地球科学进展 ›› 2022, Vol. 37 ›› Issue (7): 709 -725. doi: 10.11867/j.issn.1001-8166.2022.034

综述与评述 上一篇    下一篇

泥页岩中水的赋存态研究进展及其意义
周龙政 1( ), 蔡进功 1( ), 李旭 1, 晁静 2, 李政 2   
  1. 1.同济大学海洋地质国家重点实验室,上海 200092
    2.中国石油化工股份有限公司 胜利油田分公司勘探开发研究院,山东 东营 257015
  • 收稿日期:2022-01-30 修回日期:2022-05-11 出版日期:2022-07-10
  • 通讯作者: 蔡进功 E-mail:1831693@tongji.edu.cn;jgcai@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目“泥页岩粘土矿物转化过程中固体酸性变化特征研究”(41972126);国家油气科技重大专项“济阳坳陷古近系烃源岩有机—无机协同演化及其资源潜力评价”(2016ZX05006001-003)

Research Progress and Significance of the Occurrence of Water in Shale

Longzheng ZHOU 1( ), Jingong CAI 1( ), Xu LI 1, Jing CHAO 2, Zheng LI 2   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    2.Research Institute of Exploration and Development, Shengli Oilfield Company, SINOPEC, Dongying Shandong 257015, China
  • Received:2022-01-30 Revised:2022-05-11 Online:2022-07-10 Published:2022-07-21
  • Contact: Jingong CAI E-mail:1831693@tongji.edu.cn;jgcai@tongji.edu.cn
  • About author:ZHOU Longzheng (1995-), male, Shangrao City, Jiangxi Province, Master student. Research area include petroleum geology research. E-mail: 1831693@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Research on the change characteristics of solid acid during transformation of clay minerals in shale”(41972126);The National Oil and Gas Special Fund “Organic-inorganic co-evolution and resource potential evaluation of Paleogene source rocks in Jiyang depression”(2016ZX05006001-003)

泥页岩中的水具有多种赋存态,明确其赋存形式、各赋存态水的含量及其分布特征,有利于进一步理解“油(气)—水—岩石”之间的内在联系,对页岩油气的生成、存储、运移和勘探开发具有重要的指导意义。目前关于泥页岩中不同水的分类繁杂且不统一,综合现有的划分方法,提出基于水的赋存态将其划分为自由态的可动水、体积充填态的毛管束缚水、表面吸附态的水膜束缚水以及离子态的结构水4种类型。其中,束缚水是油气存储空间的“竞争者”和运输通道上的“障碍物”,水膜束缚水主要占据页岩油气的有效吸附位,而毛管束缚水则会堵塞部分小孔道。同时,水的赋存态会随矿物和有机质的自身变化而发生改变,从而影响储层的润湿性和页岩油气的勘探开发。此外,探讨泥页岩中矿物、有机质和孔隙性质对水的赋存机制的影响,并调研热分析和核磁共振等检测方法以研究泥页岩中不同赋存态水的含量、位置以及微观分布特征,以期为页岩油气的高效开发提供理论基础。

Clarifying the occurrence, form, content, and distribution of water in shale is conducive to further understanding the internal relationship between “oil (gas)-water-rock”. This line of research has implications in guiding the generation, storage, migration, exploration, and development of shale oil and gas. Considering that the current classification of different waters in shale is complex and inconsistent, a classification approach based on the occurrence state of water is proposed combined with existing classification methods. Specifically, it categorizes water into free-state movable water, volume-filled capillary-bound water, surface-adsorbed bound water film, and structured water of ionic state. Irreducible water is the “competitor” of the storage space and an “obstacle” in the transportation channel for oil (gas). The bound water film occupies the effective adsorption sites of shale oil and gas, and the capillary-bound water blocks small pores and throats. Simultaneously, the occurrence state of water changes with changes in the minerals and organic matter, thus affecting the wettability of the reservoir and the exploration and development of shale oil and gas. In addition, the influence of minerals, organic matter, and pore characteristics on the occurrence-related mechanisms of water in shale were discussed, and thermal analysis and nuclear magnetic resonance detection methods were applied to understand the content, location, and microscopic distribution characteristics of different occurrences of water. This was done to provide a theoretical basis for the efficient development of shale oil and gas.

中图分类号: 

表1 矿物学上划分不同水的属性参数
Table 1 Different water attribute parameters for mineralogical division
图1 不同赋存态水的划分
Fig. 1 The division of different occurrence of water
图2 不同赋存态水在泥页岩无机孔隙中的分布(据参考文献[ 36 ]修改)
Fig. 2 The distribution of different occurrence of water in the inorganic pores of shalemodified after reference 36 ])
图3 泥页岩中水的赋存态影响因素
Fig. 3 Factors influencing the occurrence of water in shale
表2 干酪根模型单元的部分结构参数
Table 2 Structural parameters of the kerogen model units
表3 常用饱和盐溶液所对应的平衡相对湿度值
Table 3 Equilibrium relative humidity values corresponding to commonly used saturated salt solutions
表4 泥页岩中不同赋存态水的脱水温度
Table 4 Dehydration temperature of different occurrence of water in shale
表5 页岩中不同赋存态水在 T1-T2 二维谱上的弛豫时间比较
Table 5 Comparison of relaxation characteristics on T 1- T 2 map of different occurrence of water in shale
61 杨胜来, 魏俊之. 油层物理学[M]. 北京:石油工业出版社, 2004.
