地球科学进展 ›› 2015, Vol. 30 ›› Issue (10): 1100 -1106. doi: 10.11867/j.issn.1001-8166.2015.10.1100

综述与评述 上一篇    下一篇

AquaCrop作物模型应用研究进展
王连喜 1, 2, 吴建生 1, 2, 李琪 1, 2, 顾嘉熠 1, 2, 薛红喜 3   
  1. 1. 江苏省农业气象重点实验室,江苏 南京 210044; 2. 南京信息工程大学应用气象学院,江苏 南京 210044; 3. 中国气象局国家气象中心,北京 100081
  • 收稿日期:2015-07-28 修回日期:2015-09-13 出版日期:2015-10-20
  • 基金资助:

    国家科技支撑计划项目“全球变化环境下作物产量的影响与适应监测评估技术”(编号:2012BAH29B03); 国家公益性行业(气象)科研专项“多源土壤温度业务数据的融合技术研究”(编号:GYHY201306045)资助

A Review on the Research and Application of AquaCrop Model

Wang Lianxi 1, 2, Wu Jiansheng 1, 2, Li Qi 1, 2, Gu Jiayi 1, 2, Xue Hongxi 3   

  1. 1.Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing 210044, China; 2. College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 3. National Meteorological Center of China Meteorological Administration, Beijing 100081, China
  • Received:2015-07-28 Revised:2015-09-13 Online:2015-10-20 Published:2015-10-20

随着人口增长和经济社会快速发展,人类活动已成为陆地水循环变化的重要驱动因子,人类用水活动对陆地水循环的影响越来越受到人们的关注。回顾近年来人类用水活动对大尺度陆地水循环影响方面的研究进展;阐述灌溉、生活和工业用水、水库调节以及地下水利用等典型人类用水活动影响大尺度陆地水循环的过程与机制,并在此基础上探讨了陆面水文模型中人类用水活动参数化方案及其存在的问题。目前,陆面水文模型对人类用水活动的考虑依然不足,使得应用模型模拟陆地水循环和评估变化环境下水资源安全面临挑战。展望未来,深入认识人类用水活动与水系统的影响与反馈,开发考虑人—水系统协同演化的水系统综合评估模型,预估水安全形势的演变趋势,将成为陆地水循环和水资源研究的长期重要任务。

This article described the fundamental principles and the progress of study and application of AquaCrop model, and especially introduced the application of AquaCrop model. The application of AquaCrop in irrigation management, cropping system and the future climate scenario has achieved good results. The problems that should be paid attention to in the application of AquaCrop model were summarized. It was pointedout that most of the researches in China concentrated on single field scale; Many studies focused mostly on the calibration and verification; And the applicability of the model parameters in China remained to be further verified; The performance of Aquacrop model would be affected under severe water stress conditions.This article proposed several suggestions for future development,with a view to AquaCrop model playing a guiding role in the future of agricultural production practices.

中图分类号: 

