地球科学进展 ›› 2011, Vol. 26 ›› Issue (7): 724 -730. doi: 10.11867/j.issn.1001-8166.2011.07.0724

综述与评述 上一篇    下一篇

近地表气温遥感反演研究进展
祝善友,张桂欣   
  1. 南京信息工程大学遥感学院,江苏南京210044
  • 收稿日期:2010-10-18 修回日期:2011-04-16 出版日期:2011-07-10
  • 通讯作者: 祝善友 E-mail:zsyzgx@163.com
  • 基金资助:

    国家自然科学基金青年科学基金项目“基于多源遥感数据的晴空下近地表气温时空分布反演研究”(编号:41001289);江苏省高校自然科学基础研究面上项目“苏锡常地区下垫面格局演变及其局地热环境效应研究”(编号:09KJB170002)资助.

Progress in Near Surface Air Temperature Retrieved by Remote Sensing Technology

Zhu Shanyou, Zhang Guixin   

  1. School of Remote Sensing, Nanjing University of Information Science & Technology, Nanjing210044, China
  • Received:2010-10-18 Revised:2011-04-16 Online:2011-07-10 Published:2011-07-10

高时间分辨率的近地表气温空间分布数据是许多陆面过程模型中非常重要的输入参数之一。在常规气象观测站点稀少或没有的情况下,利用遥感技术进行较高时空分辨率的近地表气温估算与反演,在理论方法与业务实践上都具有重要研究意义。根据地表能量平衡与辐射平衡原理,在气温遥感反演物理机制分析的基础上,总结了国内外近年来气温遥感反演的研究进展,主要方法可归纳为5类:单因子统计方法、多因子统计方法、神经网络方法、地表温度—植被指数方法和地表能量平衡方法,并从遥感反演气温的时空分辨率、反演模型中影响因子的考虑、模型的可移植性与实用性角度,讨论了已有研究方法中存在的困难与问题,最后对未来可能的研究方向做出了展望。

 Spatially distributed near surface air temperature data with high temporal resolution is a very important input parameter for several land surface models. Such data are often lacking because there are few traditional meteorological stations. It is of great significance in both theoretical research and practical applications to retrieve air temperature data from remote sensing observations. According to the surface energy balance and the radiance balance theories, the paper summarizes the retrieval methods of near surface air temperature from remote sensing images based on analysis of physical mechanism. The main methods are as follows: ① Single factor statistical method. It builds a relation model between bright temperature of thermal infrared channels or land surface temperature and land surface air temperature. ② Multiple factors statistical method. In relation models, at least two influence parameters are included to retrieve land surface air temperature by multiple regression analysis. ③ Artificial neural network method. Using multiple influence parameters as the input and the air temperature as the output, artificial neural network models are trained and then built to retrieve air temperature. ④ Temperature-vegetation index method. The approach is based on the hypothesis that vegetation canopy temperature approximates near surface air temperature and regression parameters used to compute air temperature are determined within a moving window around a location. ⑤ Surface energy balance methods. On the basis of physical approach, the air temperature is derived after calculation or measurement of the needed parameters for the energy balance equation. And then problems within air temperature retrieval are discussed in terms of spatial-temporal resolution, influence factors as well as models portability and utility considered. Finally the probable research fields in the future are proposed.

中图分类号: 

