地球科学进展 ›› 2011, Vol. 26 ›› Issue (7): 731 -740. doi: 10.11867/j.issn.1001-8166.2011.07.0731

综述与评述 上一篇    下一篇

陆地水体参数的卫星遥感反演研究进展
宋平 1,2, 刘元波 1*, 刘燕春 1
  
  1. 1.中国科学院南京地理与湖泊研究所,江苏南京210008;2. 中国科学院研究生院,北京100049
  • 收稿日期:2010-12-31 修回日期:2011-04-25 出版日期:2011-07-10
  • 通讯作者: 刘元波(1969-),男,山东济宁人,研究员,主要从事水文遥感研究. E-mail:ybliu@niglas.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“鄱阳湖流域气候—水文—物质输移过程与湖泊水安全研究”(编号:KZCX2-YW-337)资助.

Advances in Satellite Retrieval of Terrestrial Surface Water Parameters

Song Ping 1,2, Liu Yuanbo 1, Liu Yanchun 1   

  1. 1.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing210008,China;
    2.Graduate University of Chinese Academy of Sciences, Beijing100049, China
  • Received:2010-12-31 Revised:2011-04-25 Online:2011-07-10 Published:2011-07-10

以江河、湖泊与湿地等形式存在的陆地水体对气候变化和人类生产生活有着重要影响,准确掌握陆地水体参数的变化对全面理解地球水循环及有效管理水资源等具有重大意义,卫星遥感技术的迅速发展为陆地水体的动态监测带来广阔前景。围绕陆地水体的重要物理参数,回顾了基于卫星遥感来提取水域面积的光学遥感法、雷达遥感法和水域面积—水位关系法,获取水位的高度计法和遥感影像法,反演水深的统计相关法和神经网络法,估算蓄水量的水域面积—水位法和GRACE卫星法,以及估算径流量的经验关系法和曼宁公式法等。以反演精度为重点,总结分析了现有水体参数遥感反演方法的优缺点。针对目前存在的卫星分辨率、观测同步性和下垫面复杂性等问题,指出新一代卫星(如ICEsat-2,SWOT)以及多卫星联合反演方法将显著地提升人们监测陆地水体时空动态变化的能力。

Terrestrial water, in forms of rivers, lakes and wetlands, is essential to life on the Earth. Accurate monitoring of its spatial and temporal dynamics is important towards comprehensive understanding of global water cycle and effective management of water resources. Remote sensing offers great potential to measure terrestrial water from space in a broad scale. This paper provides a survey of approaches to retrieve the physical parameters of terrestrial water. Water surface area can be delineated from the optics, the radar, or the area-stage relationship-based approaches. Water stage can be retrieved from the satellite altimetry or the imagery approaches. Water depth is retrievable from the statistics-or the artificial neural networks (ANN)-based approaches. Water storage can be estimated with the area, stage and digital elevation model (DEM) data, or the Gravity Recovery and Climate Experiment'(GRACE)-based approaches. River discharge can be estimated from the empirical relationship between discharge and a hydraulic variable, or estimated based on the Manning equation.With attention to retrieval accuracy, the paper addresses the advantages and disadvantages of the approaches. There remain challenging issues in satellite resolution, simultaneous observation, and surface complexity. New generation satellites, such as the Ice, Cloud, and land Elevation Satellite (ICEsat)-2 and the Surface Water Ocean Topography (SWOT), and multi-satellite-combined retrieval approaches will greatly improve our ability in monitoring spatio-temporal dynamics of terrestrial water.

中图分类号: 

[1]Frappart F, Seyler F, Martinez J M, et al. Floodplain water storage in the Negro River Basin estimated from microwave remote sensing of inundation area and water levels[J]. Remote Sensing of Environment,2005, 99(4):387-399.
[2]Alsdorf D E, Lettenmaier D P. Tracking fresh water from space[J].Science,2003, 301:1 491-1 494.