[1] Sinclair T R, Seligman N. Criteria for publishing papers on crop modelling[J]. Field Crops Research, 2000, 68(3):165-172.
[2] Janssen S, Ittersum M. Assessing farm innovations and responses to policies: A review of bio-economic farm models[J]. Agricultural Systems, 2007, 94(3):622-636.
[3] Azam-Ali N, Sesay A, Karikari S, et al. Assessing the potential of an underutilized crop: A case study using bambara groundnut[J]. Experimental Agriculture, 2001, 37(4):433-472.
[4] Steduto P, Hsiao T, Raes D, et al. AquaCrop-the FAO model to simulate yield response to water: I. Concepts and underlying principles[J]. Agronomy Journal, 2009, 101: 426-437.
[5] Singels A, Annandale J G, Jager J M D, et al. Modeling crop growth and water relations in South Africa: Past achievements and lessons for the future[J]. South African Journal of Plant Soil, 2010, 27(1): 49-65.
[6] Porter J R, Hammer G L, Kropff M J, et al. Future contributions of crop modelling-from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement[J]. European Journal of Agronomy, 2002, 18(1):15-31.
[7] Li T, Feng Y S, Li X M. Predicting crop growth under different cropping and fertilizing management practices[J]. Agricultural & Forest Meteorology, 2009, 149(6/7):985-998.
[8] Mladen T, Rossella A, Ljubomir Z, et al. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes[J]. Agronomy Journal, 2009, 101(3):509-521.
[9] Mabhaudhi T, Modi A T, Beletse Y G. Parameterization and testing of AquaCrop for a South African bambara groundnut landrace[J]. Agronomy Journal, 2014, 106(1):243-251.
[10] Raes D, Steduto P, Hsiao T C, et al. AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description[J]. Agronomy Journal, 2009, 101(3):438-447.
[11] Hsiao T C, Lee H, Steduto P, et al. AquaCrop-the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize[J]. Agronomy Journal, 2009, 101(3):448-459.
[12] Steduto P, Hsiao T C, Fereres E, et al. Crop Yield Response to Water. FAO Irrigation and Drainage Paper, No. 66[M]. Rome: FAO, 2012.
[13] Raes D, Steduto P, Hsiao T C, et al. AquaCrop-the FAO Crop Model to Simulate Yield Response to Water: Reference Manual[M]. Rome: FAO,2011.
[14] Doorenbos J, Kassam A H. Yield response to water[M]∥Irrigation and Drainage Paper No.33. Rome: FAO, 1979.
[15] Steduto P, Hsiao T C, Fereres E. On the conservative behavior of biomass water productivity[J]. Irrigation Science, 2007, 25(3):189-207.
[16] Bilga N K. Parameterization and Application of the AquaCrop model for Simulating Bioenergy Crops in Oklahoma[D]. Stillwater: Oklahoma State University, 2012.
[17] Farahani H J, Izzi G, Oweis T Y. Parameterization and evaluation of the AquaCrop Model for full and deficit irrigated cotton[J]. Agronomy Journal, 2009, 101(3):469-476.
[18] Abedinpour M, Sarangi A, Rajput T B S, et al. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment[J]. Agricultural Water Management, 2012, 110(3):55-66.
[19] Mabhaudhi T, Modi A T, Beletse Y G. Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace[J]. Agricultural & Forest Meteorology, 2014, 192/193(4):132-139.
[20] Katerji N, Campi P, Mastrorilli M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region[J]. Agricultural Water Management, 2013, 130(4):14-26.
[21] Wang X, Wang Q, Fan J, et al. Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China’s Loess Plateau[J]. Agricultural Water Management, 2013, 129:95-104.
[22] Li Hui, Liu Yu, Cai Jiabing, et al. The applicability and application of AquaCrop model[J].Journal of Irrigation and Drainage, 2011, 30(3):28-33. [李会,刘钰,蔡甲冰,等. AquaCrop模型的适用性及应用初探[J].灌溉排水学报, 2011, 30(3):28-33.]
[23] Han Jian. AquaCrop Model Application of Maize Planting in Jinzhong Basin[D]. Taiyuan:Shanxi University, 2012. [韩健. AquaCrop模型在晋中盆地玉米栽培研究中的应用[D]. 太原:山西大学, 2012.]
[24] Fu Chi, Li Shuangshuang, Li Jing, et al. Calibration and validation of AquaCrop model in spring wheat region of Songnen Plain[J].Journal of Irrigation and Drainage, 2012, 31(5):99-102. [付驰, 李双双, 李晶,等. AquaCrop作物模型在松嫩平原春麦区的校正和验证[J]. 灌溉排水学报, 2012, 31(5):99-102.]
[25] Hao Zhipeng. Applicability Evaluation of AquaCrop Model in the Guanzhong & Weibei Area[D].Yangling: Northwest A&F University, 2013. [郝志鹏. AquaCrop模型在关中及渭北地区的适用性评价[D]. 杨凌:西北农林科技大学, 2013.]
[26] Nyakudya I W, Stroosnijder L. Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop[J]. Agricultural Water Management, 2014, 146:280-296.
[27] Wellens J, Raes D, Traore F, et al. Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment[J]. Agricultural Water Management, 2013, 127(3):40-47.
[28] Pérez-Ortolá M, Daccache A, Hess T M, et al. Simulating impacts of irrigation heterogeneity on onion ( Allium cepa L .) yield in a humid climate[J]. Irrigation Science, 2015,33(1):1-14.
