地球科学进展 ›› 2015, Vol. 30 ›› Issue (10): 1107 -1118. doi: 10.11867/j.issn.1001-8166.2015.10.1107

上一篇    下一篇

泥质岩中纤维状结构脉体成因机制及其与油气活动关系研究进展
王淼 1( ), 陈勇 1, *( ), 徐兴友 2, 张学军 2, 韩云 1, 王成军 1, 曹梦春 1   
  1. 1. 中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
    2. 中国石化胜利油田地质科学研究院,山东 东营 257000
  • 收稿日期:2015-04-27 修回日期:2015-09-14 出版日期:2015-10-20
  • 通讯作者: 陈勇 E-mail:fiwater@sina.com;yongchenzy@upc.edu.cn
  • 基金资助:
    国家自然科学基金项目“东营凹陷盐岩相关流体活动地球化学示踪”(编号:41172111);中央高校基本科研业务费专项资金项目“中国石油大学(华东)青年教师拔尖人才建设工程”(编号:SD2013211151)资助

Progress on Formation Mechanism of the Fibrous Veins in Mudstone and Its Implications to Hydrocarbon Migration

Miao Wang 1( ), Yong Chen 1( ), Xingyou Xu 2, Xuejun Zhang 2, Yun Han 1, Chengjun Wang 1, Mengchun Cao 1   

  1. 1.School of Geosciences, China University of Petroleum, Qingdao 266580, China
    2.Geological scientific research institute of Shengli Oilfield, Dongying 257000, China
  • Received:2015-04-27 Revised:2015-09-14 Online:2015-10-20 Published:2015-10-20

纤维状结构脉体在泥质岩中普遍发育,根据其微观岩相学不同可分为晶体拉伸、延长块状以及特征纤维状结构脉体;根据其生长岩相学差异又可分为拉伸式、向生式和背生式脉体。脉体最终结构主要由裂缝面的形态特征、裂缝宽度和充填裂缝脉体矿物的生长习性所决定。裂缝开启—闭合机理只能用于说明晶体拉伸结构以及延长块状结构脉体的形成过程,背生式特征纤维状结构脉体是在岩石形变过程中裂缝未开启且晶体生长竞争被抑制的情况下通过成脉物质扩散流动运输,晶体由中间面向两侧连续生长形成的。泥质烃源岩中有机质生烃导致异常高压产生的水平裂缝是平行于纹层背生式方解石脉形成的首要条件,在局部范围内可以提高生排烃效率并影响烃类运移的速率和方向,证明油气存在顺平面的侧向运移,因此平行于纹层背生式方解石脉可以作为超高压排烃和油气运移的标志,也可将其作为泥质烃源岩生烃和油气初次运移的主要证据。

The fibrous mineral veins are widespread in mudstones. According to the different microscopic morphology of the minerals, the fibres can be divided into stretched crystals, elongate-blocky crystals and the very fibrous crystals. Veins can also be classified according to the growth direction of these crystals into stretched veins, syntaxial veins and antitaxial veins. The resulting texture in the vein depends on the morphology of the fracture surface, the width of the fracture and the growth habit of the vein forming mineral. The crack-seal mechanism can only interpret the formation of the stretched crystal veins and the elongate-blocky crystal veins, and the antitaxial well-developped fibrous veins form without fracturing and the growth competition is inhibited during the rock deformation, which implies that the nutrient transport is by diffusional flow transport. Horizontal crack is the primary condition of the formation of the antitaxial bedding-parallel fibrous calcite veins in muddy hydrocarbon source rocks. The formation of the horizontal crack which caused by the abnormal high pressure can enhance the hydrocarbon generation efficiency and has a great effect on the rate and direction of hydrocarbon migration in the local. The presence of the veins indicates the hydrocarbon fluid can migrate laterally along the layers. The antitaxial bedding-parallel fibrous calcite veins in muddy hydrocarbon source rocks can be the sign of the generation and migration of hydrocarbon under the abnormal high pressure condition in petroleum-bearing basins.

