地球科学进展 ›› 2002, Vol. 17 ›› Issue (1): 44 -52. doi: 10.11867/j.issn.1001-8166.2002.01.0044

综述与评述 上一篇    下一篇

陆面模式中土壤冻融过程参数化研究进展
王澄海 1,2,董文杰 3,韦志刚 2   
  1. 1.兰州大学资源环境学院大气科学系,甘肃 兰州 730000;2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;3.中国科学院大气物理研究所,北京 100029
  • 收稿日期:2001-04-04 修回日期:2001-06-15 出版日期:2002-12-20
  • 通讯作者: 王澄海(1961-),男,甘肃秦安人,副教授,主要从事陆面过程和气候变化研究.E-mail: wchlu@hotmail.com E-mail:wchlu@hotmail.com
  • 基金资助:

    国家自然科学基金项目“青藏高原季节冻融过程与中国夏季降水关系的研究”(编号:40175020);中国科学院知识创新工程项目“西部生态环境演变规律与水土资源可持续利用研究”(编号:KZCX1-10-07);中国科学院寒区旱区环境与工程研究所创新课题“典型流域气候与环境协调模式发展研究”;中国科学院知识创新工程重要项目“亚洲季风区海—陆—气相互作用对我国气候变化的影响”(编号:ZKCX2-210)资助.

THE DEVELOPMENT OF STUDY ON THE SOIL FREEZING THAW PROCESS IN LAND SURFACE MODEL

WANG Chenghai 1,2, DONG Wenjie 3, WEI Zhigang 2   

  1. 1.College of Resource and Environmental of Lanzhou University, Lanzhou 730000,China; 2.Cold and Arid Regions Environmental and Engineering Institute, CAS, Lanzhou 730000,China; 3.Atomosphere Physical Institute, CAS, Beijing 100029,China
  • Received:2001-04-04 Revised:2001-06-15 Online:2002-12-20 Published:2002-02-01

土壤冻融过程在寒区水文和气候系统中有着重要作用。陆面模式中土壤冻融过程的参数化对模式的设计和模拟结果有着关键作用。通过对广泛应用的Bucket,SIB,BATS,VIC,BEAS, LSM等几种主要的陆面模式中的冻融过程参数化方案进行了总结和比较。首先,详尽地描述了土壤冻融与气候变化的数值模拟研究,总结和评述了土壤冻融过程对气候变化的作用。其次,对几种主要的陆面过程模式在土壤水热参数化方案中对冻融过程的考虑及其特点进行了比较和讨论。还对冻结深度和冻结周期的预报模式进行了简介,最后对该领域当前面临的主要研究问题进行了探讨和阐述。

 The role of soil moisture is important in climate and climate change. In climate simulations, anomalies in soil moisture affect the precipitation, temperature and motion fields of the atmosphere at the regional and global scale. It has important role in the design of land surface model and general circulation model. The parameterization of soil freezing-thaw in land surface model is difficult issue in many modeling groups currently investigating how well it can be simulated. Most studies have focused on the role of liquid soil moisture in climate modeling with the role of seasonally frozen soil moisture receiving little attention. Compared and concluded freezing-thaw processes within some major Land surface processor schemes (SSIB, BATS, VIC, BASE and LSM) in this paper. First, the theory background and development history in soil moisture parameterization is reviewed. The hydrological importance of freezing processes for the 35% of the Earth’s surface which is subject to freezing and thawing is well documented. However, modeling the complexity of the frozen soil system is challenging and has received some attention. It is understandable that far simpler models have evolved which aim to represent the key feature of freezing and thawing. Then, how frozen soil moisture is a parameterized in climate model (Bucket, SSIB, BATS, VIC, BASE and LSM) is described. And it is suggest that most problems could be linked to the parameterization of hydraulic conductivity, it is related to the layer of soil column also. And to improve the simulations further, it may be necessary to model the effects of cryoturbation (including macropores), freezing fronts, icelensing and other periglacial processes. Finally, we conclude and discussed the development will been studied in this field.

