地球科学进展 ›› 2017, Vol. 32 ›› Issue (1): 44 -55. doi: 10.11867/j.issn.1001-8166.2017.01.0044

上一篇    下一篇

基于数值天气模式及其模式输出的闪电预报研究进展
王昊亮 1( ), 刘玉宝 2, 3,,A; *( ), 赵天良 1, 郭凤霞 1, 冯双磊 2, 王勃 2   
  1. 1.气象灾害预报预警与评估协同创新中心,南京信息工程大学,江苏 南京 210044
    2.新能源与储能运行控制国家重点实验室,中国电力科学研究院,北京 100085
    3.应用研究实验室,美国国家大气研究中心(NCAR), Boulder,Colorado,USA 80307
  • 收稿日期:2016-08-13 修回日期:2016-12-26 出版日期:2017-01-20
  • 通讯作者: 刘玉宝 E-mail:whl198969@163.com;yliu@ucar.edu
  • 基金资助:
    *国家电网公司科学技术项目“基于集合四维资料同化的电力气象多尺度数值预报技术研究及应用”(编号:SGTYHT/14-JS-188);江苏省普通高校学术学位研究生科研创新计划项目“基于中尺度数值天气模式的闪电资料同化技术”(编号:KYLX16_0939)资助.

Progress in Lightning Forecast by Using Numerical Weather Models and Model Outputs

Haoliang Wang 1( ), Yubao Liu 2, 3, *( ), Tianliang Zhao 1, Fengxia Guo 1, Shuanglei Feng 2, Bo Wang 2   

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2.State Key Laboratory of Control and Operation of Renewable Energy and Storage Systems, China Electric Power Research Institute, Beijing 100085, China
    3.Research Application Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80307, America
  • Received:2016-08-13 Revised:2016-12-26 Online:2017-01-20 Published:2017-01-10
  • Contact: Yubao Liu E-mail:whl198969@163.com;yliu@ucar.edu
  • About author:

    First author:Wang Haoliang(1989-),male,Ping’an County,Qinghai Province,Ph.D student. Research areas include forecast of severe convective weather and lightning.E-mail:whl198969@163.com

    *Corresponding author:Liu Yubao(1963-),male,Suqian City,Jiangsu Province,Professor. Research areas include cloud scale numerical weather forecast, severe weather process, power meteorology, typhoon, operational weather forecast system.E-mail:yliu@ucar.edu

  • Supported by:
    Project supported by the State Grid Science and Technology Project “Multiscale ensemble FDDA and NWP technologies for electric-power applications”(No.SGTYHT/14-JS-188);the Jiangsu Province University Academic Degrees Postgraduate Research and Innovation Project “Lightning data assimilation based on mesoscale numerical weather model”(No. KYLX16_0939).

鉴于闪电对人类生命、设备安全的威胁、对强对流天气的指示作用及其在大气化学反应链中的重要角色,国内外大量研究人员在中尺度数值天气模式、全球气候模式中开展了闪电预报的研究工作。在数值天气模式中,闪电预报方法可以分为3种:基于闪电活动发生时的天气背景场统计关系的闪电数值诊断预报;依据云动力、微物理场与起电活动的关系建立闪电率参数化方案;在数值天气模式中耦合详细的起电、放电参数化方案。详细综述了这3种预报方法的研究进展,总结了它们各自的特点,并且对现存的难点问题及未来的发展方向进行了探讨。

Lightning can threaten human and equipment safety. An indicator of sever convective weather, it plays an important role in atmospheric chemistry. The intensive studies have advanced the lightning forecast in the mesoscale weather models and its application in global climate models. There are three methods to forecast lightning by using numerical weather models: Numerical diagnosis prediction based on synoptic background filed statistical relations; Flash rate parameterization developed with the relationship between dynamical, microphysical and electrification processes, and The numerical weather model coupled with the explicit electrification and lightning parameterization schemes. In this paper, the research progress in lightning forecast with three above-mentioned methods were reviewed, and the future research issues on lightning forecast were also discussed.