62 SUN Chao, YAO Suping, LI Jinning, et al. The characterization of shale oil reservoir in Dongying sag[J]. Geological Review, 2016, 62(6): 1 497-1 510.
孙超, 姚素平, 李晋宁, 等. 东营凹陷页岩油储层特征[J]. 地质论评, 2016, 62(6): 1 497-1 510.
63 CHEN Z Y, SONG Y, LI Z, et al. The occurrence characteristics and removal mechanism of residual water in marine shales: a case study of Wufeng-Longmaxi shale in Changning-Weiyuan area, Sichuan Basin[J]. Fuel, 2019, 253: 1 056-1 070.
64 LI Jing, CHEN Zhangxing, LI Xiangfang, et al. A quantitative research of water distribution characteristics inside shale and clay nanopores[J]. Scientia Sinica (Technologica), 2018, 48(11): 1 219-1 233.
李靖, 陈掌星, 李相方, 等. 页岩及黏土纳米孔隙中液态水分布量化研究[J]. 中国科学: 技术科学, 2018, 48(11): 1 219-1 233.
65 LI Junqian, LU Shuangfang, ZHANG Pengfei, et al. Quantitative characterization and microscopic occurrence mechanism of pore water in shale matrix[J]. Acta Petrolei Sinica, 2020, 41(8): 979-990.
李俊乾, 卢双舫, 张鹏飞, 等. 页岩基质孔隙水定量表征及微观赋存机制[J]. 石油学报, 2020, 41(8): 979-990.
66 LUO Cuijuan, ZHANG Dengfeng, ZHAO Chunpeng, et al. Occurrence and distribution of moisture in gas shale reservoirs: a perspective[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2 726-2 737.
罗翠娟, 张登峰, 赵春鹏, 等. 含气页岩中水分赋存与分布的研究进展[J]. 化工进展, 2019, 38(6): 2 726-2 737.
67 LI J, LI X F, WU K L, et al. Water sorption and distribution characteristics in clay and shale: effect of surface force[J]. Energy & Fuels, 2016, 30(11): 8 863-8 874.
68 SHEN Weijun, LI Xizhe, LU Xiaobing, et al. Study on moisture transport characteristics of shale based on isothermal adsorption[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 932-939.
沈伟军, 李熙喆, 鲁晓兵, 等. 基于等温吸附的页岩水分传输特征研究[J]. 力学学报, 2019, 51(3): 932-939.
69 XUE Rong, DENG Qian, LU Xiancai, et al. Molecular dynamics simulation of the wettability of kaolinite and illite[J]. Geological Journal of China Universities, 2015, 21(4): 594-602.
薛荣, 邓倩, 陆现彩, 等. 高岭石和伊利石表面润湿性的分子动力学研究[J]. 高校地质学报, 2015, 21(4): 594-602.
70 EASLEY T G, SIGAL R, RAI C. Thermogravimetric analysis of Barnett shale samples[C]// International symposium of the society of core analysts. Calgary, Alberta, Canada: Society of Core Analysts, 2007.
71 ZHAO Tianyi. Study on storage and microscale seepage mechanism of shale gas[D]. Beijing: China University of Petroleum (Beijing), 2018.
赵天逸. 页岩气赋存方式及渗流规律研究[D]. 北京:中国石油大学(北京), 2018.
72 ZHAO Xingyuan, HE Dongbo. Clay minerals and shale gas[J]. Xinjiang Petroleum Geology, 2012, 33(6): 643-647, 633.
赵杏媛, 何东博. 黏土矿物与页岩气[J]. 新疆石油地质, 2012, 33(6): 643-647, 633.
73 WU Q H, DENG Y J, FAN X X, et al. Effect of mineral surface properties on water behaviors in pores constructed by calcite and silica particles[J]. The Journal of Physical Chemistry C, 2019, 123(21): 13 288-13 294.
1 BOYER C, KIESCHNICK J, SUAREZ-RIVERA R, et al. Producing gas from its source[J]. Oilfield Review, 2006, 18: 36-49.
2 ZOU Caineng, TAO Shizhen, HOU Lianhua. Unconventional petroleum geology [M]. Second Edition. Beijing: Geological Publishing House, 2013.
邹才能, 陶士振, 侯连华. 非常规油气地质[M]. 2版. 北京: 地质出版社, 2013.
3 ZHANG Linye, LI Juyuan, LI Zheng, et al. Advances in shale oil /gas research in North America and considerations on exploration for continental shale oil /gas in China[J]. Advances in Earth Science,2014,29(6):700-711.
张林晔, 李钜源, 李政,等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展, 2014, 29(6):700-711.
4 WEBBER J B W, CORBETT P, SEMPLE K T, et al. An NMR study of porous rock and biochar containing organic material[J]. Microporous and Mesoporous Materials, 2013, 178: 94-98.
5 LUO Chengxian, ZHOU Weihui. Shale oil development in US and implications[J]. Sino-Global Energy, 2013, 18(3): 33-40.
罗承先, 周韦慧. 美国页岩油开发现状及其巨大影响[J]. 中外能源, 2013, 18(3): 33-40.