[3]Papa F, Prigent C, Aires F, et al. Interannual variability of surface water extent at the global scale 1993-2004[J].Journal of Geophysical Research D (Atmospheres),2010, 115:D12111.
[4]Xavier L, Becker M, Cazenave A, et al. Interannual variability in water storage over 2003-2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data[J].Remote Sensing of Environment,2010, 114:1 629-1 437. 
[5]Hallberg G R, Hoyer B E, Rango A. Application of ERTS-1 Imagery to Flood Inundation Mapping[Z].NASA Special Publication No.327,1973, 1:745-753.
[6]Morrison R B, Cooley M E. Assessment of flood damage in Arizona by means of ERTS-1 imagery[J].Symposium on Significant Results Obtained from the Earth Resources Satellite-1,1973,1:755-760.
[7]Yang Cunjian, Xu Mei, Huang Chaoyong, et al. Approaches of water extraction based on remote sensing[J].Geology Research,1998,17:86-89.[杨存建, 徐美, 黄朝永,等. 遥感信息机理的水体提取方法的探讨[J]. 地理研究, 1998,17:86-89.]
[8]Zhao Yingshi. The Principle & Method of Analysis of Remote Sensing Application[M]. Beijing: Sciense and Technology Press, 2003:414-419.[赵英时. 遥感应用分析原理与方法[M]. 北京:科技出版社, 2003:414-419.]
[9]Imhoff M L, Vermillion C, Story M H,et al. Monsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data[J].Photogrammetric Engineering and Remote Sensing,1987, 53(4):405-413.
[10]Dechka J A, Franklin S E, Watmough M D,et al. Classification of wetland habitat and vegetation communities using multitemporal Ikonos imagery in southern Saskatchewan[J].Canadian Journal of Remote Sensing,2002, 28(5):679-685.
[11]Munyati C. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset[J].International Journal of Remote Sensing,2000, 21(9): 1 787-1 806.
[12]Zhao S, Fang J, Miao S,et al. The 7-decade degradation of a large freshwater lake in central Yangtze River, China[J].Environmental Science &  Technology, 2005, 39(2):431-436.
[13]Birkett C M, Mertes L A K, Dunne T, et al. Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry[J].Journal of  Geophysical Research, 2002, 107:D20.
[14]Frazier P S, Page K J. Water body detection and delineation with Landsat TM data[J].Photogrammetric Engineering and Remote Sensing,2000, 66(12):1 461-1 468.
[15]Jain S K, Singh R D, Jain M K,et al. Delineation of floodprone areas using remote sensing techniques[J].Water Resources Management,2005, 19(4):333-347.
[16]Yan Meichun. Extraction of information about water area change in Nanjing city in the pase ten years on TM data[J].Water Resources Protection,2001,119(6):31-33.[颜梅春. 基于TM数据的水域变化信息提取研究[J]. 水资源保护, 2001,119(6):31-33.]
[17]McFeeters S K. The use of the Normalized Difference Water Index(NDWI) in the delineation of open water features[J].International Journal of Remote Sensing, 1996, 17(7): 1 425-1 432.
[18]Xu Hanqiu. A study on information extraction of water body with the Modified Normalized Difference Water Index(MNDWI)[J].Journal of Remote Sensing,2005, 9(5):589-595.[徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.]
[19]Hui F, Xu B, Huang H,et al. Modeling spatialtemporal change of Poyang Lake using multi-temporal Landsat imagery[J].International Journal of Remote Sensing,2008, 29(20):5 767-5 784.
[20]Birkett C M. Synergistic remote sensing of Lake Chad: Variability of basin inundation[J].Remote Sensing of Environment,2000,72(2):218-236.
[21]Ke Changqing. A review of monitoring lake environment change by means of remote sensing[J].Transactions of Oceanology & Limnology,2004, 4:81-86.[柯长青. 湖泊遥感研究进展[J]. 海洋湖沼通报, 2004, 4:81-86.]