[1]Qi Shuhua, Wang Junbang, Zhang Qingyuan, et al. Study on the estimation of air temperature from MODIS data[J]. Journal of Remote Sensing,2005,9(5): 570-575.[齐述华,王军邦,张庆员,等.利用MODIS遥感影像获取近地层气温的方法研究[J].遥感学报,2005,9(5): 570-575].
[2]Cresswell M P, Morse A P, Thomson M C, et al. Estimating surface air temperature from meteosat land surface temperature using an empirical solar zenith angle model[J].International Journal of Remote Sensing, 1999, 20(6):1 125-1 132.
[3]Mao K B, Tang H J, Wang X F, et al. Near-surface air temperature estimation from ASTER data based on neural network algorithm[J]. International Journal of Remote Sensing,2008, 29(20): 6 021-6 028.
[4]Zhao Yingshi.Analysis Theory and Method of Remote Sensing Application[M]. Beijing: Science Press,2004.[赵应时.遥感应用分析原理与方法[M]. 北京:科学出版社,2004].
[5]Chen E, Allen Jr L H, Bartholic J F, et al. Comparison of winter nocturnal geostationary satellite infrared surface temperature with shelter height temperature in Florida[J]. Remote Sensing of Environment,1983, 13(4): 313-327.
[6]Davis F A, Tarpley J D. Estimation of shelter temperatures from operational satellite sounder data[J]. Journal of Applied Meteorology,1983, 22(3):369-376.
[7]Shigeto K, Tomoyuki I, Minomura M, et al. Relations between surface temperature and air temperature on a local scale during winter nights[J].Journal of Applied Meteorology and Climatology,2000, 39:1 570-1 579.
[8]Zhang Min, Zhang Rongxia, Wang Xinyan. Correlative analysis of surface temperature and air temperature in Liaocheng city[J]. Journal of Shandong Meteorology,2005,25(4):19-20.[张敏,张荣霞,王新燕. 聊城市地面温度与气温的相关分析[J].山东气象,2005,25(4):19-20].
[9]Ben Dor E, Saaroni H. Airborne video thermal radiometry as a tool for monitoring microscale structures of the urban heat island[J]. International Journal of Remote Sensing,1997,18(14): 3 039-3 053.
[10]Zhou Hongmei, Zhou Chenghu, Ge Weiqiang, et al. The surveying on thermal distribution in urban based on GIS and remote sensing[J]. Acta Geographica Sinica, 2001,56(2):189-197.[周红妹,周成虎,葛伟强,等.基于遥感和GIS的城市热场分布规律研究[J].地理学报,2001,56(2): 189-197].
[11]Liu Yun,Yu Zhenrong,Sun Danfeng, et al. Difference of canopy-air temperature of winter wheat and its affecting factor[J]. Transactions of the CSAE,2004, 20(3):63-69. [刘云,宇振荣,孙丹峰,等. 冬小麦冠气温差及其影响因子研究[J].农业工程学报,2004, 20(3):63-69].
[12]Florio E N, Lele S R, Chang Y C, et al. Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: A statistical approach[J]. International Journal of Remote Sensing,2004,25(15): 2 979-2 994.
[13]Zhao Chuanyan, Nan Zhongren, Cheng Guodong. Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China[J]. Ecological Modelling, 2005,189: 209-220.
[14]Cristobal J, Ninyerola M, Pons X, et al. Improving air temperature modelization by means of remote sensing variables[J].IEEE International Geoscience and Remote Sensing Symposium, 2006, 5:2 251-2 254.
[15]Wang Chunzhi, Yu Zhenrong, Sun Danfeng, et al. Analysis on the factors affecting summer maize canopy-air temperature difference[J]. Chinese Journal of Soil Science, 2006,37(4):651-658.[王纯枝,宇振荣,孙丹峰,等. 夏玉米冠气温差及其影响因素关系探析[J]. 土壤通报, 2006,37(4):651-658].
[16]Bai Jian, Zhang Yong. Regressive model of air temperature spatial distribution and its monthly change features in Sichuan province[J]. Journal of Sichuan Meteorology,2006,2:17-18.[柏建,张勇. 四川省气温空间分布回归模型及月变化特征分析[J]. 四川气象,2006,2:17-18].
[17]Yang Xin, Tang Guoan, Xiao Chenchao, et al. Terrain revised model for air temperature in mountainous area based on DEMs: A case study in Yaoxian county[J]. Journal of Geographical Sciences,2007, 17(4):399-408.
[18]Cheng K E, Su Y F, Kuo F T, et al. Assessing the effect of landcover changes on air temperature using remote sensing images—A pilot study in northern Taiwan[J]. Landscape and Urban Planning, 2008, 85(2): 85-96.
[19]Zhu Shanyou. Study on Application of Multi-sources Remote Sensing Information Used in Monitoring Urban Thermal Fields[D]. Shanghai: Shanghai Institute of Technical Physics, CAS,2006.[祝善友.多源遥感信息在城市热场监测中的应用研究[D].上海:中国科学院上海技术物理研究所, 2006].
[20]Zhu Shanyou, Zhang Guixin, Yin Qiu, et al. The study on the retrieval of the air temperature based on multi-sources polar orbit meteorological satellite data[J]. Remote Sensing Technology and Application, 2009,24(1): 27-31.[祝善友, 张桂欣,尹球,等. 基于多源极轨气象卫星热红外数据的近地表气温反演研究[J]. 遥感技术与应用, 2009,24(1): 27-31.]
[21]Jang J D, Viau A A. Neural network estimation of air temperatures from AVHRR data[J]. International Journal of Remote Sensing,2004, 25(21):4 541-4 554.
[22]Zhao Dengzhong, Zhang Wanchang,Xu Shijin. A neural network algorithm to retrieve nearsurface air temperature from landsat ETM+ imagery over the Hanjiang River Basin China[C]The 2007 International Geoscience and Remote Sensing Symposium. Barcelona, Spain, 2007:1 705-1 708.
[23]Tian Miao, Wang Pengxin, Sun Wei. A review of retrieving of land surface parameters using the land surface temperature-vegetation index feature space[J].Advances in Earth Science,2010, 25(7):698-704.[田苗,王鹏新,孙威. 基于地表温度与植被指数特征空间反演地表参数的研究进展[J].地球科学进展,2010, 25(7):698-704.]
[24]Prince S D, Goetz S J, Dubayah R O, et al. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using advanced very high-resolution radiometer satellite observations: Comparison with field observations[J]. Journal of Hydrology,1998,(212/213):230-249.
[25]Prihodko L, Goward S N. Estimation of air temperature from remotely sensed surface observations[J].Remote Sensing of Environment, 1997, 60(3): 335-346.
[26]Lakshmi V, Czajkowski K,Dubayah R, et al. Land surface air temperature mapping using TOVS and AVHRR[J]. International Journal of Remote Sensing, 2001, 22(4): 643-662.
[27]Stisen S, Sandholt I, Norgaard A, et al. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa[J]. Remote Sensing of Environment,2007, 110: 262-274.
[28]Pape R, Loffler J. Modelling spatio-temporal near-surface temperature variation in high mountain landscapes[J]. Ecological Modelling,2004,178(3/4): 483-501.
[29]Sun Y J, Wang J F, Zhang R H, et al. Air temperature retrieval from remote sensing data based on thermodynamics[J].Theoretical Applied Climatology,2005, 80: 37-48.
[30]Klemen Z, Marion S H. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2009, 64(4): 414-421.

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[9] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[10] 孙小荣,张书毕,吴继忠,郑南山. 基于 SNRGPS-IR技术机理分析[J]. 地球科学进展, 2019, 34(2): 156-163.
[11] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[12] 郭恺. 基于局部层析的 TTI各向异性参数初始建模方法研究[J]. 地球科学进展, 2019, 34(10): 1060-1068.
[13] 冯旭亮. 空间域密度界面反演方法及其进展[J]. 地球科学进展, 2019, 34(1): 57-71.
[14] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[15] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
阅读次数
全文


摘要