中图分类号: 

表1 基于统计关系的闪电数值诊断预报的研究概况
Table 1 Summary of numerical diagnosis lightning prediction based on the statistical relationship
表2 几种具有代表性的闪电率参数化方案
Table 2 Some representative flash rate parameterization schemes
表3 几种详细的起电、放电参数化方案
Table 3 Some explicit electrification and lightning parameterization schemes
[1] Curran E B, Holle R L, López R E.Lightning casualties and damages in the United States from 1959 to 1994[J]. Journal of Climate, 2000,13(19): 3 448-3 464.
[2] Ma Ming, Lü Weitao, Zhang Yijun, et al. Characteristics of lightning exposure in China from 1997-2006[J]. Journal of Applied Meteorological Science, 2008,19(4):393-400.
[马明, 吕伟涛, 张义军,等. 1997—2006年我国雷电灾情特征[J]. 应用气象学报, 2008,19(4): 393-400.]
[3] Villarini Gabriele, Smith J A.Spatial and temporal variability of cloud-to-ground lightning over the continental US during the period 1995-2010[J].Atmospheric Research, 2013, 124(28):137-148.
[4] Chen Jiahong, Zhang Qin, Feng Wanxing, et al. Lightning location system and lightning dection network of China power grid[J].High Voltage Engineering, 2008,34(3):425-431.
[陈家宏, 张勤, 冯万兴,等.中国电网雷电定位系统与雷电监测网[J]. 高电压技术, 2008,34(3): 425-431.]
[5] Krawchuk M A, Cumming S G, Flannigan M D.Predicted changes in fire weather suggest increases in lightning fire initiation and future area burned in the mixedwood boreal forest[J]. Climatic change, 2009,92(1/2): 83-97.
[6] Kraaij T, Cowling R M, Van Wilgen B W. Lightning and fire weather in eastern coastal fynbos shrublands: Seasonality and long-term trends[J].International Journal of Wildland Fire, 2013,22(3): 288-295.
[7] Underwood S J.Cloud-to-ground lightning flash parameters associated with heavy rainfall alarms in the Denver, Colorado, Urban Drainage and Flood Control District ALERT Network[J].Monthly Weather Review, 2006,134(9): 2 566-2 580.
[8] Schultz C J, Petersen W A, Carey L D.Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather[J].Journal of Applied Meteorology and Climatology, 2009,48(12): 2 543-2 563.
[9] Gatlin P N, Goodman S J.A total lightning trending algorithm to identify severe thunderstorms[J].Journal of Atmospheric and Oceanic Technology, 2010,27(1): 3-22.
[10] Schultz C J, Petersen W A, Carey L D.Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends[J].Weather and Forecasting, 2011,26(5): 744-755.
[11] Kain J S, Coniglio M C, Correia J, et al. A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance[J].Bulletin of the American Meteorological Society, 2013,94(8): 1 213-1 225.
[12] Qie Xiushu, Liu Dongxia, Sun Zhuling.Recent advances in research of lightning meteorology[J].Acta Meteorologica Sinica, 2014,(5): 1 054-1 068.
[郄秀书, 刘冬霞, 孙竹玲. 闪电气象学研究进展[J]. 气象学报, 2014,(5): 1 054-1 068.]
[13] Mansell E R.Storm-scale ensemble Kalman filter assimilation of total lightning flash-extent data[J].Monthly Weather Review, 2014,142(10): 3 683-3 695.
[14] Fierro A O, Clark A J, Mansell E R, et al. Impact of storm-scale lightning data assimilation on WRF-ARW precipitation forecasts during the 2013 warm season over the contiguous United States[J].Monthly Weather Review, 2015,143(3): 757-777.
[15] Qie X, Zhu R, Yuan T, et al. Application of total-lightning data assimilation in a mesoscale convective system based on the WRF model[J].Atmospheric Research, 2014,145/146: 255-266.
[16] Levy H, Moxim W, Kasibhatla P.A global three-dimensional time-dependent lightning source of tropospheric NOx[J].Journal of Geophysical Research, 1996,101(D17): 22 911-22 922.
[17] Price C, Penner J, Prather M.NOx from lightning: 1. Global distribution based on lightning physics[J].Journal of Geophysical Research: Atmospheres, 1997,102(D5): 5 929-5 941.