6 ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454.
邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399, 454.
7 PASSEY Q R, BOHACS K, ESCH W L, et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs[C]// International oil and gas conference and exhibition in China.OnePetro,2010.
8 ZHANG P F, LU S F, LI J Q. Characterization of pore size distributions of shale oil reservoirs: a case study from Dongying sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 297-308.
9 YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11.
杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11.
74 LIAO Yumei. The wettability of tight sandtone and its significance of hydrocarbon accumulation of Yanchang formation, Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2016.
廖玉梅. 鄂尔多斯盆地延长组致密砂岩润湿性及其油气成藏意义[D]. 北京: 中国石油大学(北京), 2016.
75 CHAI Rukuan, LIU Yuetian, WANG Junqiang, et al. Molecular dynamics simulation of wettability of calcite and dolomite[J]. Chinese Journal of Computational Physics, 2019, 36(4): 474-482.
柴汝宽, 刘月田, 王俊强, 等. 分子动力学模拟方解石和白云石润湿性[J]. 计算物理, 2019, 36(4): 474-482.
76 WU Chunzheng, XUE Haitao, LU Shuangfang, et al. Measurement and analysis of oil-water contact angle on several common minerals[J]. Geoscience, 2018, 32(4): 842-849.
吴春正, 薛海涛, 卢双舫, 等. 几种常见矿物的油—水—矿物接触角测量及其讨论[J]. 现代地质, 2018, 32(4): 842-849.
77 ODUSINA E O, SONDERGELD C H, RAI C S. NMR study of shale wettability[C]// Canadian unconventional resources conference. Society of Petroleum Engineers, 2011.
78 JOSH M, ESTEBAN L, DELLE P C, et al. Laboratory characterisation of shale properties[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 107-124.
79 ZOU J, REZAEE R, YUAN Y J, et al. Distribution of adsorbed water in shale: an experimental study on isolated kerogen and bulk shale samples[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106858.
80 GUO Juanhong, ZOU Yanrong, YAN Yonghe, et al. Evolutional characteristics of the kerogen molecular structure during the low-mature stage: an infrared spectra analysis[J]. Geochimica, 2014, 43(5): 529-537.
郭隽虹, 邹艳荣, 颜永何, 等. 干酪根分子结构在低熟阶段的演化特征: 基于红外光谱分析[J]. 地球化学, 2014, 43(5): 529-537.
10 ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
邹才能, 翟光明, 张光亚, 等. 全球常规—非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25.
11 LI Zhiming, LIU Peng, QIAN Menhui, et al. Quantitative comparison of different occurrence oil for lacustrine shale: a case from cored interval of shale oil special drilling wells in Dongying depression, Bohai Bay Basin[J]. Journal of China University of Mining & Technology, 2018, 47(6): 1 252-1 263.
李志明, 刘鹏, 钱门辉, 等. 湖相泥页岩不同赋存状态油定量对比: 以渤海湾盆地东营凹陷页岩油探井取心段为例[J]. 中国矿业大学学报, 2018, 47(6): 1 252-1 263.
12 ZHU X J, CAI J G, LIU W X, et al. Occurrence of stable and mobile organic matter in the clay-sized fraction of shale: significance for petroleum geology and carbon cycle[J]. International Journal of Coal Geology, 2016, 160/161: 1-10.
13 YANG Farong, ZUO Luo, HU Zhiming, et al. Researching the water imbibition characteristic of shale by experiment[J]. Science Technology and Engineering, 2016, 16(25): 63-66, 74.
杨发荣, 左罗, 胡志明, 等. 页岩储层渗吸特性的实验研究[J]. 科学技术与工程, 2016, 16(25): 63-66, 74.
14 HUANG Ruizhe, JIANG Zhenxue, GAO Zhiye, et al. Effect of composition and structural characteristics on spontaneous imbibition of shale reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 111-115.
黄睿哲, 姜振学, 高之业, 等. 页岩储层组构特征对自发渗吸的影响[J]. 油气地质与采收率, 2017, 24(1): 111-115.
15 XIAO Wenlian, ZHANG Junqiang, DU Yang, et al. An experimental study on NMR response characteristics of imbibition subjected to pressure in shale[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6): 13-18.
肖文联, 张骏强, 杜洋, 等. 页岩带压渗吸核磁共振响应特征实验研究[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 13-18.
16 YE Hongtao, NING Zhengfu, WANG Qing, et al. Spontaneous imbibition experiment and wettability of shale reservoir[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 84-87.
叶洪涛, 宁正福, 王庆, 等. 页岩储层自发渗吸实验及润湿性研究[J]. 断块油气田, 2019, 26(1): 84-87.
17 ZHANG Feng, RONG Mang, WU Xiaoming, et al. Characteristics of wettability and imbibition between continental and marine shales[J]. Science Technology and Engineering, 2019, 19(32): 126-132.
81 LIU Guangdi. Petroleum geology[M]. Fourth Edition. Beijing:Petroleum Industry Press, 2009.
柳广弟. 石油地质学[M]. 4版. 北京:石油工业出版社, 2009.
