地球科学进展 ›› 2002, Vol. 17 ›› Issue (1): 18 -26. doi: 10.11867/j.issn.1001-8166.2002.01.0018

学术论文 上一篇    下一篇

概念性水文模型在出山径流预报中的应用
康尔泗 1,程国栋 2,蓝永超 1,陈仁升 1,张济世 1   
  1. 1.中国科学院寒区旱区环境与工程研究所水土资源研究室,甘肃 兰州 730000; 2.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2001-03-28 修回日期:2001-06-13 出版日期:2002-12-20
  • 通讯作者: 康尔泗(1942-),男,四川会理人,研究员,现从事水文、气候和水资源研究工作.E-mail:eskang@ns.lzb.ac.cn E-mail:eskang@ns.lzb.ac.cn
  • 基金资助:

    国家“九五”攻关重点项目“西北地区水资源合理开发利用与生态环境保护研究”(编号:96-912-03-03S);国家自然科学基金重点项目“西北干旱区内河流水资源形成与变化的基础研究”(编号:49731003);中国科学院寒区旱区环境与工程研究所知识创新工程项目(编号:210016)资助.

APPLICATION OF A CONCEPTUAL HYDROLOGICAL MODEL IN THE RUNOFF FORECAST OF A MOUNTAINOUS WATERSHED

KANG Ersi 1,CHENG Guodong 2, LAN Yongchao 1,CHEN Rensheng 1,ZHANG Jishi 1   

  1. 1.Division of  LandWater Resources, Cold and Arid Regions Environmental and Engineering Research Institute,  CAS, Lanzhou 730000, China;2. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China
  • Received:2001-03-28 Revised:2001-06-13 Online:2002-12-20 Published:2002-02-01

根据HBV水文模型的基本原理,建立了西北干旱区内陆河出山径流概念性水文模型。该模型反映了我国西部山区流域的径流形成特征,将山区流域划分为高山冰雪冻土带和山区植被带两个基本海拔景观带来对山区径流的形成和汇流过程进行模拟计算,以常规气象站的月气温和降水量为模型的初始输入,模拟计算月出山径流量。应用该模型对河西走廊黑河祁连山北坡的山区流域水量平衡进行了模拟计算,并对年径流和逐月分配进行了预报。结果表明,从枯水年到丰水年,降水量、蒸发量、径流量和径流系数均增加,而冰川融水和积雪融水对出山径流的补给比重则减少,这表明了冰雪融水对径流的具有调节作用。黑河山区流域径流系数远比干旱内流区的平均值大,但要小于全国的平均径流系数。所提出的内陆河山区流域出山径流的模拟和预报模型对年径流量和月分配的预报具有较好的精度,可用于黑河以及其他西北干旱区内陆河出山径流的预报,为内陆河流域中下游的水资源分配和开发利用提供依据。

Based on the basic principle of the HBV conceptual hydrological model, a hydrological model of the mountainous watersheds in the arid inland area of northwest China was developed by the authors. This model reflects the characteristics of the runoff generation in the mountainous watersheds of west China. The model simulates the runoff formation and transformation processes of the mountainous watersheds by dividing the watersheds into two basic altitude zones, the high mountain ice and snow zone and the mountain vegetation zone.  Taking the monthly air temperature and precipitation of the standard meteorological stations as the foremost inputs to the model, the monthly runoff from the mountainous watersheds is then simulated. The model is applied to simulate the water balance of a mountainous watershed of the Heihe River basin at the north flank of the Qilian mountains, and the annual runoff and its monthly distribution is then forecasted. The results indicate that, from the dry years to the we years, all of the precipitation, evaporation, runoff and runoff coefficient increase, but the alimentation proportion of glacial meltwater and snow meltwater to the total runoff decrease. Therefore, the ice and snow meltwater plays a regulation function for the runoff. In the mountainous watershed of the Heihe River, the runoff coefficient is much larger than that of the whole arid area, but it is still less than the average value over the whole country. The model of runoff simulation and forecast for the inland mountainous watersheds applied in the present study shows rather good fitness in the forecast of the annual runoff and its monthly distribution. Therefore, the model can be used for the runoff forecast of the mountainous watersheds both of the Heihe River and other inland rivers of the arid area of northwest China. And this will serve the rational allocation, utilization and exploitation of water resources in the middle and down courses of the inland river basins.