[18] Shindell D T, Faluvegi G, Schmidt G, et al. Simulations of preindustrial, present-day, and 2100 dynamics and composition in the NASA GISS composition and climate model[J].Journal of Clinical Investigation, 2006,80(6): 1 607-1 612.
[19] Wu S, Mickley L J, Jacob D J, et al. Effects of Effects of2000-2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States[J].Journal of Geophysical Research Atmospheres, 2008,113(D18): 10.1029/2007JD009639.
[20] Guo Fengxia, Ju Xiaoyu, Chen Cong.Review and progress of estimate on nitrogen oxide production by lightning[J].Advances in Earth Science, 2013,28(3): 305-317.
[郭凤霞, 鞠晓雨, 陈聪. 估算闪电产生氮氧化物量的研究回顾与进展[J]. 地球科学进展, 2013,28(3): 305-317.]
[21] Cooper O R, Trainer M, Thompson A M, et al. Evidence for a recurring eastern North America upper tropospheric ozone maximum during summer[J].Journal of Geophysical Research Atmospheres, 2007,112(D23): 6 033-6 044.
[22] Choi Y, Kim J, Eldering A, et al. Lightning and anthropogenic NOx sources over the United States and the western North Atlantic Ocean: Impact on OLR and radiative effects[J].Geophysical Research Letters, 2009,36(17): 367-389.
[23] Dye J, Jones J, Weinheimer A, et al. Observations within two regions of charge during initial thunderstorm electrification[J].Quarterly Journal of the Royal Meteorological Society, 1988,114(483): 1 271-1 290.
[24] Tessendorf S A, Miller L J, Wiens K C, et al. The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics[J].Journal of the Atmospheric Sciences, 2005,62(12): 4 127-4 150.
[25] Wiens K C, Rutledge S A, Tessendorf S A.The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure[J].Journal of the Atmospheric Sciences, 2005,62(12): 4 151-4 177.
[26] Kuhlman K M, Ziegler C L, Mansell E R, et al. Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm[J].Monthly Weather Review, 2006,134(10): 2 734-2 757.
[27] Deierling W, Petersen W A.Total lightning activity as an indicator of updraft characteristics[J].Journal of Geophysical Research:Atmospheres, 2008,113(D16): 280-288.
[28] Qie Xiushu, Ralf Toumi, Zhou Yunjun.Lightning activity on the central Tibetan Plateau and its response to convective available potential energy[J].Chinese Science Bulletin, 2003,48(1): 87-90.
[郄秀书, Ralf Toumi, 周筠珺. 青藏高原中部地区闪电活动特征及其对对流最大不稳定能量的响应[J]. 科学通报, 2003, 48(1):87-90.]
[29] Wu Xueke, Yuan Tie, Liu Dongxia, et al. Study of the relationship between cloud-to-ground lightning and radar echo of a severe squall line in Shandong Peninsula[J]. Plateau Meteorology, 2013, 32(2):530-540.
[吴学珂, 袁铁, 刘冬霞,等. 山东半岛一次强飑线过程地闪与雷达回波关系的研究[J]. 高原气象, 2013, 32(2):530-540.]
[30] Wang F, Qie X, Liu D, et al. Lightning activity and its relationship with typhoon intensity and vertical wind shear for Super Typhoon Haiyan[J]. Journal Meteorology Research, 2016,30(1): 117-127.
[31] Lang T J, Rutledge S A.Relationships between convective storm kinematics, precipitation, and lightning[J]. Monthly Weather Review, 2002,130(10): 2 492-2 506.
[32] Sherwood S C, Phillips V T J, Wettlaufer J S. Small ice crystals and the climatology of lightning[J]. Geophysical Research Letters, 2006,33(5): 73-95.
[33] Wang Fei, Dong Wansheng, Zhang Yijun, et al. Case study of big particles effect on lightning initiation in clouds using model[J]. Journal of Applied Meteorological Science, 2009,20(5): 564-570.
[王飞, 董万胜, 张义军,等. 云内大粒子对闪电活动影响的个例模拟[J]. 应用气象学报, 2009,20(5): 564-570.]