[22]Li Xinguo, Jiang Nan, Zhu Xiaohua,et al. Study of lake surface area change of major lakes in the Taihu Basin during the past 30 years[J].Transactions of Oceanology & Limnology,2006,4:17-24.[李新国, 江南, 朱晓华,等. 近30年来太湖流域主要湖泊的水域变化研究[J]. 海洋湖沼通报, 2006,4:17-24.]
[23]Li Hui, Li Chang′an, Zhang Lihua, et al. Relationship between water level and water area in Poyang Lake based on MODIS image[J].Quaternary Sciences, 2008, 28(2):332-337.[李辉, 李长安, 张利华,等.基于MODIS影像的鄱阳湖湖面积与水位关系研究[J]. 第四纪研究, 2008, 28(2):332-337.]
[24]Yu Xueying, Jiang Nan, Tang Junyou. The extraction of lake information from image of HT-1 microsatellite[J].Remote Sensing for Land & Resource,2002,3 (53):62-64.[于雪英, 江南, 汤君友. “航天清华一号”微小卫星影像湖泊信息提取——以艾比湖为例[J]. 国土资源遥感, 2002,3(53):62-64.]
[25]Zhu Dagang, Meng Xian′gang, Zheng Daxing, et al. Changes of rivers and lakes on the Qinghai-Tibet Plateau in the past 25 years and their influence factors[J].Geological Bulletin of China,2007,26 (1):22-30.[朱大岗, 孟宪刚, 郑达兴,等. 青藏高原近25年来河流、湖泊的变迁及其影响因素[J]. 地质通报, 2007,26 (1):22-30.]
[26]Guo Yuedong, He Yanfen. The dynamics of wetland landscape and its driving forces in Songmen Plain[J]. Wetland Science,2005, 3 (1): 54-59.[郭跃东, 何艳芬. 松嫩平原湿地动态变化及其驱动力研究[J]. 湿地科学, 2005, 3(1):54-59.]
[27]Li Jingjing, Jia Jianhua, Hao Jingyan. The extraction and dynamic analysis of Da`an group lakes area in Songnen Plain based on remote sensing[J].Remote Sensing Application,2009,3:44-49.[李晶晶, 贾建华, 郝景研.基于RS的松嫩平原大安湖泊群面积提取与动态变化分析[J]. 遥感应用, 2009,3:44-49.]
[28]Han Fang, Li Xinghua, Gao Layun. The dynamic characteristics of dalinuoer wetland in Inner Mongolia based on remote sensing[J].Journal of Inner Mongolia Agricultural University,2007,28(1):74-78.[韩芳, 李兴华, 高拉运. 内蒙古达里诺尔湖泊湿地动态的遥感监测[J]. 内蒙古农业大学学报, 2007,28(1):74-78.]
[29]Ma Mingguo, Song Yi, Wang Xuemei. Dynamically monitoring the lake group in Ruoqiang country, Xinjiang region[J].Journal of Glaciology & Geocryology,2008,30(2):189-195.[马明国, 宋怡, 王雪梅. 1973—2006年新疆若羌湖泊群遥感动态监测研究[J]. 冰川冻土, 2008,30(2):189-195.]
[30]Xing Wenyuan, Xiao Jidong, Sha Yiran, et al. Remote sensed monitoring of lake dynamic change based on MODIS image[J].Pratacultural Science,2009, 26(7):28-31.[刑文渊, 肖继东, 沙依然,等. 基于MODIS影像的湖泊动态变化遥感监测——以巴里坤湖为例[J]. 草业科学, 2009, 26(7):28-31.]
[31]Wu Yanhong, Zhu Liping, Ye Qinghua, et al. The response of LakeGlacier area change to climate variations in Namco Basin, Central Tibetan Plateau[J].Acta Geographica Sinica,2007,62(3):301-311.[吴艳红, 朱立平, 叶庆华,等. 纳木错流域近30年来湖泊—冰川变化对气候的响应[J]. 地理学报, 2007,62(3):301-311.]