中图分类号: 

[1] Bergstrom S. Development and Application of a Conceptual Runoff model for Scandinavian Catchments[C]. Bulletin Series A, No 52, Lund: Lund University, 1976.12-83.
[2] Kang Ersi, Cheng Guodong, Lan Yongchao, et al. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climate changes[J]. Science in China (Series D), 1999, 42(Suppl): 52-63. [康尔泗,程国栋,蓝永超,等. 西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J]. 中国科学(D辑),1999,29(Supp.1):48-54.]
[3] Yang Daqing, Shi Yafeng, Kang Ersi, et al. Analysis and correction of systematic errors in precipitation measurement in the Urumuqi River basin, Tianshan[A].  In: Shi Yafeng, et al, eds. Formation and Estimation of Mountain Water Resources in the Urumqi River Basin[C]. Beijing: Science Press, 1992. 14-40. [杨大庆,施雅风,康尔泗,等. 天山乌鲁木齐河流域降水观测系统误差分析和修正[A]. 见:施雅风,等编.  乌鲁木齐河山区水资源形成和估算[C]. 北京:科学出版社,1992. 14-40.]
[4] Kang Ersi, Atsumu Ohmura. Energy, water and mass balance and runoff models in Tianshan glacieraffected area[J]. Science in China (Series B), 1994, 24(9): 983-991. [康尔泗,Ohmura A. 天山冰川作用流域能量、水量和物质平衡及径流模型[J]. 中国科学(B辑),1994,24(9):983-991.]
[5] Kang Ersi. Energy-water-mass Balance and Hydrological Discharge[M].  Zurcher Geographische Schriften 57. Zurich: ETH, 1994. 45-99.
[6] Braun L N. Simulation of Snowmelt-runoff in Lowland and Lower Alpine Regions of Switzerland[M]. Zurcher Geographische Schriften  21.  Zurich:ETH, 1985. 1-50.
[7] Braun L N, Grabs W,Rana B. Application of a conceptual precipitationrunoff model in the Langtang Khola Basin, Nepal Himalaya[J]. IAHS Publ, 1993, No. 218: 221-237.
[8] Kang Ersi,Ohmura A. A parameterized energy balance model of glacier melting on the Tianshan mountain[J]. Acta Geographica Sinica, 1994, 49(5): 467-476.[康尔泗,Ohmura A. 天山冰川消融参数化能量平衡模型[J]. 地理学报, 1994, 49(5):467-476.]
[9] Tan Guanri, Yan Jiyuan, Zhu Ruizhao. Applied climatology[M]. Shanghai: Shanghai Science and Technology Press, 1985. 194-195. [谭冠日, 严济远,朱瑞兆. 应用气候[M]. 上海:上海科学技术出版社,1985.194-195.]
[10] Zhang Guowei, Maire Yanmu. Estimation of evaporation and its characteristics analysis in the mountainous area of the Urumqi River basin[A]. In: Shi Yafeng, et al, eds. Formation and estimation of Mountain Water Resources in the Urumqi River Basin[C]. Beijing: Science Press, 1992. 90-98.[张国威,买热艳木. 乌鲁木齐河山区流域蒸发估算及特征分析[A]. 见:施雅风等,编. 乌鲁木齐河山区水资源形成和估算[C]. 北京: 科学出版社,1992.90-98.]
[11] Editorial Board of “Physical geography of China”, Chinese Academy of Sciences. Physical Geography of China (Surface Water)[M]. Beijing: Science Press, 1981.[中国科学院《中国自然地理》编辑委员会. 中国自然地理(地表水)[M]. 北京:科学出版社,1981.]

[1] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[2] 马雷鸣. 天气预报中的人工智能技术进展[J]. 地球科学进展, 2020, 35(6): 551-560.
[3] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[4] 金荣花,马杰,任宏昌,尹姗,蔡芗宁,黄威. 我国 1030天延伸期预报技术进展与发展对策[J]. 地球科学进展, 2019, 34(8): 814-825.
[5] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[6] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[7] 黄亦鹏,李万彪,赵玉春,白兰强. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34(12): 1273-1287.
[8] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[9] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[10] 李江峰, 蔡晓军, 王文, 李倩文, 雷彦森. 偏最小二乘回归在水汽和地面气温多模式集成预报中的应用研究[J]. 地球科学进展, 2018, 33(4): 404-415.
[11] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[12] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[13] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[14] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[15] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
阅读次数
全文


摘要