[34] Xie Yiran, Qie Xiushu, Guo Fengxia, et al. Numerical simulation of the effect of liquid water content and ice crystal concentration on lightning flash frequency[J]. Plateau Meteorology, 2005, 24(4):598-603.
[谢屹然, 郄秀书, 郭凤霞,等. 液态水含量和冰晶浓度对闪电频数影响的数值模拟研究[J]. 高原气象, 2005, 24(4):598-603.]
[35] Yuan Tie, Qie Xiushu.Characteristics of the lightning activity,radar reflectivity and microwave brightness temperature of warm season precipitation systems over the eastern China and adjacent seas as observed by TRMM satellit[J]. Acta Meteorologica Sinica, 2010,68(5): 652-665.
[袁铁, 郄秀书. 中国东部及邻近海域暖季降水系统的闪电、雷达反射率和微波特征[J]. 气象学报, 2010,68(5): 652-665.]
[36] Yuan Tie, Qie Xiushu.TRMM-Based study of lightning activity and its relationship with precipitation structure of a squall line in South China[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(1):58-70.
[袁铁, 郄秀书. 基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J]. 大气科学, 2010, 34(1):58-70.]
[37] Ma Ming, Lin Jinbing, Fu Yunfei.A study of lightning and precipitation profiles of a severe convective activity[J]. Acta Meteorologica Sinica, 2012,70(4): 797-805.
[马明, 林锦冰, 傅云飞. 一次强对流活动中雷电与降水廓线特征研究[J]. 气象学报, 2012,70(4): 797-805.]
[38] Feng Guili, Qie Xiushu, Yuan Tie, et al. Characteristic of lightning and precipitation structure of hailstorm[J]. Science in China(Series D), 2007,37(1): 123-132.
[冯桂力, 郄秀书, 袁铁,等. 雹暴的闪电活动特征与降水结构研究[J]. 中国科学:D辑, 2007,37(1): 123-132.]
[39] Carey L D, Rutledge S A.The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study[J]. Monthly Weather Review, 2000,128(8): 2 687-2 710.
[40] Liu Dongxia, Qie Xiushu, Feng Guili.Evolution characteristics of the lightning and the relation with dynamical structure in a mesoscale convective system over North China[J].Chinese Journal of Atmospheric Sciences, 2010, 34(1):95-104.
[刘冬霞, 郄秀书, 冯桂力. 华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究[J]. 大气科学, 2010, 34(1):95-104.]
[41] Yang Meirong, Yuan Tie, Qie Xiushu, et al. An analysis of the characteristics of lightning activities, radar reflectivity and ice scattering for tropical cyclones over the western North Pacific[J]. Acta Meteorologica Sinica, 2011, 69(2):370-380.
[杨美荣, 袁铁, 郄秀书,等. 西北太平洋热带气旋的闪电活动、雷达反射率和冰散射信号特征分析[J]. 气象学报, 2011, 69(2):370-380.]
[42] Liu D, Qie X, Pan L X, et al. Some characteristics of lightning activity. Some characteristics of lightning activity and radiation source distribution in a squall line over north China[J].Atmospheric Research, 2013,132/133:423-433,doi:10.1016/j.atmosres.2013.06.010.
[43] Zheng Dong, Zhang Yijun, Lü Weitao, et al. Atmospheric instablity parameters and forecasting of ligthning activity[J]. Plateau Meteorology, 2005,24(2): 196-203.
[郑栋, 张义军, 吕伟涛,等. 大气不稳定度参数与闪电活动的预报[J]. 高原气象, 2005,24(2): 196-203.]
[44] Yin Xian, Xiao Wenan, Yi Liyun.The research on lightning potential prediction in Jiangsu Province[J]. Journal of Tropical Meteorology, 2011,27(5): 758-764.
[殷娴, 肖稳安, 尹丽云. 江苏省雷电活动潜势预报研究[J]. 热带气象学报, 2011,27(5): 758-764.]
[45] Xiong Yajun, Liao Xiaonong, Yu Bo, et al. Warning and forecast system of potential thunderstorm based on weather patterns in Beijing[J]. Journal of Catastrophology, 2012,27(2): 67-71.