[32]Yao Yonghui, Wang Xiaoqin, Zhou Chenghu, et al. Changes of Manas Lake in the past 50 years in Xinjiang province[J].Advances in Water Science,2007, 18(1):17-23.[姚永慧,汪小钦,周成虎,等.新疆玛纳斯湖近50年来的变迁[J]. 水科学进展, 2007, 18(1):17-23.]
[33]Niu Yifang, Li Caixing, Xi Xiaohuan, et al. Plateau lake variation monitored by satellite remote sensing and the relation to climate change[J].Arid Land Geography,2008, 31(2):284-290.[牛沂芳, 李才兴, 习晓环,等.卫星遥感监测高原湖泊水面变化及与气候变化的分析[J]. 干旱区地理, 2008, 31(2):284-290.]
[34]Mertes L A K, Daniel D L, Melack J M, et al. Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon River in Brazil from a remote sensing perspective[J].Geomorphology, 1995, 13:215-232.
[35]Smith L C.Satellite remote sensing of river inundation area, stage, and discharge: A review[J]. Hydrological Processes,1997, 11(10):1 427-1 439.
[36]Ding Lidong, Yu Wenhua, Qin Zhihao,et al. The mapping of flood remote sensing image based on MODIS in Poyang Lake region[J].Remote Sensing for Land & Resources, 2007,1:82-85.[丁莉东, 余文华, 覃志豪,等. 基于MODIS的鄱阳湖区水体水灾遥感影像图制作[J]. 国土资源遥感, 2007,1:82-85.]
[37]Xu Xiaohua, Zhang Weiqi, Hu Qiang. Monitoring the area of Poyang Lake based on MODIS remote sensing data[J].Jiangxi Hydraulic Science & Technology, 2008,34(5):256-258.[许小华, 张维奇, 胡强. 基于MODIS的鄱阳湖湖面面积遥感监测研究[J]. 江西水利科技, 2008,34(5):256-258.]
[38]Zhou Qingli, Qiao Lihu. Extracting and mapping of water body based on MODIS data[J].Technology & Economy in Areas of Communications,2008, 1(45):60-62.[周庆礼, 乔立湖. 基于MODIS遥感资料的水体提取与制图研究[J]. 交通科技与经济,2008, 1(45):60-62.]
[39]Wang Sumin, Dou Hongshen. China Lakes Chorography[M]. Beijing: Science Press, 2003:414-415.[王苏民, 窦鸿身. 中国湖泊志[M]. 北京:科技出版社,2003:414-415.]
[40]Yang Cunjian, Zhou Chenghu. Application of complementary information of RADARSAT SWA SAR and Landsat TM in deciding the flood extent[J].Journal of Natural Disasters, 2001, 10(2):79-83.[杨存建,周成虎.利用RADARSAT SWA SAR和LANDSAT TM的互补信息确定洪水水体范围[J].自然灾害学报,2001,10(2):79-83.]
[41]Tan Qulin, Liu Zhengjun, Hu Jiping, et al. Measuring lake water level using multi-source remote sensing images combined with hydrological statistical data[J].Journal of Beijing Jiaotong University,2006,30(4):26-30.[谭衢林, 刘正军,胡吉平,等. 应用多源遥感影像提取鄱阳湖形态参数[J]. 北京交通大学学报, 2006,30(4):26-30.]
[42]Liao Jingjuan, Shen Guozhuang. Change detection of inundation extent of Poyang Lake wetland using multipolarized SAR images[J].Remote Sensing Technology & Application,2008, 23(4):373-376.[廖静娟, 沈国状. 基于多极化SAR图像的鄱阳湖湿地地表淹没状况动态变化分析[J]. 遥感技术与应用,2008, 23(4):373-376.]
