地球科学进展 ›› 2011, Vol. 26 ›› Issue (7): 711 -723. doi: 10.11867/j.issn.1001-8166.2011.07.0711

综述与评述 上一篇    下一篇

冻土水文研究进展
阳勇, 陈仁升*   
  1. 1.中国科学院寒区旱区环境与工程研究所黑河上游生态—水文试验研究站,甘肃兰州730000;
    2.中国科学院内陆河流域生态水文重点实验室,甘肃兰州730000
  • 收稿日期:2010-11-22 修回日期:2011-04-21 出版日期:2011-07-10
  • 通讯作者: 陈仁升(1974-),男,山东沂水人,研究员,主要从事寒区水文学研究. E-mail:crs2008@lzb.ac.cn
  • 基金资助:

    国家自然科学基金重大计划项目“黑河寒区水文过程小流域综合观测与模拟”(编号:91025011);国家自然科学基金项目“黑河源区高山寒漠带水文过程观测试验研究”(编号:40771045); 国家自然科学基础人才培养基金项目冰川学冻土学特殊学科点(编号:J0930003/ J0109)资助.

Research Review on Hydrology in the Permafrost and Seasonal Frozen Regions

Yang Yong, Chen Rensheng   

  1. 1.The Upper Heihe River Ecology Hydrology Experimental Study Station of the Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou730000,China;2.Key Laboratory of Inland Ecohydrology,CAS,Lanzhou730000,China
  • Received:2010-11-22 Revised:2011-04-21 Online:2011-07-10 Published:2011-07-10

冻土改变了区域水热条件、产汇流过程、产流量多寡及年内/际变化,冻土水文成为寒区生态—水文过程的核心环节。系统总结了国内外冻土水文研究进展,包括冻土水热传输特征,特殊的产汇流过程,流域尺度水平衡,以及各种水热传输物理模型和流域尺度水文模型。未来冻土水文的发展应在数据和方法积累的基础上,进一步探索产汇流过程机理,并建立完善的分布式冻土水文物理模型,定量探索冻土变化对区域/流域水资源和生态的影响。

Hydrology in the permafrost and seasonal frozen regions becomes the most important segment in the eco-hydrology processes in the cold region, since the water and energy conditions, runoff generation and concentration are changed by the presence of frozen soil. Such understanding is important for regional environmental protection and water management decisions. This paper try to provides an review of research on hydrology in the permafrost and seasonal frozen regions, and introduce the characteristics of the water and heat flow, the peculiar mechanisms of runoff generation and concentration, and the qualities of runoff and water balance in the cold regions.
    Water and heat flow through frozen soil are affected by the formation and presence of ice in the porous matrix in comparison to unfrozen soils. The formation of ice is influenced by soil characteristics, temperature and initial water content, and lead to the diversity of thermal and hydraulic conductivity in the frozen soil, which are need more concern in future research.With respect to frozen ground, its influence on infiltration, percolation and evapotranspiration in both permafrost and seasonal frozen regions result in the clearly distinguishable peculiarities from the hydrology of other geographical zones. Where present, frozen soil acts as a semi-impermeable medium, restricting deep percolation, increasing soil moisture and enhancing runoff in spring. In summertime, the soil water storage capacity in the thawing part of the soil, the depth of which changed over time, controls the runoff characteristics. Excess water at summertime just before soil freezing, which is controlled by the amount of summer rainfall, is stored as ice during winter. This water storage stabilizes the rate of evapotranspiration.
    Besides the introduction of mechanism of hydrology in the permafrost and seasonal frozen regions, some models deal with water and heat transfer processes and hydrological processes are summarized. In the early time, these models used in the cold regions were upbuilt through appending influence of frozen soil to tradition hydrological models, and then some researchers attempt to develop some specialized spatiallydistributed models of runoff generation in the permafrost regions at the present time. However, some the hydrological processes and parameters in these models, which characterized the peculiarities in the cold regions, are still experiential and conceptual.The future research on hydrology in the permafrost and seasonal frozen regions should ravel the mechanisms of runoff generation and concentration on the base of the accessorial data and new technique, develop a cold regions distributed physics-based hydrological model, and quantify the influence on water resource and ecosystem in cold regions.