[熊亚军, 廖晓农, 于波,等. 基于天气分型的北京地区雷电潜势预报预警系统[J]. 灾害学, 2012,27(2): 67-71.]
[46] Glahn H R, Lowry D A.The use of Model Output Statistics (MOS) in objective weather forecasting[J].Journal of Applied Meteorology, 1972,11(8): 1 203-1 211.
[47] Klein W H, Glahn H R.Forecasting local weather by means of model output statistics[J].Bulletin of the American Meteorological Society, 1974,55(10): 1 217-1 227.
[48] Brunet N, Verret R, Yacowar N.An objective comparison of model output statistics and “perfect prog” systems in producing numerical weather element forecasts[J].Weather and Forecasting, 1988,3(4): 273-283.
[49] Wilks D S.Statistical Methods in the Atmospheric Sciences[M]. United States:Academic Press, 2011.
[50] Reap R M.Analysis and prediction of lightning strike distributions associated with synoptic map types over Florida[J]. Monthly Weather Review, 1994,122(8): 1 698-1 715.
[51] Hughes K K.Automated gridded forecast guidance for thunderstorms and severe local storms based on the Eta Model[C]∥Proceedings of the 19th Conference on weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction,2002.
[52] Hughes K K.Development of MOS thunderstorm and severe thunderstorm forecast equations with multiple data sources[C]∥Proceedings of the 18th Conference on Weather Analysis and Forecasting and the 14th Conference on Numerical Weather,2001.
[53] Burrows W R, Price C, Wilson L J.Warm season lightning probability prediction for Canada and the northern United States[J]. Weather and Forecasting, 2005,20(6): 971-988.
[54] Sousa J, Fragoso M, Mendes S, et al. Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal[J].Atmospheric Research, 2013,132/133: 46-64,doi:10.1016/j.atmosres.2013.04.010.
[55] Klein W H.Computer prediction of precipitation probability in the United States[J].Journal of Applied Meteorology, 1971,10(5): 903-915.
[56] Bothwell P D.Prediction of Cloud-to-Ground Lightning in the Western United States[D]. Oklahoma: University of Oklahoma, 2002.
[57] Bothwell P D.Development of an operational statistical scheme to predict the location and intensity of lightning[C]∥Proceedings of the Conference on Meteorological Applications of Lightning Data, 2005.
[58] Shafer P E, Fuelberg H E.A perfect prognosis scheme for forecasting warm-season lightning over Florida[J]. Monthly Weather Review, 2008,136(6): 1 817-1 846.
[59] Saunders P A.Development and Evaluation of Mesoscale Lightning Threat Guidance for Operational Use at NWS Offices[M]. Florida: Florida State University, 2010.
[60] Horowitz L W, Walters S, Mauzerall D L, et al.A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2[J].Journal of Geophysical Research: Atmospheres, 2003,108(D24): ACH 16-11.
[61] Hudman R C, Jacob D J, Turquety S, et al. Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow[J].Journal of Geophysical Research:Atmospheres, 2007,112(D12): 271-283.
[62] Emmons L, Walters S, Hess P, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4)[J].Geoscientific Model Development, 2010,3(1): 43-67.
[63] Jourdain L, Kulawik S, Worden H, et al. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model[J].Atmospheric Chemistry and Physics, 2010,10(1): 107-119.
[64] Allen D J, Pickering K E.Evaluation of lightning flash rate parameterizations for use in a global chemical transport model[J].Journal of Geophysical Research:Atmospheres, 2002,107(D23): D02066.
[65] Allen D, Pickering K, Pinder R, et al. Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model[J].Atmospheric Chemistry and Physics, 2012,12(4): 1 737-1 758.
[66] Meijer E, Van Velthoven P, Brunner D, et al. Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning[J]. Physics and Chemistry of the Earth,Part C:Solar, Terrestrial & Planetary Science, 2001,26(8): 577-583.
[67] Zhao C, Wang Y, Choi Y, et al. Summertime impact of convective transport and lightning NOx production over North America: Modeling dependence on meteorological simulations[J].Atmospheric Chemistry and Physics, 2009,9(13): 4 315-4 327.
[68] Choi Y, Wang Y, Zeng T, et al. Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America[J]. Geophysical Research Letters, 2005,32(2): 139-181.