[43]LI J R, Herve Y, Rita  M,et al. Near time exploitation of ENVISAT for flood monitoring in P.R.China during the 2005, 2006 and 2007 rainning and typhones seasons[C]Lacoste H, Ouwehand L, eds.Proceedings Dragon 1 Programme Final Results 2004-2007.European Space Agency: ESA Communication Production Office,2008:ID2551.
[44]Smith L C, Alsdorf D E. Control on sediment and organic carbon delivery to the Arctic Ocean revealed with spaceborne synthetic aperture radar: Ob'River, Siberia[J]. Geology,1998, 26(5):395.
[45]Alsdorf D E, Rodraguez E, Lettenmaier D P. Measuring surface water from space[J].Reviews of Geophysics,2007, 45(2):RG2002.
[46]Peng Dingzhi, Guo Shenglian, Huang Yufang, et al. Flood disaster monitoring and assessing system based on MODIS and GIS[J]. Engineering Journal of Wuhan University,2004, 37(4):7-10.[彭定志, 郭生练, 黄玉芳,等.基于MODIS和GIS的洪水监测评估系统[J]. 武汉大学学报,2004,37(4):7-10.]
[47]Huang Shu′e, Zhong Maosheng. Study of water flooding model of Poyang Lake based on basin precipitation[J].Journal of Applied Meteorological Science,2004,15(4):494-499.[黄淑娥,钟茂生.鄱阳湖水体淹没模型研究[J].应用气象学报,2004,15(4):494-499.]
[48]Yi Yonghong, Chen Xiuwan, Wu Huan. An algorithm for inundated depth calculation of flood based on remotely sensed data[J].Geography & GeoInformation Science,2005, 21(3):26-29.[易永红, 陈秀万, 吴欢. 基于遥感信息的淹没水深算法研究[J]. 地理与地理信息科学,2005, 21(3):26-29.]
[49]da Silva J S, Calmant S, Seyler F, et al. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions[J].Remote Sensing of Environment,2010, 114(10):2 160-2 181.
[50]Frappart F, Papa F, Famiglietti S, et al. Interannual variations of river water storage from a multisatellite approach: A case study for the Rio Negro River Basin[J].Journal of Geophysical Research D (Atmospheres),2008, 113:D21104.
[51]Chu Yonghai, Li Jiancheng, Jiang Weiping, et al. Monitoring of water level variations of Hulun Lake with Jason-1 Altimetric data[J].Journal of Geodesy & Geodynamics,2005,25(4):11-16.[褚永海, 李建成, 姜卫平,等. 利用Jason-1数据监测呼伦湖水位变化[J]. 大地测量与地球动力学, 2005,25(4):11-16.]
[52]Li Jiancheng, Chu Yonghai, Jiang Weiping, et al. Monitoring level fluctuation of lakes in Yangtze River Basin by altimetry[J].Geomatics & Information Science of Wuhan University,2007, 32(2):144-147.[李建成, 褚永海, 姜卫平,等. 利用卫星测高资料监测长江中下游湖泊水位变化[J]. 武汉大学学报,2007, 32(2):144-147.]
[53]Jiang Weiping, Chu Yonghai, Li Jiancheng, et al. Water level variation on Qinghai Lake from altimeteric data[J]. Geomatics & Information Science of Wuhan University,2008, 33(1):64-67.[姜卫平, 褚永海, 李建成,等. 利用ENVISAT测高数据监测青海湖水位变化[J]. 武汉大学学报, 2008, 33(1):64-67.]
[54]Frappart F, Do Minh K, L'Hermitte J,et al. Water volume change in the lower Mekong from satellite altimetry and imagery data[J].Geophysical Journal International,2006, 167(2):570-584.
[55]Swenson S, Wahr J. Monitoring the water balance of Lake Victoria, East Africa, from space[J].Journal of Hydrology,2009, 370:163-176.