82 ZHAO T Y, LI X F, ZHAO H W, et al. Molecular simulation of adsorption and thermodynamic properties on type II kerogen: influence of maturity and moisture content[J]. Fuel, 2017, 190: 198-207.
83 KELEMEN S R, AFEWORKI M, GORBATY M L, et al. Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods[J]. Energy & Fuels, 2007, 21(3): 1 548-1 561.
84 UNGERER P, COLLELL J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: influence of organic type and maturity[J]. Energy & Fuels, 2015, 29(1): 91-105.
85 CHEN J, XIAO X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181.
86 POMMER M, MILLIKEN K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1 713-1 744.
87 MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of devonian and mississippian new albany shale across a maturation gradient: insights from organic petrology', gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1 621-1 643.
88 CAO Taotao, SONG Zhiguang. Effects of organic matter properties on organic pore development and reservoir[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 7-13.
曹涛涛, 宋之光. 页岩有机质特征对有机孔发育及储层的影响[J]. 特种油气藏, 2016, 23(4): 7-13.
89 YU Bingsong. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers, 2013, 20(4): 211-220.
于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4): 211-220.
17 张峰, 荣莽, 乌效鸣, 等. 陆相与海相页岩水相润湿渗吸特征[J]. 科学技术与工程, 2019, 19(32): 126-132.
18 AMBROSE R J, HARTMAN R C, DIAZ-CAMPOS M, et al. Shale gas-in-place calculations part I: new pore-scale considerations[J]. SPE Journal, 2012, 17(1): 219-229.
19 FANG Chaohe, HUANG Zhilong, WANG Qiaozhi, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience, 2014, 25(3): 471-476.
方朝合, 黄志龙, 王巧智, 等. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学, 2014, 25(3): 471-476.
20 HU Zhiming, DUAN Xianggang, HE Yabin, et al. Influence of reservoir primary water on shale gas occurrence and flow capacity[J]. Natural Gas Industry, 2018, 38(7): 44-51.
胡志明, 端祥刚, 何亚彬, 等. 储层原生水对页岩气赋存状态与流动能力的影响[J]. 天然气工业, 2018, 38(7): 44-51.
21 Editorial Committee of the Book “Series of Shale Gas Geology and Its Exploration and Development Practice”. New progress made in exploration and development of shale gas in North America[M]. Beijing: Petroleum Industry Press,2011.
《页岩气地质与勘探开发实践丛书》编委会.北美地区页岩气勘探开发进展 [M].北京:石油工业出版社,2011.
22 LI Jing, LI Xiangfang, WANG Xiangzeng, et al. A quantitative model to determine water-saturation distribution characteristics inside shale inorganic pores[J]. Acta Petrolei Sinica, 2016, 37(7): 903-913.
李靖, 李相方, 王香增, 等. 页岩无机质孔隙含水饱和度分布量化模型[J]. 石油学报, 2016, 37(7): 903-913.
23 WANG Min, WANG Yongshi, ZHU Jiajun, et al. Enrichment evaluation of shale oil reservoir based on porosity-oil saturation analysis: a case study of Sha 3 formation in Zhanhua sag[J]. Science Technology and Engineering, 2016, 16(32): 36-41.
90 SHEN W J, LI X Z, LU X B, et al. Experimental study and isotherm models of water vapor adsorption in shale rocks[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 484-491.
91 LI J Q, WANG S Y, LU S F, et al. Microdistribution and mobility of water in gas shale: a theoretical and experimental study[J]. Marine and Petroleum Geology, 2019, 102: 496-507.
92 LI Ning, ZHOU Keming, ZHANG Qingxiu, et al. Experimental research on irreducible water saturation[J]. Natural Gas Industry, 2002, 22(): 110-113.
李宁, 周克明, 张清秀, 等. 束缚水饱和度实验研究[J]. 天然气工业, 2002, 22(): 110-113.
93 FUKATSU Y, MORIKAWA K, IKEDA Y, et al. Temperature and size effects on structural and dynamical properties of water confined in 1-10 nm-scale pores using proton NMR spectroscopy[J]. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry, 2017, 33(8): 903-909.
94 SANG G J, LIU S M, ZHANG R, et al. Nanopore characterization of mine roof shales by SANS, nitrogen adsorption, and mercury intrusion: impact on water adsorption/retention behavior[J]. International Journal of Coal Geology, 2018, 200: 173-185.
95 LI J, LI X F, WU K L, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay[J]. International Journal of Coal Geology, 2017, 179: 253-268.
96 DURAND M, NIKITIN A, MCMULLEN A, et al. Crushed-rock analysis workflow based on advanced fluid characterization for improved interpretation of core data[J]. Petrophysics, 2019, 60(6): 755-769.
97 TESTAMANTI M N, REZAEE R. Determination of NMR T2 cut-off for clay bound water in shales: a case study of Carynginia Formation, Perth Basin, western Australia[J]. Journal of Petroleum Science and Engineering, 2017, 149: 497-503.
98 HU M Q, PERSOFF P, WANG J S Y. Laboratory measurement of water imbibition into low-permeability welded tuff[J]. Journal of Hydrology, 2001, 242(1/2): 64-78.
23 王敏, 王永诗, 朱家俊, 等. 基于孔隙度—饱和度参数分析页岩油富集程度: 以沾化凹陷沙三下亚段为例[J]. 科学技术与工程, 2016, 16(32): 36-41.