[69] Grewe V, Brunner D, Dameris M, et al. Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes[J]. Atmospheric Environment, 2001,35(20): 3 421-3 433.
[70] Price C, Rind D.A simple lightning parameterization for calculating global lightning distributions[J]. Journal of Geophysical Research:Atmospheres, 1992,97(D9): 9 919-9 933.
[71] Vonnegut B.Some facts and speculations concerning the origin and role of thunderstorm electricity[J]. Meteorological Monographs, 1963,5(27): 224-241.
[72] Price C, Rind D.Modeling global lightning distributions in a general circulation model[J]. Monthly Weather Review, 1994,122(8): 1 930-1 939.
[73] Boccippio D J.Lightning scaling relations revisited[J]. Journal of the Atmospheric Sciences, 2002,59(6): 1 086-1 104.
[74] Tost H, Jöckel P, Lelieveld J.Lightning and convection parameterisations-uncertainties in global modelling[J]. Atmospheric Chemistry and Physics, 2007,7(17): 4 553-4 568.
[75] Magi B I.Global lightning parameterization from CMIP5 climate model output[J].Journal of Atmospheric and Oceanic Technology, 2015,32(3): 434-452.
[76] McCaul Jr E W, Goodman S J, LaCasse K M, et al. Forecasting lightning threat using cloud-resolving model simulations[J]. Weather and Forecasting, 2009,24(3): 709-729.
[77] Barthe C, Deierling W, Barth M C.Estimation of total lightning from various storm parameters: A cloud-resolving model study[J]. Journal of Geophysical Research:Atmospheres, 2010,115(D24): D24202.
[78] Wong J, Barth M, Noone D.Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical model simulations[J]. Geoscientific Model Development, 2013,6(2): 429-443.
[79] Prentice S, Mackerras D.The ratio of cloud to cloud-ground lightning flashes in thunderstorms[J]. Journal of Applied Meteorology, 1977,16(5): 545-550.
[80] Deierling W, Petersen W A, Latham J, et al. The relationship between lightning activity and ice fluxes in thunderstorms[J].Journal of Geophysical Research Atmospheres, 2008,113(D15): 797-801.
[81] Basarab B M, Rutledge S A, Fuchs B R.An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models[J].Journal of Geophysical Research:Atmospheres, 2015, 120(18):9 481-9 499.
[82] Li Wanli, Qie Xiushu, Fu Shenming, et al. Simulation of quasi-linear mesoscale convective systems in northern China: Lightning activities and storm structure[J].Advances in Atmospheric Sciences, 2016, 33(1): 85-100.
[83] Bright D R, Wandishin M S, Jewell R E, et al. A physically based parameter for lightning prediction and its calibration in ensemble forecasts[C]∥Conference on Meteorological Applications of Lightning Data,2005.
[84] Wang F, Zhang Y, Dong W.A lightning activity forecast scheme developed for summer thunderstorms in South China[J]. Acta Meteorologica Sinica, 2010,24(5): 631-640.
[85] Yair Y, Lynn B, Price C, et al. Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields[J]. Journal of Geophysical Research:Atmospheres, 2010,115(D4): D04205.
[86] Lynn B, Yair Y.Prediction of lightning flash density with the WRF model[J]. Advances in Geosciences, 2010,23: 11-16,doi:10.5194/adgeo-23-11-2010.
[87] Lynn B H, Yair Y, Price C, et al. Predicting cloud-to-ground and intracloud lightning in weather forecast models[J]. Weather and Forecasting, 2012,27(6): 1 470-1 488.
[88] Dahl J M, Höller H, Schumann U.Modeling the flash rate of thunderstorms. Part I: Framework[J]. Monthly Weather Review, 2011,139(10): 3 093-3 111.
[89] Dahl J M, Höller H, Schumann U.Modeling the flash rate of thunderstorms. Part II: Implementation[J]. Monthly Weather Review, 2011,139(10): 3 112-3 124.
[90] Federico S, Avolio E, Petracca M, et al. Simulating lightning into the RAMS model:Implementation and preliminary results[J]. Natural Hazards and Earth System Sciences, 2014,14(11): 2 933-2 950.