[29] Paredes P, Melo-Abreu J P D, Alves I, et al. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization[J]. Agricultural Water Management, 2014, 144(2):81-97.
[30] Fereres E, Soriano A. Deficit irrigation for reducing agricultural water use: Integrated approaches to sustain and improve plant production under drought stress special issue[J].Journal of Botany, 2007,58(2):147-159.
[31] Farré I, González J M F. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment[J]. Agricultural Water Management, 2009, 96(3):383-394.
[32] Rockstrfim J, Karlberg L, Wani S P, et al. Managing water in rainfed agriculture—The need for a paradigm shift[J]. Agricultural Water Management an International Journal, 2010, 97(4):543-550.
[33] Tittonell P, Giller K E. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture[J]. Field Crops Research, 2013, 143(1):76-90.
[34] Matthews R B, Rivington M, Muhammed S, et al. Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling[J]. Global Food Security, 2013, 2:24-28.
[35] Soltani A, Hoogenboom G. Assessing crop management options with crop simulation models based on generated weather data[J]. Field Crops Research, 2007, 103(3):198-207.
[36] Garcia-Vila M,Fereres E.Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level[J].Agronomy Journal, 2012,36:21-31.
[37] Nyakudya I W, Stroosnijder L. Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop[J]. Agricultural Water Management, 2014, 146:280-296.
[38] Moriondo M, Giannakopoulos C, Bindi M. Climate change impact assessment: The role of climate extremes in crop yield simulation[J]. Climatic Change, 2011, 104(3/4):679-701.
[39] Ittersum M K V, Cassman K G, Grassini P, et al. Yield gap analysis with local to global relevance—A review[J]. Field Crops Research, 2013, 143(1):4-17.
[40] Lorite I J, García-Vila M, Santos C, et al. AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop[J]. Computers & Electronics in Agriculture, 2013, 96(6):227-237.
[41] Soddu A, Deidda R, Marrocu M, et al. Climate variability and durum wheat adaptation using the AquaCrop Model in Southern Sardinia[J]. Procedia Environmental Sciences, 2013, 19:830-835.
[42] Voloudakis D, Karamanos A, Economou G, et al. Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminate function analysis[J]. Agricultural Water Management, 2015, 147:116-128.
[43] Quiring S M, Legates D R. Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA[J]. Agricultural & Forest Meteorology, 2008, 148:964-975.
[44] Dettori M, Cesaraccio C, Motroni A, et al. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy[J]. Field Crops Research, 2011, 120(1):179-188.
[45] Diepen C A, Wolf J, Keulen H, et al. WOFOST: A simulation model of crop production[J]. Journal of Soil Use and Management, 1989, 5(1): 16-24.
[46] Saab M T A, Todorovic T, Albrizio R. Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?[J]. Agricultural Water Management, 2015, 147:21-33.
[47] García-López J, Lorite I J, García-Ruiz R, et al. Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling[J]. Climatic Change, 2014, 124:147-162.
[48] Katerji N. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region[J].Agricultural Water Management, 2013,130(4):14-26.
[49] Heng L K, Hsiao T C, Evett S R, et al. Testing of FAO AquaCrop model for rainfed and irrigated maize[J].Agronomy Journal, 2009,101 (3):488-498.
[50] Zhang Tienan,Fu Chi,Li Jing,et al. The adaptability test analysis of AquaCrop and WOFOST model based on the cold spring wheat[J].Journal of Irrigation and Drainage, 2013,154(3):121-126. [张铁楠, 付驰, 李晶,等. 基于寒地春小麦AquaCrop与WOFOST模型适应性验证分析[J]. 作物杂志, 2013,154(3):121-126.]
[51] Li Jing, Fu Chi, Li Shuangshuang,et al. The simulation for northeast spring wheat productivity based on the AquaCrop model and modeling verification[J].Journal of Irrigation and Drainage, 2014, 33:69-72. [李晶, 付驰, 李双双,等. 东北春小麦区AquaCrop模型模拟验证及春小麦生产力初步估测[J]. 灌溉排水学报, 2014, 33:69-72.]

[1] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[2] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[3] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[4] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[5] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[6] 任晓倩,孙菽芬,陈 文,刘辉志. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013, 28(3): 347-356.
[7] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[8] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[9] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[10] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[11] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.
[12] 刘春蓁. 气候变化对陆地水循环影响研究的问题[J]. 地球科学进展, 2004, 19(1): 115-119.
[13] 王澄海,董文杰,韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52.
阅读次数
全文


摘要