24 LIU Honglin, WANG Hongyan. Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in South China[J]. Natural Gas Industry, 2013, 33(7): 140-144.
刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33(7): 140-144.
25 CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 223-239.
26 CHALMERS G R, BUSTIN M R. The effects and distribution of moisture in gas shale reservoir systems[C]// AAPG annual convention and exhibition. Louisiana, New Orleans, 2010.
27 ROSS D J K, MARC B R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
28 PAN Z J, CONNELL L D, CAMILLERI M, et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010, 89(11): 3 207-3 217.
29 GASPARIK M, GHANIZADEH A, GENSTERBLUM Y, et al. “Multi-temperature” method for high-pressure sorption measurements on moist shales[J]. Review of Scientific Instruments, 2013, 84(8): 085116.
30 YUAN W N, PAN Z J, LI X, et al. Experimental study and modelling of methane adsorption and diffusion in shale[J]. Fuel, 2014, 117: 509-519.
31 MERKEL A, FINK R, LITTKE R. The role of pre-adsorbed water on methane sorption capacity of Bossier and Haynesville shales[J]. International Journal of Coal Geology, 2015, 147/148: 1-8.
32 CHENG P, TIAN H, XIAO X, et al. Water distribution in overmature organic-rich shales: implications from water adsorption experiments[J]. Energy & Fuels, 2017, 31(12): 13 120-13 132.
33 WANG S, FENG Q H, ZHA M, et al. Supercritical methane diffusion in shale nanopores: effects of pressure, mineral types, and moisture content[J]. Energy & Fuels, 2018, 32(1): 169-180.
99 ASTM E. Standard practice for maintaining constant relative humidity by means of aqueous solutions[Z]. ASTM Designation E 104-85, 1985: 790-795.
100 LI Xiangfang, PU Yunchao, SUN Changyu, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J]. Acta Petrolei Sinica, 2014, 35(6): 1 113-1 129.
李相方, 蒲云超, 孙长宇, 等. 煤层气与页岩气吸附/解吸的理论再认识[J]. 石油学报, 2014, 35(6): 1 113-1 129.
101 ACHANG M, PASHIN J C, ATEKWANA E A. The influence of moisture on the permeability of crushed shale samples[J]. Petroleum Science, 2019, 16(3): 492-501.
102 CROSDALE P J, MOORE T A, MARES T E. Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir[J]. International Journal of Coal Geology, 2008, 76(1/2): 166-174.
103 LABUS M, LABUS K, BUJOK P. Determination of the pore space parameters in microporous rocks by means of thermal methods[J]. Journal of Petroleum Science and Engineering, 2015, 127: 482-489.
104 HANDWERGER D A, WILLBERG D M, PAGLS M, et al. Reconciling retort versus Dean Stark measurements on tight shales[C]// SPE annual technical conference and exhibition. Society of Petroleum Engineers, 2012.
105 SONDERGELD C H, NEWSHAM K E, COMISKY J T, et al. Petrophysical considerations in evaluating and producing shale gas resources[C]// SPE unconventional gas conference. Society of Petroleum Engineers, 2010.
106 API R P. Recommended practices for core analysis[M]. Washington, D.C.: American Petroleum Institute, 1998: 40.
107 ŚRODOŃ J, MCCARTY D K. Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements[J]. Clays and Clay Minerals, 2008, 56(2): 155-174.
34 CHENG P, XIAO X M, WANG X, et al. Evolution of water content in organic-rich shales with increasing maturity and its controlling factors: implications from a pyrolysis experiment on a water-saturated shale core sample[J]. Marine and Petroleum Geology, 2019, 109: 291-303.
35 LI Haibo, GUO Hekun, LI Haijian, et al. Thickness analysis of bound water film in tight reservoir[J]. Natural Gas Geoscience, 2015, 26(1): 186-192.
李海波, 郭和坤, 李海舰, 等. 致密储层束缚水膜厚度分析[J]. 天然气地球科学, 2015, 26(1): 186-192.
36 LI J, LI X F, WANG X Z, et al. Water distribution characteristic and effect on methane adsorption capacity in shale clay[J]. International Journal of Coal Geology, 2016, 159: 135-154.
37 FENG D, LI X F, WANG X Z, et al. Water adsorption and its impact on the pore structure characteristics of shale clay[J]. Applied Clay Science, 2018, 155: 126-138.
38 LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3 691-3 723.
39 SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6 964): 327-333.
40 WANG Y S, ZHANG S C, ZHU R F. Water consumption in hydrocarbon generation and its significance to reservoir formation[J]. Petroleum Exploration and Development, 2013, 40(2): 259-267.
41 ZHENG Lunju. Formation process and evolution mode of petroleum controlled by PVT[D]. Wuhan: China University of Geosciences, 2013.
郑伦举. PVT共控作用下油气的形成过程与演化模式[D]. 武汉: 中国地质大学, 2013.
42 ZHOU G, GU Z, HU Z, et al. Characterization and interpretation of organic matter, clay minerals, and gas shale rocks with low-field NMR[J]. Journal of Petroleum Science and Engineering, 2020, 195(4): 107926.