中图分类号: 

图1 不同纤维状结构脉体的微观岩相学(据参考文献[ 7 ]修改) (a)晶体拉伸结构脉体;(b)延长块状结构脉体;(c)晶体拉伸结构脉体;(d)特征纤维状结构脉体
Fig.1 Microscopic morphology of different fibrous vein types ( modified after reference[ 7 ]) (a)Stretched crystal veins;(b)Elongate-blocky crystal veins;(c)Stretched crystal veins;(d)The very fibrous crystal veins
图2 不同纤维状结构脉体的生长方向(据参考文献[ 7 ]修改) S代表脉体开始生长时的界面;G代表脉体现阶段生长界面;黑色半圆代表裂缝开启之前原本相互链接在一起的颗粒
Fig. 2 Different vein types classified by the growth direction of vein-filling crystals (modified after reference[ 7 ]) “S” is the plane where growth of crystals inside the vein started, and “G” is the plane where current growth takes place. Black half-circles indicate two points on the vein surface that were originally adjacent to each other
图3 裂缝开启-闭合机理伴随的岩石形变示意图(据参考文献[ 11 ]修改) (a)应力累积,σ1和σ3代表最大和最小的主应力;(b)第一期裂缝形成,应力释放,含有成脉物质的流体由围岩基质压溶作用形成后运输到流体压力较低的裂缝中形成脉体;(c)裂缝愈合,应力再次累积;(d)第二期裂缝形成,应力释放,成脉物质再次向裂缝内运移,并在压溶作用发生处形成缝合线;(e)裂缝重复性的开合形成脉体;(f)有限的剪切作用导致脉体发生弯曲以及脉体和围岩中缝合线的形成
Fig. 3 Diagram showing the sequence of events leading to elongation of a rock by the crack-seal mechanism(modified after reference[ 11 ]) (a)Elastic strain accumulation (σ1 and σ3 are greatest and least principal tensile stress);(b)Development of first fracture and release of elastic strains in matrix, solution transfer of material from walls into microcrack;(c)Seal of vein walls and further elastic strain accumulation;(d)Development of second crack and release of elastic strains in vein walls, further solution transfer with development of stylolitic surfaces;(e)Repeated crack-seal microcracks forming a compound vein;(f)Large finite shortening leading to vein buckling and the formation of stylolites both outside and inside the compound veins.
图4 裂缝开启—闭合过程中背生式纤维状方解石脉颗粒边界生长示意图 [ 13 ] (a)裂缝开启,白色箭头表示裂缝开启轨迹,脉壁与流体接触面为平面A-B和B-C,B1、B2和B3代表脉体中的矿物颗粒边界;(b)在裂缝第一次愈合过程中,晶体生长界面向外等距延伸,因此3条颗粒边界均垂直于生长界面向外延伸。灰线代表最初的裂缝面,细黑线代表先前生长界面的位置;(c)裂缝即将愈合,B1和B3沿着垂直于生长界面的方向延伸,但此时B2处于两个生长界面的交点处,沿着两个界面的角平分线方向延伸直到此期愈合结束;(d)三期完整的裂缝开启-闭合过程结束后,矿物颗粒边界形态
Fig. 4 An illustralion of grain boundaries propagation in an antitaxial crack-seal vein [ 13 ] (a)Immediately after a cracking event(opening vector marked by white arrow). The wall rock-fluid interface is defined by the two planar sections A-B-C, Three representative grain boundaries in the vein material are marked B1, B2 and B3. (b)During the first sealing event, the growth surface has propagated equal distances everywhere. Therefore the three grain boundaries extend perpendicular to the growth surface. The grey line indicates the initial crack surface, and the thin black line marks the position of the growth surface at an earlier stage. (c)Sealing is almost complete, B1 and B3 have propagated perpendicular to the growth surface, but B2 has reached the corner in the growth surface and must from then on propagate along the bisectrix of the segments until the end of this seal event. (d)After three completed crack-seal event, Note how B2 has started propagating perpendicular to the growth surface at the beginning of each sealing event, and continued along the bisectrix of the segments after reaching the corner in the growth surface
图5 背生式纤维状结构脉体示踪能力与α和β的关系 [ 13 ] x为裂缝开启所增加的长度,λ为波长,y为振幅,α为裂缝开启方向与裂缝面的夹角,β=2arctan(λ/2y)
Fig. 5 Tarcking efficiency as a function of α and β [ 13 ] “x” is the opening increment length, “λ” is the wavelength and “y” is the amplitude of crack irregularities, and the “α” is the angle between the incremental opening vector and the local orientation of the crack surface. In addition we define “β” as 2arctan(λ/2y)
图6 形变过程中透镜状刚性矿物周围等压线图(据参考文献[ 6 ]修改) σ1和σ3代表最大和最小的主应力;(a)压力在刚性内含物内部很高,其最高点位于透镜状的两个尖端,最低点位于透镜状的两侧;(b)成脉物质在压力梯度的影响下由矿物尖端(C)或远源(B)向矿物两侧(A)运输
Fig. 6 Isobaric lines for deformation of a lenticular inclusion(modified after reference [ 6 ]) (a)Pressure contours for deformation around a hard inclusion. Pressure inside the hard lens is high, but the highest pressure is found at the inclusion tips. Lowest pressure is found at the sides of the inclusion. (b)Any transport down the pressure gradient would bring material from the inclusion tip area (C), but also from the far field (B) to the surface of the inclusion.
