地球科学进展 ›› 2017, Vol. 32 ›› Issue (1): 34 -43. doi: 10.11867/j.issn.1001-8166.2017.01.0034

上一篇    下一篇

大气CO研究进展
田彪 1, 2( ), 丁明虎 1,,A; *( ), 孙维君 2, 汤洁 3, 王叶堂 2, 张通 1, 效存德 1, 张东启 1   
  1. 1.中国气象科学研究院气候系统研究所,北京 100081
    2.山东师范大学地理与环境学院,山东 济南 250014
    3.中国气象局气象探测中心,北京 100081
  • 收稿日期:2016-10-08 修回日期:2016-12-23 出版日期:2017-01-20
  • 通讯作者: 丁明虎 E-mail:tianbiao727@foxmail.com;dingminghu@foxmail.com
  • 基金资助:
    *国家自然科学基金杰出青年科学基金“极地冰冻圈”(编号:41425003);国家海洋局南北极环境综合考察与评估专项“大气、空间环境与天文观测专题”(编号:CHINARE2016-2020)资助.

Research Progress of Atmospheric Carbon Monoxide

Biao Tian 1, 2( ), Minghu Ding 1, *( ), Weijun Sun 2, Jie Tang 3, Yetang Wang 2, Tong Zhang 1, Cunde Xiao 1, Dongqi Zhang 1   

  1. 1.Institute of Climate System, Chinese Academy of Meteorological Sciences,Beijing 100081,China
    2.College of Geography and Environment,Shandong Normal University, Ji’nan 250014, China;
    3.Meteorological Observation Center, China Meteorological Administration,Beijing 100081,China
  • Received:2016-10-08 Revised:2016-12-23 Online:2017-01-20 Published:2017-01-10
  • Contact: Minghu Ding E-mail:tianbiao727@foxmail.com;dingminghu@foxmail.com
  • About author:

    First author:Tian Biao(1992-), male, Zibo City, Shandong Province, Master student. Research areas include polar atmospheric environment.E-mail:tianbiao727@foxmail.com

    Corresponding author:Ding Minghu(1983-), male, Jining City, Shandong Province, Associate professor. Research areas include polar meteorology.E-mail:dingminghu@foxmail.com

  • Supported by:
    Project supported by the National Science Foundation for Distinguished Young Scholars of China “The Polar cryosphere”(No. 41425003);Polar Specialties of the State Oceanic Administration “Atmosphere, space environment and astronomical observation”(No.CHINARE2016-2020).

当下大气CO的研究内容和关注焦点主要包括CO的大气化学特性、CO对气候环境的间接影响、环境污染监测及源汇研究、CO全球分布特点及传输变化规律等。为了更好地了解大气CO的研究现状,回顾了大量国内外研究成果,对大气CO的研究方法进行了初步总结,以期对未来加强我国三极地区大气CO观测和完善大气化学模式等方面提出合理建议。

Nowadays, researchers pay more attention to the atmospheric CO, which are including the chemical characteristics of atmospheric CO and its indirect effects on the climate, environment pollution monitoring, the source and sink, the distribution characteristics and change rules of its concentration and so on. In order to understand the research status well, we carried out a preliminary summary about the research methods of atmospheric CO based on the former research. The purpose of this study is to give some reasonable suggestions to improve the observation of the Polar Regions and the atmospheric chemical models.

中图分类号: 