[91] Giannaros T M, Kotroni V, Lagouvardos K.Predicting lightning activity in Greece with the Weather Research and Forecasting (WRF) model[J]. Atmospheric Research, 2015,156: 1-13,doi:10.1016/j.atmosres.2014.12.009.
[92] Kasemir H W.A contribution to the electrostatic theory of a lightning discharge[J]. Journal of Geophysical Research, 1960,65(7): 1 873-1 878.
[93] Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms[J]. Journal of the Atmospheric Sciences, 1978,35(8): 1 536-1 548.
[94] Jayaratne E, Saunders C, Hallett J.Laboratory studies of the charging of soft-hail during ice crystal interactions[J]. Quarterly Journal of the Royal Meteorological Society, 1983,109(461): 609-630.
[95] Saunders C P R, Keith W D, Mitzeva R P. The effect of liquid water on thunderstorm charging[J]. Journal of Geophysical Research Atmospheres, 1991,96(D6): 11 007-11 017.
[96] MacGorman D R, Straka J M, Ziegler C L. A lightning parameterization for numerical cloud models[J]. Journal of Applied Meteorology, 2001,40(3): 459-478.
[97] Mansell E R, MacGorman D R, Ziegler C L, et al. Simulated three-dimensional branched lightning in a numerical thunderstorm model[J]. Journal of Geophysical Research:Atmospheres, 2002,107(D9): ACL 2-1-ACL 2-12.
[98] Tan Yongbo, Tao Shanchang, Zhu Baoyou, et al. Simulation of two-layers and branches structure of lightning in thunderstorm[J]. Science in China(Series D), 2006,36(5): 486-496.
[谭涌波, 陶善昌, 祝宝友,等. 雷暴云内闪电双层、分枝结构的数值模拟[J]. 中国科学:D辑, 2006,36(5): 486-496.]
[99] Guo Fengxia, Wang Haoliang, Sun Jing, et al. Simulation of Three-Dimensional fractal structure of lightning in a thunderstorm model[J]. Plateau Meteorology, 2015,34(2): 534-545.
[郭凤霞, 王昊亮, 孙京,等. 积云模式下三维闪电分形结构的数值模拟[J]. 高原气象, 2015,34(2): 534-545.]
[100] Barthe C, Pinty J P.Simulation of a supercellular storm using a three-dimensional mesoscale model with an explicit lightning flash scheme[J]. Journal of Geophysical Research Atmospheres, 2007,112(D6): 541-553.
[101] Barthe C, Chong M, Pinty J P, et al. CELLS v1. 0: Updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domains[J]. Geoscientific Model Development, 2012,5(1): 167-184.
[102] Barthe C, Hoarau T, Bovalo C.Cloud electrification and lightning activity in a tropical cyclone-like vortex[J].Atmospheric Research, 2016,180: 297-309,doi:10.1016/j.atmosres.2016.05.023.
[103] Fierro A O, Mansell E R,MacGorman D R, et al. The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model: Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm[J].Monthly Weather Review, 2013,141(7): 2 390-2 415.
[104] Xu Liangtao, Zhang Yijun, Wang Fei, et al. Coupling of electrification and discharge processes with WRF model and its preliminary verification[J].Chinese Journal of Atmospheric Sciences, 2012,36(5): 1 041-1 052.
[徐良韬, 张义军, 王飞,等. 雷暴起电和放电物理过程在WRF模式中的耦合及初步检验[J]. 大气科学, 2012,36(5): 1 041-1 052.]
[105] Xu L, Zhang Y, Wang F, et al. Simulation of the electrification of a tropical cyclone using the WRF-ARW model: An idealized case[J].Journal of Meteorological Research, 2014,28: 453-468,doi:10.1007/S13351-014-3079-6.
[106] Li Wanli, Liu Dongxia, Qie Xiushu, et al. Evaluation of noninductive charging mechanisms and simulation of charge characteristic structure in the early thunderstorm based on RAMS V6.0[J].Acta Physica Sinica, 2012, 61(5): 59 202.
[李万莉, 刘冬霞, 郄秀书,等.基于RAMS V6.0的非感应起电机制评估和雷暴初期电荷结构模拟[J]. 物理学报, 2012, 61(5):59 202.]