中图分类号: 

[1]Namias J. Persistence of midtropospheric circulation between adjacent months and seasons[A]. Rossby Memorial Volume[C].Oxford:  Rockefeller Institute Press and Oxford University Press, 1958. 240-248. 
[2] Namias J. Surface atmosphere interactions as fundamental cause of droughts and other climatic fluctuation[A]. Arid Zone Research,Vol. 20 Changes of climate Proc of Rome Symp,UNESCO[C]. Paris, 1963.345-359.  
[3]Manabe S.Climate and ocean circulation, Ⅰ:The atmospheric circulation and the hydrology of the Earth's surface[J]. Mon Wea Rev, 1969,91:739-798. 
[4]Shukla J, Mintz. Influence of land-surface evapotranspiration on the Earth’s climate[J]. Scince,1982, 215:1 498-1 501 .
[5]Simmonds I, Lynch A H. The influence of pre-existing soil moisture content on Australian winter climate[J]. Int J Climate, 1992,12: 33-54. 
[6]Ma Zhuguo, Wei Helin, Fu Congbin. Progress in the research on the relationship between soil moisture and climate change[J]. Advance in Earth Sciences,1999,14(3):299-304.[马柱国,魏和林,符淙斌.土壤湿度与气候变化关系的研究与进展[J].地球科学进展,1999.14(3):299-304.] 
[7]Willim P J, Smith M W. The Frozen Earth[M]. New York: Cambridge Univ Press, 1989.
[8]Rouse W R. Microclimate of arctic tree line.Ⅱ.Soil microclimate of tundra and forest[J]. Water Resour Res, 1984,20:67-73. 
[9]Woo MK. Permafrost hydrology in North America[J]. AtmsOcean, 1986,24:201-234. 
[10]Asare S N, Rudra R P, Dickinson W T,et al. Seasonal variability of hydraulic conductivity[J]. Trans ASAE, 1993,36:451-457. 
[11]Konrad J M,Duquennoi C. A model for water transport and icelensing in freezing soils[J]. Water Resources Research,1993,29(9):3 109-3 124. 
[12]Lan kennedy, Brenton Sharratt. Model comparisons to simulate soil frost depth[J]. Soil Science, 1998,163(8):636-645.  
[13]Larry D Hinzman, Douglas J Goering, Douglas L Kane. A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions[J]. J G R,  1998,103(D22):28 975-28 991. 
[14]YihWu Jame,Donald I. Norum. Heat and mass transfer in a freezing unsatured porous medium[J]. Water Resources Res, 1980,16(4): 811-819.  
[15]Fei Chen, Kenneth Mitchell, John Schaake,et al. Modeling of comparison with FIFE observations[J]. J G R, 1996, 101(D3):7 251-7 268. 
[16]Burt T P,  Williams P J. Hydraulic conductivity in frozen soil[J]. Earth Surf Processes, 1976,1: 349-360.  
[17]Robock A K Y, Vinnikov C A, Schlosser N, et al. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket model[J]. J Clim,1995,8:15-35. 
[18]Jame Y W, Normun D I. Heat and transfer in a freezing unsaturated porous medium[J]. Water Resour Res, 1980,16: 811-819. 
[19]Sellers P J, Mintz Y, Sud C Y, et al. A simple biosphere model(SIB) for use within general circulation models[J]. J Atmo Sci, 1986,43(6):505-531. 
[20]Xue Y, Sellers P J, Kinter J L, et al. A simplified biosphere model for global climate studies[J]. J Clim, 1991,4:345-364. 
[21]Xue Y, Zeng F J,  Schlosser C A. SSIB and its sensitivity to soil properties: A case study using HAPEX-Mobility data[J]. Global Planetary Change, 1996,13:183-19. 
[22]HendersonSellers A. Soil moisture: A critical focus for global change studies[J]. Global and Planetary Change, 1996,13:3-9. 
[23]Schlosser C A, Robock A, Vinnikov K Y, et al.18-year Landsurface hydrology model simulations for a midlatitude grassland catchment in Valdai Russia[J]. Mon Wea Rev, 1997, 125:3 279-3 296. 
[24]Dickinson R E, Henderson-sellers A, Kennedy P J. BiosphereAtmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model[Z]. NCAR Tech Note TN-387+STR, 1993. 
