地球科学进展 ›› 2012, Vol. 27 ›› Issue (9): 969 -978. doi: 10.11867/j.issn.1001-8166.2012.09.0969

研究论文 上一篇    下一篇

济南泉域地下水位动态及其对降水响应的交叉小波分析
祁晓凡 1,杨丽芝 1,韩 晔 1,尚 浩 1,邢立亭 2   
  1. 1.山东省地质调查院,山东 济南 250013;2.济南大学资源与环境学院,山东 济南 250022
  • 收稿日期:2012-04-22 修回日期:2012-07-01 出版日期:2012-09-10
  • 通讯作者: 祁晓凡(1985-),男,山东潍坊人,助理工程师,主要从事区域水文地质环境地质调查研究.E-mail:xfq@163.com
  • 基金资助:

    山东省地质勘查基金项目“济南城市地质调查”(编号:鲁勘字(2011)46号);国家自然科学基金项目“浅层大陆盐化咸水水文地质参数变异机制研究”(编号:41172222)资助.

Cross Wavelet Analysis of Groundwater Level Regimes and Precipitation Groundwater Level Regime in Ji’nan Spring Region

Qi Xiaofan 1, Yang Lizhi 1, Han Ye 1, Shang Hao 1, Xing Liting 2   

  1. 1.Shandong Institute of Geological Survey, Ji’nan 250013, China;2. School of Resources and Environment, University of Ji’nan, Ji’nan 250022, China
  • Received:2012-04-22 Revised:2012-07-01 Online:2012-09-10 Published:2012-09-10

利用1988—2009年济南泉域8个地下水位动态观测点不同时段观测资料及1998—2009年降水数据,采用连续小波变换、交叉小波变换方法对济南泉域地下水位动态的多时间尺度特征、相互关系及其对降水的响应进行了分析。结果表明:①济南泉域地下水位动态存在显著的0.82~1.16 a的主振荡周期,低频部分仅在部分年份存在1.95~3.09 a的振荡周期;②含水岩组富水性对地下水位动态存在影响,研究区主径流方向上弱富水性地段地下水位动态时滞较强富水性地段长,强富水性地段4个观测孔地下水位波动时序基本一致;③地下水位动态对降水的响应滞后明显,为73.06~134.42 d,总体表现为地下水径流路径越长,响应越滞后;④基于地下水位动态与基于降水—地下水位动态交叉小波变换得到的观测点对水位动态的滞后时间多数一致,同一径流路径上局部点对滞后时间之和与全局点对有很好的对应关系。交叉小波分析可定量评价泉域地下水位动态及其与降水的相关关系。

Based on observations of eight groundwater level regime observational points from 1998 to 2009 in Jinan spring region and the precipitation amount from 1988 to 2009, by adopting the methods of continuous wavelet transform, cross wavelet transform and cross phase, the paper analyzes the multipletimescale characteristics of groundwater level regime, its correlation with each other, as well as response to precipitation. Conclusions are drawn as follows: The region is of obvious 0.82~1.16 years significant oscillation periods with 1.95~3.09 years of lowfrequency oscillation occurring in some areas with no obvious highfrequency oscillation period. Observations from three dot pairs, the Tuwu villageWater Group Co, Xiaozhuang villageKuangli village, and Laoshigou villageRoyal Heights established to investigate the main runoff of the region by analyzing cross wavelet transforms of groundwater level regime and precipitationgroundwater level regime show that the water level regime of the nether observational points lag behind that of the upper ones respectively by 9.41, 11.90, 33.97 d and 5.63, 17.73, 31.87 d. Water abundance of the region is also surveyed and it is believed that water abundance has impact on timedelay characteristic of groundwater level regime and that larger figures occur in weak abundance sections while small ones in strong water abundance sections. The four observational points, the parking lot 102, Xiaozhuang village, Water Group Co, Dayu Village in strong water abundance sections show similar groundwater level fluctuations, which is resulted from basically simultaneous runoff supply or strong runoff. The groundwater level regime in Laoshigou village lags behind precipitation by 73.06 d, other observational points by 101.11~134.42 d, indicating that there is significant timedelay between groundwater level regime and precipitation, and also that the longer the groundwater runoff distance, the longer the timedelay is. Based on cross wavelet transform of groundwater level regime and precipitationgroundwater level regime, most observational points get close timedelay, despite a few different figures due to difference in precipitation data, observation time and precipitation recharge mechanism, etc. Under the same observation time in cross wavelet transform of groundwater level regime, a functional relationship is found between the total timedelay sum of part dot pairs and that of the whole dot pairs in the same runoff areas. Thus, cross wavelet can be analyzed to investigate correlation between groundwater level regime and precipitation of a region.