[107] Liu D, Qie X, Peng L, et al. Charge structure of a summer thunderstorm in North China: Simulation using a regional atmospheric model system[J]. Advances in Atmospheric Sciences, 2014,31(5): 1 022-1 034.
[108] Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms[J]. Journal of the Atmospheric Sciences, 1978, 35(8):1 536-1 548.
[109] Gardiner B, Lamb D, Pitter R L, et al. Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm[J]. Journal of Geophysical Research:Atmospheres, 1985, 90(D4):6 079-6 086.
[110] Saunders C P, Keith W D, Mitzeva R P.The effect of liquid water on thunderstorm charging[J]. Journal of Geophysical Research:Atmospheres, 1991, 96(D6):11 007-11 017.
[111] Saunders C P, Peck S L.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions[J]. Journal of Geophysical Research:Atmospheres, 1998, 103(D12):13 949-13 956.
[112] Mansell E R, MacGorman D R, Ziegler C L, et al. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. Journal of Geophysical Research:Atmospheres, 2005, 110(D12),doi:10.1029/2004JD005287.
[113] Wang Y, DeSilva A W, Goldenbaum G C, et al. Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure[J]. Journal of Geophysical Research:Atmospheres,1998,(103): 19 149-19 159.
[114] Carey L D, Bain A L, Matthee R.Kinematic and microphysical control of lightning in multicell convection over Alabama during DC3[C]∥5th International Conference on Lightning Meteorology, 2014.
[115] Bruning E C, MacGorman D R. Theory and observations of controls on lightning flash size spectra[J]. Journal of the Atmospheric Sciences, 2013,70(12): 4 012-4 029.
[116] Lang T J, Miller L J, Weisman M, et al. The severe thunderstorm electrification and precipitation study[J]. Bulletin of the American Meteorological Society, 2004,85(8): 1 107-1 125.
[117] Feng G, Qie X, Wang J, et al. Lightning and Doppler radar observations of a squall line system[J]. Atmospheric Research, 2009,91(2): 466-478.
[118] Qie X, Zhang T, Zhang G, et al. Electrical characteristics of thunderstorms in different plateau regions of China[J]. Atmospheric Research, 2009,91(2/4): 244-249.
[119] Zheng D, Zhang Y, Meng Q, et al. Lightning activity and electrical structure in a thunderstorm that continued for more than 24h[J]. Atmospheric Research, 2010,97(1/2): 241-256.
[120] Qie X, Zhang T, Chen C, et al. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J]. Geophysical Research Letters, 2005,32(5): L05814.
[121] Qie X, Kong X, Zhang G, et al. The possible charge structure of thunderstorm and lightning discharges in northeastern verge of Qinghai-Tibetan Plateau[J]. Atmospheric Research, 2005,76(1): 231-246.
[122] Zhang Y, Meng Q, Lu W,et al. Charge structures and cloud-to-ground lightning discharges characteristics in two supercell thunderstorms[J]. Chinese Science Bulletin, 2006,51(2): 198-212.
[123] Tessendorf S A, Rutledge S A, Wiens K C.Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS[J]. Monthly Weather Review, 2007,135(11): 3 682-3 706.
[124] Mansell E R, Ziegler C L, Bruning E C.Simulated electrification of a small thunderstorm with two-moment bulk microphysics[J]. Journal of the Atmospheric Sciences, 2010,67(1): 171-194.
[125] Tan Y, Tao S, Liang Z, et al. Numerical study on relationship between lightning types and distribution of space charge and electric potential[J]. Journal of Geophysical Research:Atmospheres, 2014,119(2): 1 003-1 014.
[126] Wang H, Guo F, Zhao T, et al. A numerical study of the positive cloud-to-ground flash from the forward flank of normal polarity thunderstorm[J]. Atmospheric Research, 2016,169: 183-190,doi:10.1016/j.atmosres.2015.10.011.
[1] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[2] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[3] 蓝永超,胡兴林,肖洪浪,林纾. 全球变暖情景下黑河山区水循环要素变化研究[J]. 地球科学进展, 2008, 23(7): 739-747.
阅读次数
全文


摘要