图7 背生式特征纤维状结构脉体中间面(据参考文献[ 7 ]修改)
Fig. 7 Micrographs of median zones in antitaxial fibrous calcite veins(modified after reference[ 7 ])
图8 顺层纤维状脉体内“Beef”结构和“Cone-in-Cone”结构(据参考文献[9]修改)
Fig. 8 The Beef and Cone-in-Cone structures in bedding-parallel fibrous veins(modified after reference [9])
[1] Taber S.The origin of veinlets in the Silurian and Devonian strata of central New York[J]. Journal of Geology,1918,6:56-73.
[2] Bons P,Jessell M.Experimental simulation of the formation of fibrous veins by localised dissolution-precipitation creep[J]. Mineralogical Magazine,1997,61(1):53-63.
[3] Means W,Li T.A laboratory simulation of fibrous veins: Some first observations[J]. Journal of Structural Geology,2001,23(6):857-863.
[4] Hilgers C,Urai J.Microstructural observations on natural syntectonic fibrous veins:Implications for the growth process[J]. Tectonophysics,2002,352(3):257-274.
[5] Nollet S,Hilgers C,Urai J.Experimental study of polycrystal growth from an advecting supersaturated fluid in a model fracture[J]. Geofluids,2006,6(2):185-200.
[6] Bons P.The formation of veins and their microstructures[J].Journal of the Virtual Explorer,2000,2:12.
[7] Bons P,Montenari M.The formation of antitaxial calcite veins with well-developed fibres,Oppaminda Creek,South Australia[J]. Journal of Structural Geology, 2005,27(2):231-248.
[8] Rodrigues N,Cobbold P,Loseth H, et al.Widespread bedding-parallel veins of fibrous calcite (“beef”) in a mature source rock (Vaca Muerta Fm,Neuquén Basin,Argentina):Evidence for overpressure and horizontal compression[J].Journal of the Geological Society,2009,166(4):695-709.
[9] Cobbold P,Zanella A,Rodrigues N,et al.Bedding-parallel fibrous veins (beef and cone-in-cone):Worldwide occurrence and possible significance in terms of fluid overpressure,hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology,2013,43:1-20.
[10] Durney D,Ramsay J.Incremental strains measured by syntectonic crystal growths[J]. Gravity and Tectonics,1973,67:96.
[11] Ramsay J.The crack-seal mechanism of rock deformation[J].Nature,1980,284:135-139.
[12] Cox S,Etheridge M A,Wall V J.The role of fluids in syntectonic mass transport and the localization of metamorphic vein-type ore deposits[J]. Ore Geology,1987,2(1/2):65-86.
[13] Urai J,Williams P,Van H.Kinematics of crystal growth in syntectonic fibrous veins[J].Journal of Structural Geology,1991,13(7):823-836.
[14] Fisher D,Brantley S.Models of quartz overgrowth and vein formation:Deformation and episodic fluid flow in an ancient subduction zone[J]. Journal of Geophysical Research,1992,97:20 043-20 061.
[15] Hilgers C,Koehn D,Bons P, et al.Development of crystal morphology during unitaxial growth in a progressively widening vein:II.Numerical simulations of the evolution of antitaxial fibrous veins[J].Journal of Structural Geology,2001,23(6):873-885.
[16] Cox S.Antitaxial crack-seal vein microstructures and their relationship to displacement paths[J].Journal of Structural Geology,1987,9(7):779-787.
[17] Mügge O. Ueber die Entstehung faseriger Minerale und ihrer Aggregationsformen[J].Neues Jahrbuch für Mineralogie,Geologie und Paläontologie A,1928,58:1 928.
[18] Williams P,Urai J.Curved vein fibres:An alternative explanation[J].Tectonophysics,1989,158(1):311-333.