108 KALJUVEE T, KEELMANN M, TRIKKEL A, et al. Thermooxidative decomposition of oil shales[J]. Journal of Thermal Analysis and Calorimetry, 2011, 105(2): 395-403.
109 KUILA U, PRASAD M. Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61(2): 341-362.
110 Edition S. Recommended practices for core analysis[M]. Washington, D.C.: API Publishing Services, 2010.
111 DFAZ A P, ROEGIERS J C. Water distribution: a key factor to characterize shale[C]// DC Rocks 2001, The 38th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, 2001.
112 YARIV S. Differential Thermal Analysis (DTA) of organo-clay complexes[M]// Thermal analysis in the geosciences. Berlin/Heidelberg: Springer-Verlag, 2005: 328-351.
113 LAFARGUE E, MARQUIS F, PILLOT D. Rock-eval 6 applications in hydrocarbon exploration, production, and soil contamination studies[J]. Revue de l'Institut Français du Pétrole, 1998, 53(4): 421-437.
114 CAI Jingong, LU Longfei, BAO Yujin, et al. The significance and variation characteristics of interlay water in smectite of hydrocarbon source rocks [J]. Science China:Earth Science, 2012, 42(4):483-491.
蔡进功, 卢龙飞, 包于进,等. 烃源岩中蒙皂石结合有机质后层间水的变化特征及其意义[J]. 中国科学:地球科学, 2012, 42(4):483-491.
115 COBURN T T, OH M S, CRAWFORD R W, et al. Water generation during pyrolysis of oil shales. 1. sources[J]. Energy & Fuels, 1989, 3(2): 216-223.
116 GU Changchun, WANG Weimin, GUO Hekun, et al. Experimental research of cuttings analysis using nuclear magnetic resonance technology[J]. Chinese Journal of Magnetic Resonance, 2002, 19(3): 281-288.
谷长春, 王为民, 郭和坤, 等. 现场岩屑核磁共振分析技术的实验研究[J]. 波谱学杂志, 2002, 19(3): 281-288.
117 WANG Xuewu, YANG Zhengming, LI Haibo, et al. Experimental study on pore structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(2): 69-72.
王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报(自然科学版), 2010, 32(2): 69-72.
118 YANG Zhengming, ZHANG Yapu, LI Haibo, et al. Application basis of nuclear magnetic resonance technology in the unconventional reservoirs[J]. Earth Science, 2017, 42(8): 1 333-1 339.
杨正明, 张亚蒲, 李海波, 等. 核磁共振技术在非常规油气藏的应用基础[J]. 地球科学, 2017, 42(8): 1 333-1 339.
119 LI J Q, ZHANG P F, LU S F, et al. Microstructural characterization of the clay-rich oil shales by Nuclear Magnetic Resonance (NMR)[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 7 026-7 034.
120 MONTAVON G, GUO Z, TOURNASSAT C, et al. Porosities accessible to HTO and iodide on water-saturated compacted clay materials and relation with the forms of water: a low field proton NMR study[J]. Geochimica et Cosmochimica Acta, 2009, 73(24): 7 290-7 302.
121 FLEURY M, KOHLER E, NORRANT F, et al. Characterization and quantification of water in smectites with low-field NMR[J]. The Journal of Physical Chemistry C, 2013, 117(9): 4 551-4 560.
122 WANG Weimin, GUO Hekun, YE Chaohui. The evaluation of development potential in low permeability oilfield by the aid of nmr movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40-44.
王为民, 郭和坤, 叶朝辉. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报, 2001, 22(6): 40-44.
123 XIAO Qiusheng, ZHU Juyi. Analysis method of rock nmr and its application in oilfield exploration[J]. Petroleum Geology & Experiment, 2009, 31(1): 97-100.
肖秋生, 朱巨义. 岩样核磁共振分析方法及其在油田勘探中的应用[J]. 石油实验地质, 2009, 31(1): 97-100.
124 STRALEY C, ROSSINI D, VINEGAR H, et al. Core analysis by low-field NMR[J]. Log Analyst, 1997, 38(2): 84-93.
125 DUNN K J, BERGMAN D J, LATORRACA G A. Nuclear magnetic resonance: petrophysical and logging applications[M]. Elsevier, 2002.
126 XIAO Liang, XIAO Zhongxiang. Analysis of methods for determining NMR T2cutoff and its applicability[J]. Progress in Geophysics, 2008, 23(1): 167-172.
肖亮, 肖忠祥. 核磁共振测井T2cutoff确定方法及适用性分析[J]. 地球物理学进展, 2008, 23(1): 167-172.
127 Subcommittee on Well Logging of Standardization Technical Committee on Petroleum Industry. Standards for petroleum and natural gas industry:laboratory measurement specification for NMR parameters of rock samples: [S]. Beijing: Petroleum Industry Press,2014.
石油工业标准化技术委员会石油测井专业标准化委员会. 岩样核磁共振参数实验室测量规范: [S].北京:石油工业出版社,2014.
128 SUN Junchang, CHEN Jingping, YANG Zhengming, et al. Experimental study of the NMR characteristics of shale reservoir rock[J]. Science & Technology Review, 2012, 30(14): 25-30.
孙军昌, 陈静平, 杨正明, 等. 页岩储层岩芯核磁共振响应特征实验研究[J]. 科技导报, 2012, 30(14): 25-30.