[25]Xu Ling, Dennis P Lettenmaier, Eric F Wood, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. J G R, 1994,99(D7): 14 415-14 428.  
[26]Liang X, Wood E F, Lettenmaier D. Modeling ground heat flux in land surface parameterization schemes[J]. J G R, 1999,104(D8): 9 581-9 600. 
[27]Xu Laing, Eric F Wood, Dennis P Lettenmaier. Modeling ground heat flux in land surface parameterization schemes[J]. J G R, 1999,104(D8):9 581-9 600. 
[28]Keith A Cherkauer, Dennis P lettenmaier. Hydrologic effects of frozen soils in the upper Mississippi river basin[J]. J G R,1999,104(D16):19 599-19 610.  
[29]Desborough C E. The impact of root-weighting on the response of transpiration to moisture stress in a land surface scheme[J]. Mon Wea Rev, 1997,125:1 920-1 930. 
[30]Slater A G,  Pitman A J, Desborough C E. Simulation of freeze-thaw cycles in a general circulation model land surface scheme[J]. J G R, 1998,103(D10):11 303-11 312. 
[31]Gordon B Bonan. A land surface model(LSM version 1.0)for Ecological, Hydrological and Atmospheric Studies: Technical Description and User’s Guide[R]. NCAR/TN-417+STR, NCAR Technical Note,1996. 
[32]Gel'fan A N. Comparison of two methods of calculating soil freezing depth[J]. Sov Metero Hydro. 1989,3:278-283. 
[33]Zhang Jing, DingYihui. An improved land-surface processes model and its simulation experiment. part 1:landsurface processes model(LPM-ZD) and its “off-line”tests and performance anlyses[J]. Acta Meteo Sinica,1998,56(1):1-19.[张晶,丁一汇.一个改进的陆面过程描述及其模拟试验研究,第一部分:陆面过程模式及其“独立”(off-line)模拟试验和模式性能分析[J].气象学报,1998,56(1):1-19.] 
[34]Benoit G R, Frost depth and distribution from a heat flow model[A]. Proc. Eastern Snow Conf[C]. Octtawa, Ontario: 1974.7-8,123-144. 
[35]Gusev E M Approximate numerical calculation of soil freezing depth[J]. Sov Metero Hydrol, 1985,9:79-85.
[36]Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue system. I. Theory and development[J]. Trans ASAE,32 1998.565-571.
[37]Jansson P-E. Soil water and heat model. Technical description[C]. Rep  dept soil No.165,Uppsala, Swedish Univ Agric Sci, 1991.
[38]Shufen Sun, Jiming Jin, Yongkang Xue .A simple snow-atmosphere-soil transfer model[J]. J G R, 1999,104(D16):19 587-19 597. 
[39]Fu Peijian, Wang shihong, Lin youheng. The development of the land surface parameterizations for atmosphereic general circulation model[J].Advance in Earth Science.1999,14(1):44-50.[付培建,王世红,林有恒.大气环流模式中地面参数化的发展[J].地球科学进展,1999,14(1):44-50] 
[40] Chen T H. Henderson-Sellers A, Milly P C D, et al. Cabauw Experimental results from the project for intercomparison of landsurface parameterization schemes [J]. Jour Clim, 1997,10(6):1 194-1 215.

[1] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[2] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[3] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[4] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[5] 任晓倩,孙菽芬,陈 文,刘辉志. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013, 28(3): 347-356.
[6] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[7] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[8] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[9] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[10] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.
[11] 尹崇华,延晓冬,石正国. 近年来中等复杂程度地球系统模式的研究进展[J]. 地球科学进展, 2007, 22(3): 290-296.
[12] 朴河春,刘广深,洪业汤. 全球冻融地区土壤是重要的N 20释放源的综合分析[J]. 地球科学进展, 1995, 10(3): 283-288.
[13] 周亚军,陈葆德,孙国武. 陆面过程研究综述[J]. 地球科学进展, 1994, 9(5): 26-31.
[14] 叶笃正,黄荣辉. 我国长江、黄河两流域旱涝规律成因与预测研究的进展、成果与问题[J]. 地球科学进展, 1991, 6(4): 24-29.
阅读次数
全文


摘要