluation, 2nd ed. Longman scientific and technical[M]. Harlow Essex, UK/New York: Halsted Press (Wiley), 1991.
176 LI S J, XIONG L Y, TANG G A, et al. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery[J]. Geomorphology, 2020, 354: 107045
177 SMITH M J, PARON P, GRIFFTHS J S. Geomorphologilca mapping methods and application[M]. Boston: Elsevier, 2011.
178 VITEK J D, GIARDINO J R, FITZGERALD J W. Mapping geomorphology: a journey from paper maps, through computer mapping to GIS and virtual reality[J]. Geomorphology, 1996, 16(3): 233-249.
179 CHENG Weiming. Development and prospect of modern geomorphological cartography: commemorating the 100th anniversary of Mr. Chen Shupeng’s birthday[J]. Journal of Geo-Information Science, 2020, 22(4): 688-696.
程维明. 现代地貌制图学的发展与展望: 纪念陈述彭先生诞辰100周年[J]. 地球信息科学学报, 2020, 22(4): 688-696.
180 ZHOU Chenghu, CHENG Weiming, QIAN Jinkai. Digital geomorphological interpretation and mapping from remote sensing[M]. Beijing: Science Press, 2009.
周成虎, 程维明, 钱金凯. 数字地貌遥感解析与制图[M]. 北京: 科学出版社, 2009.
181 LI Bingyuan, LI Juzhang. Geomorphic map of China (1∶4 million)[M]. Beijing: Science Press,1994.
李炳元,李钜章.中国地貌图(1∶400 万)[M].北京:科学出版社,1994.
182 CHENG Weiming, ZHOU Chenghu, LI Bingyuan, et al. Geomorphological regionalization theory system and division methodology of China[J]. Acta Geographica Sinica, 2019, 74(5): 839-856.
程维明, 周成虎, 李炳元, 等. 中国地貌区划理论与分区体系研究[J]. 地理学报, 2019, 74(5): 839-856.
183 COURTY L G, SORIANO-MONZALVO J C, PEDROZO-ACUÑA A. Evaluation of open-access global digital elevation models (AW3D30, SRTM, and ASTER) for flood modelling purposes[J]. Journal of Flood Risk Management, 2019, 12(): e12550.
184 DRĂGUŢ L, EISANK C. Automated object-based classification of topography from SRTM data[J]. Geomorphology (Amsterdam, Netherlands), 2012, 141/142(4): 21-33.
185 HARRIS P T, MACMILLAN-LAWLER M, RUPP J, et al. Geomorphology of the oceans[J]. Marine Geology, 2014, 352: 4-24.
186 SHEN X Y, VERGARA H J, NIKOLOPOULOS E I, et al. GDBC: a tool for generating global-scale distributed basin morphometry[J]. Environmental Modelling & Software, 2016, 83: 212-223.
[1] 熊永兰, 张志强, 刘志辉, 程国栋. 基于科学知识图谱的水文化变迁研究方法探析[J]. 地球科学进展, 2014, 29(1): 92-103.
[2] 陈燕,齐清文,杨桂山. 地学信息图谱时空维的诠释与应用[J]. 地球科学进展, 2006, 21(1): 10-13.
[3] 张洪岩;王钦敏;鲁学军;励惠国. 地学信息图谱方法前瞻[J]. 地球科学进展, 2004, 19(6): 997-1001.
[4] 李硕,曾志远,张运生. 数字地形分析技术在分布式水文建模中的应用[J]. 地球科学进展, 2002, 17(5): 769-775.
阅读次数
全文


摘要