129 LI A, DING W L, WANG R Y, et al. Petrophysical characterization of shale reservoir based on Nuclear Magnetic Resonance (NMR) experiment: a case study of Lower Cambrian Qiongzhusi Formation in eastern Yunnan Province, South China[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 29-38.
43 TANG Hong, LI Xiongyao, WANG Shijie. Spectral characteristics analysis of water in different states[C]// Chinese Society of Mineralogy, petrology and geochemistry annual conference. 2013:639.
唐红, 李雄耀, 王世杰. 不同赋存态水的光谱特征分析[C]// 中国矿物岩石地球化学学会学术年会. 2013:639.
44 SANDERS R L, WASHTON N M, MUELLER K T. Measurement of the reactive surface area of clay minerals using solid-state NMR studies of a probe molecule[J]. The Journal of Physical Chemistry C, 2010, 114(12): 5 491-5 498.
45 XIE Gang, DENG Mingyi, ZHANG Long. A study on the influence of electrolytes on clay bound water[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 1-4.
谢刚, 邓明毅, 张龙. 黏土结合水的热分析定量研究方法[J]. 钻井液与完井液, 2013, 30(6): 1-4.
46 PENG Zhenwan, LIU Qingxian, XU Ming. Fundamentals of mineralogy[M]. Beijing:Geological Publishing House, 2009.
彭真万, 刘青宪, 徐明. 矿物学基础[M]. 北京:地质出版社, 2009.
47 ZHAO Xingyuan, ZHANG Youyu. Analysis of clay minerals and clay minerals[M]. Beijing:Ocean Press, 1990.
赵杏媛, 张有瑜. 粘土矿物与粘土矿物分析[M]. 北京:海洋出版社, 1990.
48 FLEURY M, GAUTIER S, NORRANT F, et al. Characterization of nanoporous systems with low field NMR:application to kaolinite and smectite clays[C]// International symposium of the society of core analysts. Austin, Texas, USA, 2011.
49 LIANG Dachuan. Research status of shale hydration mechanism[J]. Drilling Fluids and Completion Fluids, 1997, 14(6):29-31.
130 FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1-T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55-62.
131 HU Falong, ZHOU Cancan, LI Chaoliu, et al. Fluid identification method based on 2D diffusion-relaxation Nuclear Magnetic Resonance(NMR)[J]. Petroleum Exploration and Development, 2012, 39(5): 552-558.
胡法龙, 周灿灿, 李潮流, 等. 基于弛豫—扩散的二维核磁共振流体识别方法[J]. 石油勘探与开发, 2012, 39(5): 552-558.
132 GONG Guobo, SUN Boqin, LIU Maili, et al. NMR relaxation of the fluid in rock porous media[J]. Chinese Journal of Magnetic Resonance, 2006, 23(3): 379-395.
龚国波, 孙伯勤, 刘买利, 等. 岩心孔隙介质中流体的核磁共振弛豫[J]. 波谱学杂志, 2006, 23(3): 379-395.
133 WU Fei, FAN Yiren, LI Jin, et al. A development overview of D-T2 two-dimensional NMR technology[J]. Well Logging Technology, 2015, 39(3): 261-271.
吴飞, 范宜仁, 李进, 等. D-T2二维核磁共振技术发展综述[J]. 测井技术, 2015, 39(3): 261-271.
134 YANG D H, KAUSIK R. 23Na and 1H NMR relaxometry of shale at high magnetic field[J]. Energy & Fuels, 2016, 30(6): 4 509-4 519.
135 KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167-177.
136 RYLANDER E, SINGER P, JIANG T, et al. NMR T2 distributions in the Eagle Ford shale: reflections on pore size[C]//SPE unconventional resources conference-USA. Society of Petroleum Engineers, 2013.
137 ALI M R, ANAND V, ABUBAKAR A, et al. Characterizing light versus bound hydrocarbon in a shale reservoir by integrating new two-dimensional NMR and advanced spectroscopy measurements[C]// Proceedings of the 4th unconventional resources technology conference. San Antonio, Texas, USA. Tulsa, OK, USA: American Association of Petroleum Geologists, 2016: 1 469- 1 484.
49 梁大川. 泥页岩水化机理研究现状[J]. 钻井液与完井液, 1997,14(6):29-31.
50 SU Junlin, DONG Wenxin, LUO Pingya, et al. Quantitative test and analysis of clay surface hydration water based on low-field nuclear magnetic resonance technology[J]. Acta Petrolei Sinica, 2019, 40(4): 468-474.
苏俊霖, 董汶鑫, 罗平亚, 等. 基于低场核磁共振技术的黏土表面水化水定量测试与分析[J]. 石油学报, 2019, 40(4): 468-474.
51 PRAMMER M G, DRACK E D, BOUTON J C, et al. Measurements of Clay-Bound Water and Total Porosity by Magnetic Resonance Logging[C]// SPE annual technical conference and exhibition. Society of Petroleum Engineers, 1996.
52 BOYLE K S, ZURAIDAH Z, MANESCU A. 2D NMR-Quantifying oil volume in high clay content low salinity reservoirs[C]// Asia pacific oil and gas conference & exhibition. Society of Petroleum Engineers, 2009.