图1 1750—2011年全球气候变化主要驱动因子的辐射强迫及其不确定性 [ 8 ]
图中给出的是全球平均辐射强迫估计值;净辐射强迫的最佳估计值用黑色菱形表示,并给出了相应的不确定性区间; 在右侧给出了各数值,包括净辐射强迫的信度水平
Fig.1 Forcing estimate associated with each forcing agent for the 1750-2011 period and uncertainty [ 8 ]
Estimates in the figure are the global averaged values of radiation forcing. The net impact of the individual contributions is shown by a diamond symbol and its uncertainty (5%~95% confidence range) is given by the horizontal error bar. The estimates and their qualitative level of confidence are also shown at the right side of the figure
图2 2008年8月份全球1°×1°网格下IASI, MOPITT, AIRS 和TES 遥感传感器CO柱浓度监测对比 [ 10 ]
Fig.2 Averaged IASI, MOPITT, AIRS and TES CO total column distributions, binned on a 1°×1° grid, for August 2008 [ 10 ]
表1 全球主要的三维大气传输模式
Table 1 Main global three-dimensional atmospheric transmission mode
[1] Thompson A M.The oxidizing capacity of the Earth’s atmosphere: Probable past and future changes[J]. Science, 1992, 256(5 060): 1 157-1 165.
[2] Daniel J S,Solomon S.On the climate forcing of carbon monoxide[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D11): 13 249-13 260.
[3] Dlugokencky E J, Dutton E G, Novelli P C, et al. Mardronich, changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux[J]. Geophysical Research Letters, 1996,23(20): 2 761-2 764.
[4] Frankenberg C, Bergamaschi P, Butz A, et al. Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT[J]. Geophysical Research Letters, 2008, 35(15): 105-116.
[5] Houweling S, Röckmann T, Aben I, et al. Atmospheric constraints on global emissions of methane from plants[J]. Geophysical Research Letters, 2006, 33(15): 161-177.
[6] Mckeen S A, Hsie E Y, Liu S C.A study of the dependence of rural ozone on ozone precursors in the Eastern United States[J]. Journal of Geophysical Research, 1991, 96(96): 15 377-15 394.
[7] Raub J A, Mathieunolf M, Hampson N B, et al. Carbon monoxide poisoning—A public health perspective.[J]. Toxicology, 2000, 145(1): 1-14.
[8] IPCC. Summary for policymakers[M]∥Climate Change 2013:The Phsical Science Basis. Contribution of Working Group to the fifth assessment report of the Intergov-ernmentai Panelon Climate Change.Cambridge & New York:Cambridge University Press, 2013.
[9] Chen Bin, Shi Xiaohui, Xu Xiangde, et al. Characteristics of troposphere-stratosphere transports over Asian monsoon region in summer based on Aura-MLS data[J]. Plateau Meteorology, 2011, 30(1): 65-73.
[陈斌, 施晓晖, 徐祥德,等. 利用卫星大气成分资料分析夏季亚洲季风区平流层—对流层输送特征[J]. 高原气象, 2011, 30(1): 65-73.]
[10] George M, Clerbaux C, Hurtmans D, et al. Carbon monoxide distributions from the IASI/METOP mission: Evaluation with other space-borne remote sensors[J]. Atmospheric Chemistry & Physics, 2009, 9(21): 9 793-9 822.
[11] Lu Yi, Zhang Wen, Li Tingting, et al. Progress in the simulation of the impacts of sources and sinks on the tempospatial variations ofthe atmospheric[J]. Advances in Earth Science,2015,30(7): 763-772.
[鲁易, 张稳, 李婷婷,等. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.]
[12] Zhou Lingxi, Tang Jie, Ernst M, et al. Continuous measurement of baseline atmospheric carbon monoxide in Western China[J]. Environmental Science, 2001, 22(3): 1-5.
[周凌晞, 汤洁, Ernst M,等. 中国西部本底大气中CO的连续测量[J]. 环境科学, 2001, 22(3): 1-5.]
[13] Olivier J G, Bouwman A F, Cw V D M, et al. Emission database for global atmospheric research (Edgar)[J]. Studies in Environmental Science, 1995, 65(1/2): 651-659.
[14] Aardenne J A V, Dentener F J, Olivier J G J, et al. A 1°×1° resolution data set of historical anthropogenic trace gas emissions for the period 1890-1990[J]. Global Biogeochemical Cycles, 2001, 15(4): 909-928.