中图分类号: 

[1]Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000.[周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.]
[2]Ding Yongjian.Response of global glaciers fluctuation to climatic change in recent 40 years[J].Science in China(Series B),1995, 25(10):1 093-1 098.[丁永建.近40a来全球冰川波动对气候变化的反应[J].中国科学:B辑,1995,25(10):1 093-1 098.]
[3]Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J].Science in China (Series D),2005, 48(6): 797-804.
[4]Prowse T D, Wrona F J, Reist J D,et al. Climate change effects on hydroecology of arctic freshwater ecosystems[J].Ambio,2006, 35(7):347-358.
[5]Wang Genxu, Li Shengnan, Hu Hongchang,et al. Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation[J].Geoderma, 2009, 149: 280-289.
[6]Woo M K. Cold Region Atmospheric and Hydrologic Studies-the Mackenzie GEWEX Experience Volume 2: Hydrologic Processes[M].Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
[7]Cheng Goudong, Zhou Youwu. State of the art and prospect of geocryology in China[J].Journal of Glaciology and Geocryology,1988, 10(3): 221-227.
[程国栋,周幼吾. 中国冻土学的现状和展望[J]. 冰川冻土,1988, 10(3): 221-227.]
[8]Kuchment L S, Gelfan A N, Demidov V N. A distributed model of runoff generation in the permafrost regions[J].Journal of Hydrology,2000, 240: 1-22.
[9]Hayashi M, Kamp G, Schmidt R. Focused infiltration of snowmelt water in partially frozen soil under small depressions[J].Journal of Hydrology,2003, 270: 214-229.
[10]Spence C, Burke A. Estimates of Canadian Arctic Archipelago runoff from observed hydrometric data[J].Journal of Hydrology,2008, 362: 247-259.
[11]Yang Yong, Chen Rensheng, Ji Xibing,et al. Heat and water transfer processes on the alpine meadow frozen ground in the Heihe mountainous watershed, Northwest China[J]. Advance in Water Science,2010, 21(1): 30-35.[阳勇, 陈仁升, 吉喜斌, 等. 黑河高山草甸冻土带水热传输过程模拟研究[J]. 水科学进展, 2010, 21(1): 30-35.]
[12]Jame Y W, Norum D I. Water movement and mass transfer in freezing unsaturated soil in a closed system[C]Confernece on Soil-Water Problems in Cold Regions, Amrica Geophysical Union, 1976: 46-62.
[13]Konrad J M, Morgenstern N. A mechanistic theory of ice lens formation in fine-grained soil[J].Canadian Geotechnical Journal,1980, 17: 437-486.
[14]Kay B D, Perfect E. State of the art: Heat and mass transfer in freezing soils[C]5th International Symposium on Ground Freezing, 1988:3-21.
[15]Cheng Guodong, Chamberlian E J. Some observation on moisture migration in frozen soils during thawing[C]Presented 5th International Conference on Permafrost, 1988: 308-312.
[16]Zhou Youcai. Discussion on the methods of research on moisture flow in the seasonal frozen soil[J].Journal of Glaciology and Geocryology,1978, 2(1): 46-53.[周有才. 季节性冻结区水分动态研究方法商榷[J]. 冰川冻土, 1978,2(1): 46-53.]
[17]Li Shuxun, Cheng Guodong, Liu Jimin, et al. Experimental study on heat-moisture transfer in Lanzhou Loess during freezing-thawing processes[J].Journal of Glaciology and Geocryology,1996, 19(4):319-324.[李述训, 程国栋, 刘继民, 等. 兰州黄土在冻融过程中水热输运实验研究[J]. 冰川冻土, 1996,19(4):319-324.]