[19] Elburg M,Bons P,Foden J,et al.The origin of fibrous veins: Constraints from geochemistry[J].Geological Society,London,Special Publications,2002,200(1):103-118.
[20] Oliver N,Bons P.Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic-hydrothermal systems inferred from vein-wall rock patterns,geometry and microstructure[J]. Geofluids,2001,1:137-163.
[21] Jamtveit B,Yardley B.Fluid Flow and Transport in Rocks: An Overview[M].Netherlands: Springer Netherlands,1997.
[22] McCaig A,Wayne D,Marshal J, et al. Isotopic and fluid inclusion studies of fluid movement along the Gavarnie Thrust,central Pyrenees; reaction fronts in carbonate mylonites[J]. American Journal of Science,1995,295(3):309-343.
[23] Barker S,Cox S,Eggins S, et al.Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow[J].Earth and Planetary Science Letters,2006,250(1):331-344.
[24] Putnis A,Prieto M,Fernandez-Diaz L.Fluid supersaturation and crystallization in porous media[J]. Geological Magazine,1995,132:1-13.
[25] Kirschner D,Sharp Z, Teyssier C.Vein growth mechanisms and fluid sources revealed by oxygen isotope laser microprobe[J].Geology,1993,21(1):85-88.
[26] Cobbold P,Rodrigues N.Seepage forces,important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (“beef”and “cone-in-cone”)[J].Geofluids,2007,7:313-332.
[27] Rutter E,Elliott D.The kinetics of rock deformation by pressure solution [and discussion][J].Philosophical Transactions of the Royal Society of London A: Mathematical,Physical and Engineering Sciences,1976,283(1 312):203-219.
[28] Selkman S.Stress and displacement distributions around pyrite grains[J].Journal of Structural Geology,1983,5:47-52.
[29] Wiltschko D,Morse J.Crystallization pressure versus “crack seal” as the mechanism for banded veins[J].Geology,2001,29(1):79-82.
[30] Pabst A.“Pressure-shadows” and the measurement of the orientation of minerals in rocks[J].The American Mineralogist,1931,16:55-70.
[31] Birch F.Section 7: compressibility; elastic constants (See also Section 9)[J].Geological Society of America Memoirs,1966,97:97-174.
[32] Raiswell R,Fisher Q.Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition[J].Journal of the Geological Society,2000,157(1):239-251.
[33] Wang Guanmin,Ren Yongjun,Zhong Jianhua,et al.Genetic analysis on lamellar calcite veins in Paleogene black shale of the Jiyang Depression[J]. Acta Geologaica Sinaca,2006,79(6):834-838.
[王冠民,任拥军,钟建华,等.济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J]. 地质学报,2006,79(6):834-838.]
[34] Miao Jianyu,Zhu Zongqi,Liu Wenrong, et al.Relationship between occurrence of organic matter and the primary migration of the hydrocarbon in argillaceous rock[J].Acta Sedimentologica Sinica,2004,22(1):169-175.
[苗建宇,祝总祺,刘文荣,等.泥岩有机质的赋存状态与油气初次运移的关系[J]. 沉积学报,2004,22(1):169-175.]
[35] Zhang Shun,Chen Shiyue,Tan Mingyou, et al.Characterization of sedimentary microfacies of shale in the lower third sub-member of Shahejie Formation,western Dongying Sag[J].Acta Petrolei Sinica,2014,35(4):633-645.
[张顺,陈世悦,谭明友,等.东营凹陷西部沙河街组三段下亚段泥页岩沉积微相[J].石油学报,2014,35(4):633-645.]
[36] [JP2]Li Rongxi,Dong Shuwen,Ding Lei, et al. Tectonically driven organic fluid flow in Dabashan Foreland Belt:Recorded by fibrous calcite veins contained hydrocarbon-bearing inclusions[J]. Acta Sedimentologica Sinica,2013,31(3):516-526.
[李荣西,董树文,丁磊,等.构造驱动大巴山前陆烃类流体排泄:含烃包裹体纤维状方解石脉证据[J].沉积学报,2013,31(3):516-526.][JP]
[37] Buckland W,La Beche H. I.—On the Geology of the neighbourhood of weymouth and the adjacent parts of the coast of dorset[J].Transactions of the Geological Society of London,1835,1:1-46.
[38] Long Pengyu, Zhang Jinchuan,Tang Xuan,et al.Feature of muddy shale fissure and its effect for shale gas exploration and development[J].Natural Gas Geoscience,2011,22(3):525-532.
[龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学,2011,22(3):525-532.]
[39] Li Juyuan.Analysis on mineral components and frangibility of shales in Dongying Depression[J].Acta Sedimentologica Sinica,2013,31(4):616-620.
[李钜源. 东营凹陷泥页岩矿物组成及脆度分析[J].沉积学报,2013,31(4):616-620.]
[40] Ding Wenlong,Xu Changchun,Jiu Kai,et al.The research progress of shale fractures[J].Advances in Earth Science,2011,26(2):135-144.
[丁文龙,许长春,久凯,等.泥页岩裂缝研究进展[J].地球科学进展, 2011,26(2):135-144.]
[41] Hilgers C,Urai J.On the arrangement of solid inclusions in fibrous veins and the role of the crack-seal mechanism[J].Journal of Structural Geology,2005,27:481-494.
[42] Osborne M,Swarbrick R.Mechanisms for generating overpressure in sedimentary basin:A reevaluation[J].AAPG Bulletin,1997,81:1 023-1 041.
[43] Zhang Shanwen,Zhang Linye,Zhang Shouchun, et al.Formation of abnormal high pressure and its application in the study of oil-bearing property of lithologic hydrocarbon reservoirs in the Dongying Sag[J].Chinese Science Bulletin,2009,(11):1 570-1 578.
[张善文,张林晔,张守春,等.东营凹陷古近系异常高压的形成与岩性油藏的含油性研究[J].科学通报,2009,(11):1 570-1 578.]
[44] Swarbrick R,Osborne M,Yardley G.Comparison of overpressure magnitude resulting from the main generating mechanisms[M]∥Huffman A R,Bowers G L, eds. Pressure Regimes in Sedimentary Basins and Their Prediction.American Association of Petroleum Geologists Memoir,2002,76:1-12.
[JP2][45]Zhao Zhenyu, Zhou Yaoqi, Ma Xiaoming. Study on the similarity of the non-tectonic cracks in mud-shale to underwater shrinkage cracks in present muddy sedimentsJP2][45]Zhao Zhenyu, Zhou Yaoqi, Ma Xiaoming. Study on the similarity of the non-tectonic cracks in mud-shale to underwater shrinkage cracks in present muddy sediments[J].Journal of Xi’an Shiyou University(Natural Science Edition),2008,23(3):6-11.
[赵振宇,周瑶琪,马晓鸣.泥岩非构造裂缝与现代水下收缩裂缝相似性研究[J].西安石油大学学报:自然科学版,2008,23(3):6-11.][JP]
[45] [Zhao Zhenyu, Zhou Yaoqi, Ma Xiaoming. Study on the similarity of the non-tectonic cracks in mud-shale to underwater shrinkage cracks in present muddy sediments[J].Journal of Xi’an Shiyou University(Natural Science Edition),2008,23(3):6-11.
[赵振宇,周瑶琪,马晓鸣.泥岩非构造裂缝与现代水下收缩裂缝相似性研究[J].西安石油大学学报:自然科学版,2008,23(3):6-11.][JP]
[46] Guo Xiaowen,He Sheng,Song Guoqi,et al.Evidences of overpressure caused by oil generation in Dongying Depression[J].Earth Science—Journal of China University of Geosciences,2011,36(6):1 085-1 094.
[郭小文,何生,宋国奇,等.东营凹陷生油增压成因证据[J].地球科学:中国地质大学学报,2011,36(6):1 085-1 094.]
[47] Zanella A,Cobbold P,Rojas L.Beef veins and thrust detachments in Early Cretaceous source rocks,foothills of Magallanes-Austral Basin,southern Chile and Argentina: Structural evidence for fluid overpressure during hydrocarbon maturation[J].Marine and Petroleum Geology,2014,55:250-261.
[48] Jochum J,Friedrich G,Leythaeuser D,et al.Hydrocarbon bearing fluid inclusions in calcite-filled horizontal fractures from mature Posidonia Shale(Hils Syncline,NW German)[J].Ore Geology Reriews,1995,9:363-370.
[49] Liu Qing,Zhang Linye,Shen Zhongmin,et al.Microfracture occurrence and its significance to the hydrocarbons expulsion in source rocks with high organic matter abundance,Dongying Depression[J].Geological Review,2004,50(6):593-597.
[刘庆,张林晔,沈忠民,等.东营凹陷富有机质烃源岩顺层微裂隙的发育与油气运移[J].地质论评,2004,50(6):593-597.]