[56]Abshire J B, Sun X L, Riris H, et al. Geoscience Laser Altimeter System(GLAS) on the ICES at Mission: On-orbit Measurement performance[J]. Geophysical Research Letters,2005, 32:L21S02.[57]Zhang G Q, Xie H J, Kang S C,et al, Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)[J].Remote Sensing of Environment,2011, 32(7):1 733-1 742.
[58]Brakenridge G R, Nghiem S V, Anderson E, et al. Space-based measurement of river runoff[J]. EOS,2005, 6(19):185-188.
[59]Qi Shuhua, Gong Jun, Shu Xiaobo, et al. Study on inundation extent, water depth and storage capacity of Poyang Lake by RS[J].Yangtze River,2010, 41(9):35-38.[齐述华, 龚俊, 舒晓波,等. 鄱阳湖淹没范围、水深和库容的遥感研究[J].人民长江, 2010, 41(9):35-38.]
[60]Rodriguez E, Morris C S, Belz J E. A global assessment of the SRTM performance[J].Photogrammetric Engineering and Remote Sensing,2006, 72(3):249-260.
[61]Wei Li,Yin Jianmin,Wang Baosheng,et al.Study on relative models between meteorological conditions water levels and water area in Poyang Lake region[J].Acta Agricultural Universities Jiangxiensis,1999,21(2):242-244.[魏丽,殷剑敏,王保生.气象条件、湖口水位与鄱阳湖主体及附近水域面积关系模型的研究及应用[J].江西农业大学学报,1999,21(2):242-244.]
[62]Ding Lidong. Study on the water level estimation of Poyang Lake region baded on MODIS remote sensing data[J].Journal of Anhui Agricultural Sciences,2008, 36(2):825-826.[丁莉东. 基于MODIS的鄱阳湖区水位遥感估算研究[J]. 安徽农业科学, 2008, 36(2):825-826.]
[63]Flener C, Lotsari E, Alho P, et al. Comparision of empirical and theoretical remote sensing based bathymetry models in river environments[J].River Research Applications,2010, doi:10.1002/rra.1441.
[64]Zhang Ying, Zhang Dong, Wang Yanjiao, et al. Study of remote sensingbased bathymetric method in sandcontaining water bodies[J].Acta Oceanologica Sinica,2008, 30(1):51-57.[张鹰,张东,王艳姣,等. 含沙水体水深遥感方法的研究[J].海洋学报,2008, 30(1):51-57.]
[65]Sandidge J C, Holyer R J. Coastal bathymetry from hyperspectral observations of water radiance[J].Remote Sensing of Environment,1998, 65(3):341-352.
[66]Sun Tao, Pang Zhiguo, Pan Shibing, et al. Study on water depth in Ertan Reservoir area based on ETM remote sensing images[J].Geography & Geo-Information Science,2010, 26(4):64-66.[孙涛, 庞治国, 潘世兵,等. 基于ETM遥感影像的二滩库区水深反演研究[J]. 地理与地理信息科学,2010, 26(4):64-66.]
[67]Wang Yanjiao, Dong Wenjie, Zhang Peiqun, et al. Progress in water depth mapping from visible remote sensing data[J].Marine Science Bulletin,2007, 26:92-101.[王艳姣,董文杰,张培群,等. 水深可见光遥感方法研究进展[J]. 海洋通报, 2007,26:92-101.]
[68]Ye Ming, Li Rendong, Xu Guopeng, et al. Some research advances and methods on waterdepth monitoring by multispectral images[J]. World Sci-Tech R&D,2007,29(2):76-79.[叶明, 李仁东, 许国鹏. 多光谱水深遥感方法及研究进展[J]. 世界科技研究与发展, 2007,29(2):76-79.]
[69]Huang Jiazhu, You Yuming. Experiment of water depth sureving in the Nantong section of the Yangtze River[J].Advances in Water Science,2002, 13(2):235-238.[黄家柱, 尤玉明. 长江南通河段卫星遥感水深探测试验[J]. 水科学进展, 2002, 13(2):235-238.]