[18]Zhou Youwu, Huang Maoheng. A great breakthrough in the theory of formation of thick layered ground ice—The tenth anniversary of Cheng′s Theory[J]. Journal of Glaciology and Geocryology, 1992, 14(2): 97-100.[周幼吾, 黄茂桓. 厚层地下冰形成理论的重大突破——程氏假说发表10周年[J]. 冰川冻土, 1992, 14(2): 97-100.]
[19]Xu Xiaozu,Lebedenko Ю Π,Chuvilin  E M,et al. Experimental study on processes of heat-mass transfer and deformation in system of frozen kaolin and salt solution[J]. Journal of Glaciology and Geocryology,1992, 14(4): 289- 295.[徐学祖, Ю.Π.列别铁科, E.M.丘维林, 等. 冻土与盐溶液系统中热质迁移及变形过程试验研究[J]. 冰川冻土,1992, 14(4):289-295.]
[20]Lopez C M L, Brouchkov A, Nakayama H, et al. Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia[J]. Hydrological Processes, 2007, 21: 103-109. 
[21]Wang Genxu, Liu Lin′an, Liu Guangsheng, et al. Impacts of grassland vegetation cover on the active-layer thermal regime, northeast Qinghai-Tibet Plateau, China[J].Permafrost and Periglacial Processes,2010,21(4):335-344, doi: 10.1002 /ppp.699.
[22]Lopez C M L, Gerasimov E, Machimura T, et al. Comparison of carbon and water vapor exchange of forest and grassland in permafrost regions, Central Yakutia, Russia[J]. Agricultural and Forest Meteorology, 2008, 14(8): 1 968-1 977.
[23]Dragon K, Marciniak M. Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, Central Spitsbergen)[J].Journal of Hydrology, 2010, 386: 160-172.
[24]Iwata Y, Hirota T, Hayashi M, et al. Effects of frozen soil and snow cover on coldseason soil water dynamics in Tokachi, Japan[J]. Hydrological Processes,2010, 24: 1 755-1 765.
[25]Bayard D, Stähli M, Parriaux A, et al. The influence of seasonally frozen soil on the snowmelt runoff at two alpine sites in southern Switzerland[J]. Journal of Hydrology,2005, 309: 66-84.
[26]Phillips M, Schweizer J. Effect of mountain permafrost on snowpack stability[J]. Cold Regions Science and Technology, 2007, 47: 43-49.
[27]Chen Rensheng, Kang Ersi, Ji Xibin,et al. Preliminary study of the hydrological processes in the alpine meadow and permafrost regions at the headwaters of Heihe River[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 387-396.[陈仁升,康尔泗,吉喜斌,等. 黑河源头高山草甸带冻土及水文过程初步研究[J]. 冰川冻土,2007, 29(3): 387-396.]
[28]Zhang Jinsheng, Masami Fukuda. Hydraulic conductivity measurements of frozen soil by needle probe method[J]. Journal of Glaciology and Geocryology, 1991, 13(4): 349-357.[张津生, 福田正已.探针法测定冻土的导水率[J]. 冰川冻土, 1991, 13(4): 349-357.]
[29]Al-Houri Z M, Barber M E, Yonge D R, et al. Impacts of frozen soils on the performance of infiltration treatment facilities[J]. Cold Regions Science and Technology, 2009, 59: 51-57.
[30]Granger R J, Gray D M, Dyck G E. Snowmelt infiltration to frozen Prairie soils[J]. Canadian Journal of Earth Science, 1984, 21: 669-677.
[31]Fourie W J, Barnes D L, Shur Y. The formation of ice from the infiltration of water into a frozen coarse grained soil[J]. Cold Regions Science and Technology, 2007, 48: 118-128.
[32]Thunholm B, Lundln L C, Lindell S. Infiltration into a frozen heavy clay soil[J].Nordic Hydrology,1989, 20: 153-166.
[33]Zhao L T, Gray D M, Toth B. Influence of soil texture on snowmelt infiltration into frozen soils[J]. Canadian Journal of Soil Science, 2002, 82: 75-83.