[15] Guo Zupei.The pollution and monitoring of carbon monoxide[J]. Environmental Science and Technology, 2000, 91(3): 44-45.
[郭祖培. 一氧化碳的污染及检测[J]. 环境科学与技术, 2000, 91(3):44-45.]
[16] Yang Huanmei.Measuring method of carbon monoxide in the atmosphere[J]. Chemical Engineering of Oil & Gas, 1983,(2): 34-40.
[杨焕楣. 大气中一氧化碳的检测方法[J]. 石油与天然气化工, 1983,(2): 34-40.]
[17] Kopacz M, Jacob D J, Fisher J A, et al. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES)[J]. Atmospheric Chemistry & Physics, 2010, 10(3): 855-876.
[18] Gloudemans A M S, Krol M C, Meirink J F, et al. Evidence for long-range transport of carbon monoxide in the Southern Hemisphere from SCIAMACHY observations[J]. Geophysical Research Letters, 2006, 33(16): 271-284.
[19] Berntsen T K, Karlsdóttir S, Jaffe D A.Influence of Asian emissions on the composition of air reaching the north western United States[J]. Geophysical Research Letters, 1999, 26(14): 2 171-2 174.
[20] Bey I, Jacob D J, Logan J A, et al. Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D19): 23 097-23 113.
[21] Duncan B N, Bey I.A modeling study of the export pathways of pollution from Europe: Seasonal and interannual variations (1987-1997)[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D8): 17-29.
[22] Heald C L, Jacob D J, Fiore A M, et al. Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft and model perspective[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D24),doi:10.1029/2003JD003507.
[23] Jacob D J, Logan J A, Murti P P.Effect of rising Asian emissions on surface ozone in the United States[J]. Geophysical Research Letters, 1999, 26(14): 2 175-2 178.
[24] Liu J, Mauzerall D L, Horowitz L W.Analysis of seasonal and interannual variability in transpacific transport[J]. Journal of Geophysical Research Atmospheres, 2005, 110(4): 563-573.
[25] Roelofs G J, Lelieveld J, Smit H G J, et al. Ozone production and transports in the tropical Atlantic region during the biomass burning season[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1997, 102(9): 10 637-10 651.
[26] Wild O, Akimoto H.Intercontinental transport of ozone and its precursors in a three-dimensional global CTM[J]. Journal of Geophysical Research, 2001, 106(106): 27 729-27 744.
[27] Oliver W, Pakpong P, Hajime A.Trans-Eurasian transport of ozone and its precursors[J]. Journal of Geophysical Research Atmospheres, 2004, 109(11): 817-824.
[28] Velazco V, Wood S W, Sinnhuber M, et al. Annual variation of strato-mesospheric carbon monoxide measured by ground-based Fourier transform infrared spectrometry[J]. Atmospheric Chemistry & Physics, 2007, 7(5): 1 305-1 312.
[29] Ou-Yang C F, Lin N H, Lin C C, et al. Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia[J]. Atmospheric Environment, 2014, 89(2): 613-622.
[30] Edwards D P, Emmons L K, Hauglustaine D A, et al.Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability[J]. Journal of Geophysical Research Atmospheres, 2004, 109(24): 2 561-2 580.
[31] Henze D K, Hakami A, Seinfeld J H.Three years of global carbon monoxide from SCIAMACHY: Comparison with MOPITT and first results related to the detection of enhanced CO over cities[J]. Atmospheric Chemistry & Physics, 2007, 7(9): 405-428.
[32] Liu J, Drummond J R, Li Q, et al. Satellite mapping of CO emission from forest fires in Northwest America using MOPITT measurements[J]. Remote Sensing of Environment, 2005, 95(4): 502-516.
[33] Khlystova I, Buchwitz M, Burrows J P, et al. Carbon monoxide spatial gradients over source regions as observed by SCIAMACHY: A case study for the United Kingdom[J]. Advances in Space Research, 2009, 43(6): 923-929.