53 HANDWERGER D A, KELLER J, VAUGHN K. Improved petrophysical core measurements on tight shale reservoirs using retort and crushed samples[C]// SPE annual technical conference and exhibition. Society of Petroleum Engineers, 2011.
54 YUAN Y J, REZAEE R, VERRALL M, et al. Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption[J]. International Journal of Coal Geology, 2018, 194: 11-21.
55 JIANG T, RYLANDER E, SINGER P M, et al. Integrated petrophysical interpretation of eagle ford shale with 1-D and 2-D Nuclear Magnetic Resonance (NMR)[C]// SPWLA 54th annual logging symposium. Society of Petrophysicists and Well-Log Analysts, 2013.
56 WANG R, ZHANG N S, LIU X J, et al. Characteristics of pore volume distribution and methane adsorption on shales[J]. Adsorption Science & Technology, 2015, 33(10): 915-937.
57 HABINA I, RADZIK N, TOPÓR T, et al. Insight into oil and gas-shales compounds signatures in low field 1H NMR and its application in porosity evaluation[J]. Microporous and Mesoporous Materials, 2017, 252: 37-49.
58 HU Y N, DEVEGOWDA D, SIGAL R. A microscopic characterization of wettability in shale kerogen with varying maturity levels[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1 078-1 086.
59 SANG G J, LIU S M, ELSWORTH D. Water vapor sorption properties of Illinois shales under dynamic water vapor conditions: experimentation and modeling[J]. Water Resources Research, 2019, 55: 7 212-7 228.
60 GU Changguang. A discussion on dewatering mechanism of clay minerals and heat analysis[J]. Guizhou Geology, 1990, 7(3): 243-251.
顾长光. 浅论粘土矿物的脱水机理与热分析[J]. 贵州地质, 1990, 7(3): 243-251.
61 YANG Shenglai, WEI Junzhi. Reservoir physics[M]. Beijing:Petroleum Industry Press, 2004.
138 LI J B, HUANG W B, LU S F, et al. Nuclear magnetic resonance T1-T2 map division method for hydrogen-bearing components in continental shale[J]. Energy & Fuels, 2018, 32(9): 9 043-9 054.
139 KAUSIK R, FELLAH K, RYLANDER E, et al. NMR petrophysics for tight oil shale enabled by core resaturation[C]// International symposium of the society of core analysts. 2014: 3.
140 ZOU J, REZAEE R, XIE Q, et al. Investigation of moisture effect on methane adsorption capacity of shale samples[J]. Fuel, 2018, 232: 323-332.
141 LIN Guangrong, SHAO Chuangguo, XU Zhenfeng, et al. Water-blocking damage and its solution in low permeability gas reservoirs[J]. Petroleum Exploration and Development, 2003, 30(6): 117-118.
林光荣, 邵创国, 徐振锋, 等. 低渗气藏水锁伤害及解除方法研究[J]. 石油勘探与开发, 2003, 30(6): 117-118.
142 GAO Hui, ZHU Gengbolun, WANG Xuanyi, et al. Differences and origin of micro-pore throat characteristics for tight sandstone reservoir of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2019, 40(2): 302-312.
高辉, 朱耿博仑, 王泫懿, 等. 鄂尔多斯盆地延长组致密砂岩储层微观孔喉特征差异及其成因[J]. 石油与天然气地质, 2019, 40(2): 302-312.
143 ZHU Huayin, XU Xuan, AN Laizhi, et al. An experimental on occurrence and mobility of pore water in tight gas reservoirs[J]. Acta Petrolei Sinica, 2016, 37(2):230-236.
朱华银,徐轩,安来志,等.致密气藏孔隙水赋存状态与流动性实验[J].石油学报,2016,37(2):230-236.
144 LIU Xiaopeng, LIU Yan, CHEN Juanping, et al. Characteristics of micro pore structure and seepage in tight sandstone gas reservoir of the 8th section of Shihezi Formation in Ordos Basin, China[J]. Natural Gas Geoscience, 2016, 27(7):1 225-1 234.
刘晓鹏,刘燕,陈娟萍,等.鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J].天然气地球科学,2016,27(7):1 225-1 234.
145 WANG Yongshi, HAO Xuefeng, HU Yang. Orderly distribution and differential enrichment of hydrocarbon in oil-rich sags: a case study of Dongying Sag, Jiyang Depression, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2018, 45(5): 785-794.
王永诗, 郝雪峰, 胡阳. 富油凹陷油气分布有序性与富集差异性: 以渤海湾盆地济阳坳陷东营凹陷为例[J]. 石油勘探与开发, 2018, 45(5): 785-794.
146 ZHANG Shanwen. Re-discussion on the reservoir formation by pressure-suck filling[J]. Petroleum Exploration and Development, 2014, 41(1): 37-44.
张善文. 再论“压吸充注”油气成藏模式[J]. 石油勘探与开发, 2014, 41(1): 37-44.
[1] 丁文龙,许长春,久凯,李超,曾维特,吴礼明. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.
[2] 王兆云,程克明. 固体 13C核磁共振技术在石油地球化学研究中的应用[J]. 地球科学进展, 1998, 13(3): 246-250.
阅读次数
全文


摘要