[34]Zhao L T, Gray D M. Estimating snowmelt infiltration into medium and fine-textured, frozen soils[C]Proceeding of  International Symposium on Physics, Chemistry and Ecology of Seasonallyfrozen Soils. Iskandar I, Wright E, Sharratt B, et al, eds. Special Report 97-10, US Army Cold Regions Research and Engineering Laboratory: Hanover, New Hampshire,1997.
[35]Quinton W L, Shirazi T, Carey S K, et al. Soil water storage and active-layer development in a sub-alpine tundra hillslope, southern Yukon Territory, Canada[J]. Permafrost and Periglacial Processes,2005, 16: 369-382.
[36]Carey S K, Woo M K. A case study of active layer thaw and its controlling factors[C]Proceedings 7th International Permafrost Conference. Yellowknife, NWT,1998: 127 -132.
[37]Kane D L, Stein J. Field evidence of groundwater recharge in interior Alaske[C]Proceedings Fourth International Conference on Permafrost. Fairbanks, Alaska,1983: 572-577.
[38]Sutinen R, Hänninen P, Venäläinen A. Effect of mild winter events on soil water content beneath snowpack[J].Cold Regions Science and Technology, 2008, 51: 56-67.
[39]Yang Zhenniang, Yang Zhihuai, Liang Fengxian, et al. Permafrost hydrological process in Binggou Basin of Qilian Mountains[J]. Journal of Glaciology and Geocryology,1993, 15(2): 235-241.[杨针娘, 杨志怀, 梁凤仙, 等. 祁连山冰沟流域冻土水文过程[J]. 冰川冻土, 1993, 15(2): 235-241.]
[40]Carey S K, Woo M K. Slope runoff processes and flow generation in a subarctic, subalpine catchment[J]. Journal of Hydrology, 2001, 253: 110-129.
[41]McCartney S E, Carey S K, Pomeroy J W. Intrabasin variability of snowmelt water balance calculations in a Subarctic catchment[J]. Hydrological Processes,2006, 20: 1 001-1 006.
[42]Petrone K C, Jones J B, Hinzman L D, et al. Seasonal export of carbon, nitrogen and major solutes from Alaskan catchments with discontinuous permafrost[J]. Journal of Geophysical Research,2006,11:13,doi:10.1029/2005JG000055.
[43]Ishikawa M, Sharkhuu N, Zhang Y, et al. Ground thermal and moisture conditions at the southern boundary of discontinuous permafrost, Mongolia[J]. Permafrost and Periglacial Processes, 2005, 16: 2 089-2 106.
[44]Yamazaki Y, Kubota J, Ohata T, et al. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of eastern Siberia[J]. Hydrological Processes,2006, 20: 453-467.
[45]Metcalfe R A, Buttle J M. Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in Northcentral Manitoba, Canada[J]. Hydrological Processes, 2001, 15: 2 305-2 324.
[46]Young K L, Woo M K, Edlund S A. Influence of local topography soil and vegetation on microclimate and hydrology at a High Arctic site[J]. Arctic and Alpine Research,1997, 29: 270-284.
[47]Carey S K, Woo M K. Hydrology of two slopes in subarctic Yukon, Canada[J]. Hydrological Processes, 1999 13: 2 549-2 562.
[48]McEachern P, Prepas E E, Chanasyk D S. Landscape control of water chemistry in northern boreal streams of Alberta[J]. Journal of Hydrology, 2006, 323: 303-324.
[49]Woo M K, Kane D L, Carey S K, et al. Progress in permafrost hydrology in the new millennium[J]. Permafrost and Periglacial Processes,2008, 19: 237-254.
[50]Carey S K, Woo M K. Spatial variability of hillslope water balance, Wolf Creek Basin, subarctic Yukon[J]. Hydrological Processes, 2001, 15: 3 151-3 166.
[51]Woo M K, Marsh P. Snow, frozen soils and permafrost hydrology in Canada, 1999-2002[J]. Hydrological Processes,2005, 19: 215-229.
[52]Quinton W L, Gray D M, Marsh P. Subsurface drainage from hummockcovered hillslopes in the Arctic tundra[J]. Journal of Hydrology,2000, 237: 113-125.