[70]Xu Sheng, Zhang Ying. Study of Retrieval Model of Yangtze River Estuary water depth extraction from remote sensing[J].Geography & Geo-Information Science,2006, 22(3):49-52.[徐升,张鹰. 长江口水域多光谱遥感水深反演模型研究[J]. 地理与地理信息科学, 2006, 22(3):49-52.]
[71]Paredes J M, Spero R E. Water depth mapping from passive remote sensing data under a generalized ratio assumption[J].Applied Optics,1983, 22(8):1 134-1 135.
[72]Zhang Ying. Study of fathoming method by RS techumology[J].Journal of Hohai University,1998,26(6):68-72.[张鹰. 水深遥感方法研究[J]. 河海大学学报,1998,26(6):68-72.]
[73]Shen Fang, Kuang Dingbo. Remote sensing investigation & survey of Qinghai Lake in the past 25 years[J].Journal of Lake Sciences,2003,15(4): 289-296.[沈芳, 匡定波. 青海湖最近25年来变化的遥感调查与研究[J]. 湖泊科学, 2003,15(4):289-296.]
[74]Yu Ruihong, Xu Youpeng, Liu Yanxi,et al. Reversing water depth in shallow lake of arid area using multispectral remote sensing information[J].  Advances in Water Science,2009, 20(1): 111-117.[于瑞宏, 徐有鹏, 刘延玺,等.应用多光谱遥感信息反演干旱区浅水湖泊水深
[J]. 水科学进展,2009, 20(1): 111-117.]
[75]Xu Sheng, Zhang Ying, Wang Yanjiao, et al. Application of multispectral imagery to water depth extration in the Changjiang River Estuary[J]. Journal of Marine Sciences,2006,24(1):83-89.[徐升,张鹰,王艳姣,等. 多光谱遥感在长江水深探测中的应用[J]. 海洋学研究, 2006,24(1):83-89.]
[76]Wang Yanjiao, Zhang Ying. Study on remote sensing of water depth based on BP artificial neural networks[J].The Ocean Engineering,2005,23(4):33-38.[王艳姣,张鹰. 基于BP人工神经网络的水体遥感测深方法研究[J].海洋工程,2005,23(4):33-38.]
[77]Wu Yanbin, Peng Suping, Huang Ming,et al. Remote sensing of water depth in subsidence area based on artificial neural networks[J].Coal Geology & Exploration, 2007, 35(2):41-44.[武彦斌,彭苏萍,黄明,等.基于神经网络的沉陷区水深遥感研究[J]. 煤田地质与勘探, 2007, 35(2):41-44.]
[78]Smith L C, Pavelsky T M. Remote sensing of volumetric storage changes in lakes[J].Earth Surface Processes and Landforms,2009, 34(10):1 354-1 358.
[79]Satoshi K, Zhang Jiqun, Wang Qinxue,et al. An approach to estimate the water level and volume of Dongting Lake using Terra/MODIS data
[J].Acta Geographica Sinica,2004, 59(1):88-94.[龟山哲, 张继群, 王勤学,等. 应用Terra/MODIS卫星数据估算洞庭湖蓄水量的变化[J]. 地理学报, 2004,59(1):88-94.]
[80]Wahr J, Swenson S, Zlotnicki V,et al. Time-variable gravity from GRACE: First results[J].Geophysical Research Letters,2004, 31(11):L11501.
[81]Zhou Xuhua,Wu Bin, Peng Bibo,et al. Detection of global water storage variation using GRACE[J].Chinese Journal of Geophysical,2006,49(6): 1 644-1 650.[周旭华,吴斌,彭碧波,等.全球水储量变化的GRACE卫星监测[J].地球物理学报,2006, 49(6):1 644-1 650.]