[34] Choi S D, Chang Y S.Carbon monoxide monitoring in Northeast Asia using MOPITT: Effects of biomass burning and regional pollution in April 2000[J]. Atmospheric Environment, 2006, 40(4): 686-697.
[35] Buchwitz M, Beek R D, L S N, et al. Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set[J]. Atmospheric Chemistry & Physics & Discussions, 2005, 5(2): 3 313-3 329.
[36] Ji Dongsheng, Sun Yang, Wang Yuesi, et al. An improved gas chromatography system for continuous measurement of atmospheric[J]. Chinese Journal of Environmental Engineering, 2008, 2(5): 669-674.
[吉东生,孙扬,王跃思,等.改进GC/FID法连续观测大气中 CO浓度[J].环境工程学报,2008,2(5): 669-674.]
[37] Jin Saihua, Fan Shuxian, Wang Zifa, et al. The variation characteristics of surface ozone concentration at Waliguan in Qinghai[J]. China Environmental Science, 2008, 28(3): 198-202.
[金赛花, 樊曙先, 王自发,等. 青海瓦里关地面臭氧浓度的变化特征[J]. 中国环境科学, 2008, 28(3):198-202.]
[38] Yu Dajiang, Wu Yanling, Song Qingli, et al. Environmental characteristics and its observations at Longfengshan WMO regional atmospheric background station[J]. Climate Change Research Letters, 2012, (1): 65-73.
[于大江, 吴艳玲, 宋庆利,等. 龙凤山区域大气本底站站址特征及其观测资料[J]. 气候变化研究快报, 2012, (1): 65-73.]
[39] Fang Shuangxi,Zhou Lingxi,Luan Tian, et al. Distribution of CO at Lin’an Station in Zhejiang Province[J]. Environmental Science, 2014, 35(7): 2 454-2 459.
[方双喜, 周凌晞, 栾天,等. 浙江临安大气本底站CO浓度及变化特征[J]. 环境科学, 2014, 35(7): 2 454-2 459.]
[40] Liu Cheng, Bai Wenguang, Zhang Peng, et al. The inverse method of carbon monoxide from satellite measurement and the result analysis[J]. Acta Physica Sinica, 2013, 62(3), doi:10.7498/aps.62.030704.
[刘诚, 白文广, 张鹏,等. 基于卫星平台的全球大气一氧化碳柱浓度反演方法及结果分析[J]. 物理学报, 2013, 62(3), doi:10.7498/aps.62.030704.]
[41] Peng L, Zhao C, Lin Y, et al. Analysis of carbon monoxide budget in North China.[J]. Chemosphere, 2007, 66(8): 1 383-1 389.
[42] Zhao Chunsheng, Fang Yuanyuan, Tang Jie, et al. Distribution of carbon monoxide from MOPITT of 2000-2004 and comparisons with Surface measurements in Mt.Waliguan station[J]. Journal of Applied Meteorological Science, 2007, 18(1): 36-41.
[赵春生,方圆圆,汤洁,等.MOPITT观测的CO分布规律及与瓦里关地面观测结果的比较[J].应用气象学报,2007, 18(1): 36-41.]
[43] Shi Lin.Study of Characteristics of Carbon Monoxide Distribution in Great Xing’an Mountain[D]. Hohhot: Inner Mongolia Agricultural University,2008.
[石麟. 大兴安岭林区一氧化碳浓度分布特征研究[D].呼和浩特:内蒙古农业大学,2008.]
[44] Isabelle B, Jacob D J, Yantosca R M, et al. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation[J]. Journal of Geophysical Research, 2001, 106(D19): 23 073-23 095.
[45] Duncan B N, Bey I.A modeling study of the export pathways of pollution from Europe: Seasonal and interannual variations (1987-1997)[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D8): 17-29.
[46] Heald C L, Jacob D J, Fiore A M, et al. Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft and model perspective[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D24),doi:10.1029/2003JD003507.
[47] Zhang Renjian, Wang Mingxing.Numerical simulations on the change of atmospheric carbon monoxide[J]. Chinese Journal of Atmospheric Sciences, 2001,25(6): 847-855.
[张仁健,王明星.大气中一氧化碳浓度变化的模拟研究[J].大气科学,2001,25(6): 847-855.]
[48] Liu Q X, Physics I O A, Sciences C A O, et al. A simulation study of Tropospheric Ozone over Europe with MOZART-2[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(2): 221-230.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[7] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[8] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[9] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要