[53]Quinton W L, Marsh P. A conceptual framework for runoff generation in a permafrost environment[J]. Hydrological Processes,1999, 13: 2 563-2 581.
[54]Wang Jian, Aximu A, Ding Yongjian, et al. Variations of pH value and electrical conductivity in the Dongkemadi Basin, Tanggula range[J]. Eenvironmental Science, 2007, 28(10): 2 301-2 306.[王建, 艾合麦提·阿西木, 丁永建, 等. 唐古拉冬克玛底冰川流域pH值和电导率分析[J]. 环境科学, 2007, 28(10): 2 301-2 306.]
[55]]Woo M K, Young K L. High Arctic wetlands: Their occu-rrence, hydrological characteristics and sustainability[J]. Journal of Hydrology, 2006, 320:432-450.
[56]Young K L, Assini J, Abnizova A, et al. Hydrology of hillslope-wetland streams, polar bear pass, Nunavut, Canada[J]. Hydrological Processes, 2010,24(23):3 345-3 558,doi: 10.1002/ hyp.7751.
[57]Yang D, Ye B, Kane D L. Streamflow changes over Siberian Yenisei River Basin[J]. Journal of Hydrology,2004, 296: 59-80.
[58]Walker H J, Hudson P F. Hydrologic and geomorphic processes in the Colville River Delta, Alask[J].Geomorphology, 2003, 56: 291-303.
[59]Ohta T, Maximov T C, Dolman A J, et al. Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998-2006)[J]. Agricultural and Forest Meteorology, 2008, 148: 1 941-1 953.
[60]Sugimoto A, Naito D, Yanagisawa N, et al. Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water[J]. Hydrological Processes,2003, 17: 1 073-1 092.
[61]Zhang Y, Ohata T, Kadota T. Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau[J]. Journal of Hydrology, 2003, 283: 41-56.
[62]Yao J, Zhao L, Ding Y, et al. The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau[J]. Cold Regions Science and Technology, 2008, 52: 326-340.
[63]Park H, Yamazaki T, Yamamoto K, et al. Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia[J]. Agricultural and Forest Meteorology, 2008, 148: 1 990-2 005.
[64]Daniel J A, Staricka J A. Frozen soil impact on ground  water-surface water interaction[J].Journal of the American Water Resources Association,2000, 36: 151-160.
[65]Haldorsen S, Heim M, Dale B, et al. Sensitivity to long-term climate change of subpermafrost groundwater systems in Svalbard[J].Quaternary Research,2010, 73: 393-402.
[66]Clarke I D, Lauriol B, Harwood L, et al. Groundwater contributions to discharge in a permafrost setting, Big Fish River, N.W.T., Canada[J]. Arctic, Antarctic and Alpine Research, 2001, 33: 62-69.
[67]Reedyk S, Woo M K, Prowse T D. Contribution of icing ablation to streamflow in a discontinuous permafrost area[J]. Canadian Journal of Earth Science,1995, 32: 13-20.
[68]Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002, 298: 2 171-2 173.
[69]Liu J, Hayakawa N, Lu M, et al. Hydrological and geocryological response of winter streamflow to climate warming in Northeast China[J]. Cold Regions Science and Technology,2003, 37: 15-24.
[70]Zhang Fei, Liu Jingshi, Gong Tongliang. Winter runoff in a typical alpine permafrost region, Tibet-Himalayas[J].Advances in Earth Science,2006, 21(12): 1 333-1 338.[张菲, 刘景时, 巩同梁. 喜马拉雅山北坡典型高山冻土区冬季径流过程[J]. 地球科学进展, 2006, 21(12): 1 333-1 338.]
[71]McClelland J W, Holmes R M, Peterson B J. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change[J]. Journal of Geophysical Research, 2004, 109:D18102.
[72]Shanley J B, Chalmers A. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont[J]. Hydrological Processes, 1999, 13: 1 843-1 857.