[82]Han S C, Shum C K, Jekeli C, et al. Improved estimation of terrestrial water storage changes from GRACE[J].Geophysical Research Letters,2005, 32(7):L07302.
[83]Rodell M, Famiglietti J S. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE)[J].Water Resources Research,2001,37(5):1 327-1 339.
[84]Bjerklie D M, Lawrence D S, Vorosmarty C J, et al. Evaluating the potential for measuring river discharge from space[J]. Journal of Hydrology,2003, 278:17-38.
[85]Vorosmarty C V. Global water data: A newly endangered species[J].EOS, Transactions American Geophysical Union,2001, 82(5):54-58.
[86]Frazier P, Page K, Louis J, et al. Relating wetland inundation to river flow using Landsat TM data[J].International Journal of Remote Sensing,2003, 24(19):3 755-3 770.
[87]Smith L C, Isacks B L, Bloom A L, et al. Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungaged basins[J].Water Resources Research, 1996, 32(7): 2 021-2 034.
[88]Vörösmarty C J, Willmott C J, Choudhury B J, et al. Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling[J].Water Resources Research, 1996, 32(10):3 137-3 150.
[89]Kouraev A V, Zakharova E A, Samain O, et al. Ob′river discharge from TOPEX/Poseidon satellite altimetry (1992-2002)[J].Remote Sensing of Environment, 2004, 93(1/2):238-245.
[90]LeFavour G, Alsdorf D. Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model[J].Geophysical Research Letters,2005, 32(17):L17404.
[91]Lin Zongxin. Error analysis of flow computation by gradient area law[J].Water Resources & Power,2008,26(1):93-96.[林宗信. 曼宁公式计算流量的误差分析[J]. 水电能源科学, 2008,26(1):93-96.]
[92]Gao J. Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations[J].Progress in Physical Geography,2009,33(1):103-116.
[93]ICESat-2 Cryospheric-Science Branch Code 614.1[EB/OL]. Natioal Aeronautics and Space Administration, 2011[2011-04-20]. http:icesat.gsfc.nasa.gov/icesat2/.
[94]Responding to-the Challenge of Climate and Environmental Change, NASA′s Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space[EB/OL]. Natioal Aeronautics and Space Administration 2010[2011-4-20].http:science.nasa.gov/media/medialibrary/2010/07/01/Climate_Architecture_Final.pdf.

[1] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[2] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[3] 祁晓凡,杨丽芝,韩 晔,尚 浩,邢立亭. 济南泉域地下水位动态及其对降水响应的交叉小波分析[J]. 地球科学进展, 2012, 27(9): 969-978.
[4] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[5] 丛丕福,曲丽梅,韩庚辰,杨新梅,王臣立. 辽东湾海水透明度的遥感估算模型[J]. 地球科学进展, 2011, 26(3): 295-299.
[6] 卢善龙,吴炳方,闫娜娜,李发鹏,文美平,王京. 河川径流遥感监测研究进展[J]. 地球科学进展, 2010, 25(8): 820-826.
[7] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.
[8] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[9] 冉有华,李新,王维真,晋 锐. 黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析[J]. 地球科学进展, 2009, 24(7): 817-824.
[10] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[11] [贺宝根],王初,周乃晟,许世远. 长江河口崇明东滩周期性淹水区域水流的基本特征[J]. 地球科学进展, 2008, 23(3): 276-283.
[12] 杨新;延军平;刘宝元. 无定河年径流量变化特征及人为驱动力分析[J]. 地球科学进展, 2005, 20(6): 637-642.
[13] 陈亚宁;张宏锋;李卫红;陈亚鹏. 新疆塔里木河下游物种多样性变化与地下水位的关系[J]. 地球科学进展, 2005, 20(2): 158-165.
[14] 吕恒;江南;李新国;. 内陆湖泊的水质遥感监测研究[J]. 地球科学进展, 2005, 20(2): 185-192.
阅读次数
全文


摘要