中图分类号: 

[1]Li Hongjun, Jiang Zhihong, Liu Xinchun, et al. The relationship between the North Atlantic Oscillation and runoff variation of Aksu River in Xinjiang, China[J]. Acta Geographica Sinica, 2008, 63(5): 491-500.[李红军,江志红,刘新春,等. 阿克苏河径流量变化与北大西洋涛动的关系[J]. 地理学报, 2008, 63(5): 491-500.]

[2]Wang Yamin, Zhang Bo, Guo Lingxia, et al. Cross wavelet analysis and R/S analysis of relationship between Geomagnetic Ap Index and Sunspot Number[J]. Scientia Geographica Sinica, 2011, 31(6): 747-752.[王亚敏,张勃,郭玲霞,等.地磁Ap 指数与太阳黑子数的交叉小波分析及R/S 分析[J]. 地理科学, 2011, 31(6): 747-752.]

[3]Valdes-Galicia J F, Velasco V M. Variations of mid-term periodicities in solar activity physical phenomena[J]. Advances in Space Research, 2008, 41(2): 297-305.

[4]Casty C, Raible C C, Stocker T F, et al. A European pattern climatology 1766-2000[J]. Climate Dynamics, 2007, 29(7/8): 791-805.

[5]Yu Dandan, Zhang Ren, Hong Mei, et al. Correlation analysis between the West Pacific Subtropical High and the East Asian Summer Monsoon System based on cross wavelet and wavelet coherence[J]. Journal of Nanjing Institute of Meteorology, 2007, 30(6): 755-769.[余丹丹,张韧,洪梅,等. 基于交叉小波与小波相干的西太平洋副高与东亚夏季风系统的关联性分析[J]. 南京气象学院学报, 2007, 30(6): 755-769.]

[6]Kemp D B, Coe A L. A nonmarine record of eccentricity forcing through the Upper Triassic of southwest England and its correlation with the Newark Basin astronomically calibrated geomagnetic polarity time scale from the North America[J].Geology, 2007, 35(11): 991-994.

[7]Biswas A, Si B C. Scales and locations of time stability of soil water storage in a hummocky landscape[J]. Journal of Hydrology, 2011, 408(1/2): 100-112.

[8]Jevrejeva S, Grinsted A, Moore J C, et al. Nonlinear trends and multiyear cycles in sea level records[J]. Journal of Geophysical Research C: Oceans, 2006, 111: C09012,doi:10.1029/2005JC003229.

[9]Ramp S R, Bahr F L. Seasonal evolution of the upwelling process south of Cape Blanco[J]. Journal of Physical Oceanography, 2008, 38(1): 3-28.

[10]Castellanos N P, Malmierca E, Nunez A, et al. Corticofugal modulation of the tactile response coherence of projecting neurons in the gracilis nucleus[J]. Journal of Neurophysiology, 2007, 98(5): 2 537-2 549.

[11]Bigot J, Longcamp M, Maso F D, et al. A new statistical test based on the wavelet cross-spectrum to detect time-frequency dependence between non-stationary signals: Application to the analysis of cortico-muscular interactions[J]. NeuroImage, 2011, 55(4): 1 504-1 518.

[12]Labat D. Cross wavelet analyses of annual continental freshwater discharge and selected climate indices[J]. Journal of Hydrology, 2010, 385(1/4): 269-278.

[13]Liu Y, Brown J, Demargne J. A wavelet-based approach to assessing timing errors in hydrologic predictions[J]. Journal of Hydrology, 2011, 397(3/4): 210-224.

[14]Liu Feng, Chen Shenliang, Peng Jun, et al. Multi-scale variability of flow discharge and sediment load of Yellow River to sea and its impacts on the estuary during the past 60 years[J]. Acta Geographica Sinica, 2011, 66(3): 313-323.[刘锋, 陈沈良, 彭俊,等. 近60年黄河入海水沙多尺度变化及其对河口的影响[J]. 地理学报, 2011, 66(3): 313-323.]

[15]Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78.

[16]Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(55): 561-566.

[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[4] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[5] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[6] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[7] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[8] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[9] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[10] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[11] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[12] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[13] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[14] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[15] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
阅读次数
全文


摘要