[73]Nguyen T N, Burn C R, King D J, et al. Estimating the extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories[J]. Permafrost and Periglacial Processes,2009, 20: 141-153.
[74]Steelman C M, Endres A L, Kruk J. Field observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar[J]. Hydrological Processes,2010, 24: 2 022-2 033.
[75]Han L, Tsunekawa A, Tsubo M. Monitoring near-surface soil freeze-thaw cycles in northern China and Mongolia from 1998 to 2007[J]. International Journal of Applied Earth Observation and Geoinformation,2010, 12: 375-384.
[76]Yan Baixing, Luan Zhaoqing. Approach on the soil water scale equation of meadow lessive in Sanjiang Plain[J]. Chinese Journal of Soil Science, 2005, 36(3): 440-442.[阎百兴, 栾兆擎. 三江平原草甸白浆土土壤水分定标问题的探讨[J]. 土壤通报, 2005, 36(3): 440-442.]
[77]Hayhoe H N, Bailey W G. Monitoring changes in total and unfrozen water content in seasonally frozen soil using time domain reflectometry and neutron moderation techniques[J]. Water Resources Research,1985, 21: 1 077-1 084.
[78]Daniel J A, Staricka J A. Frozen soil impact on ground water-surface water interaction[J]. Journal of the American Water Resources Association, 2000, 36(1): 151-160.
[79]Cooper R J, Wadham J L, Tranter M, et al. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard[J]. Journal of Hydrology,2002, 269: 208-223.
[80]Dragon K, Marciniak M. Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, central Spitsbergen)[J]. Journal of Hydrology,2010, 386: 160-172.
[81]Keller K, Blum J D, Kling G W. Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed[J]. Chemical Geology, 2010, 273: 76-81.
[82]Ren Dongxing,Wang Genxu,Hu Hongchang, et al. Hydrochemical characteristics of runoff in a typical small permafrost of the Qinghai-Tibetan Plateau[J]. Journal of Lanzhou University(Natural Sciences),2010, 46(1): 7-13.[任东兴, 王根绪, 胡宏昌, 等. 青藏高原多年冻土区典型小流域径流水化学特征[J]. 兰州大学学报:自然科学版, 2010, 46(1): 7-13.]
[83]Amour N A, Gibson J J, Edwards T W D, et al. Isotopic time-series partitioning of streamflow components in wetland-dominated catchments, lower Liard River Basin, Northwest Territories, Canada[J].Hydrological Processes,2005, 19: 3 357-3 381.
[84]Harms T E, Chanasyk D S. Variability of snowmelt runoff and oil moisture recharge[J]. Nordic Hydrology,1998, 29: 179-198.
[85]Zhao L T, Gray D M. Estimating snowmelt infiltration into frozen soils[J]. Hydrological Processes, 1999, 13: 1 827-1 842.
[86]]Zhao L T, Gray D M, Male D H. Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground[J]. Journal of Hydrology, 1997, 200: 345-363.
[87]Pomeroy J W, Gray D M, Marsh P. Studies on snow redistribution by wind and forest, snow-covered area depletion and frozen soil infiltration in northern and western Canada[M] Woo M K ed. Cold Region Atmospheric and Hyologic Studies-the Mackenzie GEWEX Experience Volume 2: Hydrologic Processes. Heidelberg:Springer-Verlag Berlin Heidelberg, 2008: 81-96.
[88]Woo M K, Mollinga M, Smith S L. Modeling maximum active layer thaw in boreal and tundra environments using limited data[M] Woo M K ed. Cold Region Atmoseric and Hydrologic Studies-the Mackenzie GEWEX Experience Volume 2: Hydrologic Processes. Heidelberg:Springer-Verlag Berlin Heidelberg, 2008: 125-137.
[89]Romanovsky V E, Osterkamp T E. Thawing of the active layer on the coastal plain of the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 1997, 8: 1-22.
[90]Shiklomanov N I, Nelson F E. Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska[J]. Ecological Modeling, 1999, 123: 105-125.