[50] Rodrigues N.Fracturation Hydraulique et Forces de Courant:Modélisation Analogique et Données de Terrain[D].France: Université de Rennes 1,2008.
[51] Michaels J.Veins,fluid migration and hydrocarbon generation in the Utica Shale,Northern Appalachian Basin,New York[J]. Colgate Academic Review,2012,9(1):292-315.
[52] Parnell J,Carey P.Emplacement of bitumen (asphaltite) veins in the Neuquén Basin,Argentina[J]. AAPG Bulletin,1995,79(12):1 798-1 815.
[53] Parnell J,Honghan C,Middleton D, et al. Significance of fibrous mineral veins in hydrocarbon migration:Fluid inclusion studies[J].Journal of Geochemical Exploration,2000,69/70:623-627.
[54] Zanella A,Cobbold P,Boassen T. Natural hydraulic fractures in the Wessex Basin,SW England: Widespread distribution,composition and history[J].Marine and Petroleum Geology,2015, in press.
[55] Sibson R.Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes[J].AAPG Bulletin,2003,87(6):901-908.
[56] Hillis R.Pore pressure/stress coupling and its implications for rock failure[J].Geological Society,London,Special Publications,2003,216(1):359-368.
[57] Hillier R,Cosgrove J.Core and seismic observations of overpressure related deformation within Eocene sediments of the Outer Moray Firth,UKCS[J].Petroleum Geoscience,2002,8:141-149.
[58] Leythaeuser D,Littke R,Radke M, et al.Geochemical effects of petroleum migration and expulsion from Toarcian source rocks in the Hils syncline area,NW-Germany[J].Organic Geochemistry,1988,13(1):489-502.
[59] Zhang Yanni,Li Rongxi,Liu Haiqing.A review of fibrous calcite veins and tectonic fluids[J].Geologaical Science and Technology Information,2014,33(4):12-18.
[张艳妮,李荣西,刘海青.纤维状方解石脉与构造流体研究[J].地质科技情报,2014,33(4):12-18.]
[60] Cox S,Etheridge M.Crack-seal fibre growth mechanisms and their significance in the development of oriented layer silicate microstructures[J].Tectonophysics,1983,92:147-170.
[61] Passchier C,Trouw R.Microtectonics[M].Berlin:Springer,1996.
[62] Lee Y,Wiltschko D,Grossman E,et al.Sequential vein growth with fault displacement: An example from the Austin Chalk Formation,Texas[J].Journal of Geophysical Research: Solid Earth(1978-2012) ,1997,102(B10):22 611-22 628.
[63] Zeng Jianhui,Yang Zhifeng,Feng Xiao,et al.Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J].Advances in Earth Science,2014,29(6):651-661.
[曾溅辉,杨智峰,冯枭,等.致密储层油气成藏机理研究现状及其关键科学问题[J].地球科学进展,2014,29(6) :651-661.]
[1] 王佳, 谭先锋, 曾春林, 陈青, 冉天, 薛伟伟, 李霞, 陈岑. 泥质岩成岩系统过程及其对SiO 2赋存状态的制约——以渝东南地区龙马溪组为例[J]. 地球科学进展, 2017, 32(3): 292-306.
[2] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[3] 吴帅男,陈仕涛, 段福才. 北半球72 ka BP气候突变事件及其与Toba火山的关系[J]. 地球科学进展, 2012, 27(1): 35-41.
[4] 高金耀,吴招才,王健,杨春国,张涛. 南海北部陆缘磁静区及与全球大洋磁静区对比的研究评述[J]. 地球科学进展, 2009, 24(6): 577-588.
[5] 李岩峰,曲国胜,张进. 弧形构造研究进展[J]. 地球科学进展, 2007, 22(7): 708-715.
[6] 马柯阳. 凝析油形成新模式——原油蒸发分馏机制研究[J]. 地球科学进展, 1995, 10(6): 567-571.
[7] 刘文彬. 陕甘宁盆地泥质岩氧化物的比值及其古气候意义[J]. 地球科学进展, 1993, 8(6): 57-62.
[8] 张泽明; 游振东. 大别山榴辉岩带的研究进展及评述[J]. 地球科学进展, 1993, 8(4): 38-44.
[9] 时伟荣,沈焕庭,李九发. 河口浑浊带成因综述[J]. 地球科学进展, 1993, 8(1): 8-13.
阅读次数
全文


摘要