[91]Etzelmüller B, Schuler TV, Farbrot H, et al. Permafrost in Iceland-distribution, ground temperatures and climate change impact[C]Proceedings of the Ninth International Conference on Permafrost, 2008.
[92]Riseborough D, Shiklomanov N, Etzelmüller B, et al. Recent advances in permafrost modelling[J]. Permafrost and Periglacial Processes,2008,19: 137-156.
[93]Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system I: Theory and development[J]. Transactions of the American Society of Agricultural Engineers,1989, 32: 565-571.
[94]Jansson P E, Moon D S.A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality[J].Environmental Modeling & Software, 2001, 16: 37-46.
[95]Kennedy I, Sharratt B. Model comparisons to simulate soil frost depth[J].Soil Science,1998,163(8): 636-645.
[96]Scherler M, Hauck C, Hoelzle M, et al. Meltwater infiltration into the frozen active layer at an alpine permafrost site[J]. Permafrost and Periglacial Processes,2010,21(4):325-334,doi: 10.1002/ppp.694.
[97]Kang Ersi, Cheng Guodong, Song Kechao, et al. Simulation of energy and water balance in Soil-Vegetation-Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest China[J]. Science in China(Series D), 2004,34(6):544-551.[康尔泗,程国栋,宋克超,等. 河西走廊黑河山区土壤—植被—大气系统能水平衡模拟研究[J]. 中国科学:D辑, 2004,34(6):544-551.]
[98]]Yang Yong, Chen Rensheng, Ji Xibin, et al. Heat and water transfer processes on the alpine meadow frozen ground in the Heihe mountainous watershed, Northwest China[J]. Advances in Water Science,2010, 21(1): 30-35.[阳勇, 陈仁升, 吉喜斌, 等, 2010. 黑河高山草甸冻土带水热传输过程[J]. 水科学进展, 21(1): 30-35.]
[99]An Weidong, Chen Xiaobai, Wu Ziwang. Numerical similation analysis of heat and mass transfer under a cannel in freezing[J]. Journal of Glaciology and Geocryology,1987,9(1):35-46.[安维东, 陈肖柏, 吴紫汪. 渠道冻结时热质迁移的数值模拟[J]. 冰川冻土, 1987,9(1):35-46.]
[100]Sheng Huang, Ma Wei, Hou Zhongjie. A model of migration potential for moisture migration during soil freezing[J]. Journal of Glaciology and Geocryology,1993, 15(1):140-143.[盛煌, 马巍, 侯仲杰. 正冻土中水分迁移的迁移势模型[J]. 冰川冻土, 1993, 15(1):140-143.]
[101]Wang Renhe, Li Dongwei. Moisture-temperature coupling mathematical model in freezing soil and finite element numerical simulation[J]. Journal of China Coal Society, 2006, 31(6): 757-760.[汪仁和,李栋伟. 正冻土中水热耦合数学模型及有限元数值模拟[J]. 煤炭学报, 2006, 31(6): 757-760.]
[102]Yue Hansen. Primary study on model for coupled Heat-Moisture-Salt transfer in soil during freezing thawing processes[J]. Journal of Glaciology and Geocryology,1994, 16(4): 308-313.[岳汉森. 土壤在冻融过程中水—热—盐耦合运移数学模型之初探[J]. 冰川冻土,1994,16(4): 308-313.]
[103]Hu Heping, Ye Baisheng, Zhou Yuhua. et al. A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet[J]. Science in China (Series D), 2006, 49(12): 1 311-1 322.[胡和平, 叶柏生, 周余华, 等. 考虑冻土的陆面过程模型及其在青藏高原GAME/Tibet试验中的应用[J]. 中国科学:D辑, 2006, 26(8): 755-766.]
[104]Sand K, Kane D L. Effects of seasonally frozen grounds on snowmelt modeling[M]Proceedings, Cold Regions Hydrology Symposium.Bethesda: American Water Resources Association, MD, 1986: 321-327.
[105]Lindström G, Bishop K, Löfvenius M O. Soil frost and runoff at Svartberget, northern Sweden-measurements and model analysis[J]. Hydrological Processes,2002, 16: 3 379-3 392.
[106]Bowling L C, Lettenmaier D P, Nijssen B, et al. Simulation of high-latitude hydrological processes in the Torne-Kalix Basin: PILPS Phase 2(e) 1: Experiment description and summary intercomparisons[J]. Global and Planetary Change,2003, 38: 1-30.
[107]Rawlins M A, Lammers R B, Frolking S, et al. Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model[J]. Hydrological Processes, 2003, 17: 2 521-2 539.
[108]Pomeroy J W, Gray D M, Brown T, et al. The cold regions hydrological model: A platform for basing process representation and model structure on physical evidence[J]. Hydrological Processes,2007, 21: 2 650-2 667.
[109]Koster E, Dankers R, Linden S. Water balance modelling of (sub-)arctic rivers and freshwater supply to the Barents Sea Basin[J]. Permafrost and Periglacial Processes, 2005, 16: 249-259.
[110]Kerkhoven E, Gan T Y. Development of a hydrologic scheme for use in land surface models and its application to climate change in the Athabasca River Basin[M]Woo M K ed. Cold Region Atmospheric and Hydrologic Studies-the Mackenzie GEWEX Experience Volume 2: Hydrologic Processes. Heidelberg: Springer-Verlag Berlin Heidelberg, 2008: 411-433.
[111]]Wu Xulian. The application of the tank model on the rain-snow-glacier supplied river[J].Hydrology,1993, 1: 10-15.[吴煦廉. 水箱模型在雨、雪、冰川融水补给河流上的应用[J]. 水文, 1993, 1:10-15.]
[112]Kang E, Cheng G, Lan Y. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China[J].Science in China (Series D),1999, 42 (Suppl.): 52-63.
[113]Guan Zhicheng,Duan Yuansheng.Modeling the hydrological process of drainages in cold regions[J].Journal of Glaciology and Geocryology, 2003, 25(2): 266-272.[关志成,段元胜.寒区流域水文模拟研究[J].冰川冻土, 2003, 25(2): 266-272.]
[114]Chen Rensheng, Gao Yanhong, Kang Ersi, et al. A Distributed Water-Heat Coupled (DWHC) model for mountainous watershed of an inland river basin (Ⅲ): Model results using the results from MM5 model[J].Advances in Earth Science,2006, 21(8): 830-837.[陈仁升,高艳红,康尔泗,等.内陆河高寒山区流域分布式水热耦合模型(Ⅲ): MM5嵌套结果[J].地球科学进展,2006, 21(8): 830-837.]
[115]Yang Zhenniang, Liu Xinren, Zeng Qunzhu, et al. Hydrology in Cold Regions of China[M]. Beijing: Science Press, 2000:54-121.[杨针娘, 刘新仁, 曾群柱, 等. 中国寒区水文[M].北京: 科学出版社, 2000:54-121.]

[1] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[2] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[3] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[4] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[5] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[6] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[7] 陈仁升,刘时银,康尔泗,韩海东,卿文武,王建. 冰川流域径流估算方法探索——以科其喀尔巴西冰川为例[J]. 地球科学进展, 2008, 23(9): 942-951.
[8] 王建群,卢志华. 土地利用变化对水文系统的影响研究[J]. 地球科学进展, 2003, 18(2): 292-298.
[9] 李硕,曾志远,张运生. 数字地形分析技术在分布式水文建模中的应用[J]. 地球科学进展, 2002, 17(5): 769-775.
[10] 康尔泗,程国栋,蓝永超,陈仁升,张济世. 概念性水文模型在出山径流预报中的应用[J]. 地球科学进展, 2002, 17(1): 18-26.
[11] 王根绪,钱 鞠,程国栋. 生态水文科学研究的现状与展望[J]. 地球科学进展, 2001, 16(3): 314-323.
[12] 邓慧平. 气候与土地利用变化对水文水资源的影响研究[J]. 地球科学进展, 2001, 16(3): 436-441.
阅读次数
全文


摘要