地球科学进展 ›› 2022, Vol. 37 ›› Issue (7): 726 -741. doi: 10.11867/j.issn.1001-8166.2022.027

研究论文 上一篇    下一篇

变化环境下 19562020年黄河兰州站以上干支流径流演变特征及驱动因素研究
王学良 1 , 2 , 3( ), 李洪源 1 , 3, 陈仁升 1( ), 刘俊峰 1, 刘国华 1 , 3, 韩春坛 1 , 3   
  1. 1.中国科学院西北生态环境资源研究院 黑河上游生态—水文试验研究站, 甘肃 兰州 730000
    2.甘肃省平凉水文站, 甘肃 平凉 744000
    3.中国科学院大学, 北京 100049
  • 收稿日期:2021-10-27 修回日期:2022-02-27 出版日期:2022-07-10
  • 通讯作者: 陈仁升 E-mail:wangxueliang@nieer.ac.cn;crs2008@lzb.ac.cn
  • 基金资助:
    国家重点研发计划项目“干旱区融雪洪水灾害监测预报和防控关键技术研究与示范”(2019YFC1510500);中国科学院和青海省人民政府三江源国家公园联合研究专项“三江源区流域水源涵养能力和水系统动态变化监测与评估”(LHZX-2020-11)

Runoff Evolution Characteristics and Driving Factors of Yellow River Above Lanzhou Station from 1956 to 2020 Under Changing Environment

Xueliang WANG 1 , 2 , 3( ), Hongyuan LI 1 , 3, Rensheng CHEN 1( ), Junfeng LIU 1, Guohua LIU 1 , 3, Chuntan HAN 1 , 3   

  1. 1.Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.Pingliang Hydrological Station of Gansu Province, Pingliang Gansu 744000, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-10-27 Revised:2022-02-27 Online:2022-07-10 Published:2022-07-21
  • Contact: Rensheng CHEN E-mail:wangxueliang@nieer.ac.cn;crs2008@lzb.ac.cn
  • About author:WANG Xueliang (1982-), male, Jingyuan County, Gansu Province, Senior engineer. Research areas include hydrological and water resources research in cold and arid regions. E-mail: wangxueliang@nieer.ac.cn
  • Supported by:
    the National Key Research and Development Program of China “The research and demonstration of key technologies for monitoring, forecasting, prevention and control of snowmelt flood disaster in arid areas”(2019YFC1510500);The Joint Research Project of Three-River Headwaters National Park, Chinese Academy of Sciences and the People’s Government of Qinghai Province “Monitoring and evaluation of water conservation capacity and water system dynamic changes in three-river headwaters region”(LHZX-2020-11)

系统分析黄河径流量变化是实现黄河流域生态保护和高质量发展的重要基础研究。基于11个水文站和19个气象站1956—2020年实测径流量和气象数据,采用线性回归法和Mann-Kendall检验法,定量和定性分析了兰州水文站以上区域黄河干流和主要支流大夏河、洮河、湟水和大通河径流演变特征及其驱动因素。结果表明:1956—2020年研究区各水文站径流量变化有增有减,其中源区及西北部呈微弱增加趋势,东南部为减少趋势,非源区全部为减少趋势;各站径流量突变年份在1990年前后,1990s径流量基本为研究时段最低值,之后缓慢增加,到2020年前后达到或超过历史丰水值;与年径流量变化趋势相异,研究区各站冬季径流量除人类影响剧烈的大夏河以外均呈增加趋势。降水和冰雪融水量变化是源区径流量变化的主要原因,区域用水和耗水加大导致非源区实测径流量减少,在2010s之后融雪径流量增加、且积雪融水在缓解研究区1990s枯水状况中起到了关键作用,而冻土退化则是导致研究区年内径流过程线变缓和冬季径流增加的主要原因。

A systematic analysis of runoff changes in the Yellow River is important for ecological protection and the maintenance of high-quality standards within the Yellow River basin. Based on the measured runoff data at 11 hydrological stations and meteorological data from 19 meteorological stations from 1956 to 2020 above the Lanzhou hydrological station, including the Daxia, Tao, Huangshui, and Datong Rivers, linear regression and Mann-Kendall tests were used to analyze the variability of runoff series and the influence of driving factors on runoff change. The results showed that the runoff changes at representative hydrological stations in the study area increased and decreased from 1956 to 2020. The source region and northwest rivers showed slight increases in runoff, whereas the southeast rivers showed a decrease. Overall, the non-source rivers showed a decreasing trend. There was an abrupt runoff change at each station around 1990, with the runoff in the 1990s exhibiting the lowest values. A gradual increase was then observed, with the runoff reaching or exceeding the previous maximum value around the year 2020. Contrary to the trend of annual runoff, the winter runoff at all stations in the study area showed increases, except for the Daxia River, which was mostly influenced by anthropogenic activities. Changes in precipitation and snowmelt water were the main causes of runoff change in the source region, whereas the increase in regional water use and water consumption resulted in a decrease in runoff in non-source areas. Snow cover played a key role in increasing runoff after 2010 and alleviating drought in the 1990s, while permafrost degradation was the main reason for the change in the annual runoff processes slowing down throughout the year, except in winter.

中图分类号: 

图1 19562020年黄河上游兰州水文站以上流域水文站气象站位置图
Fig. 1 Location of hydrological stations and meteorological stations in the Yellow River above Lanzhou station from 1956 to 2020
表1 黄河上游兰州水文站以上流域水文站信息
Table 1 Basic information of hydrological stations in the Yellow River above Lanzhou station
图2 19562020年干支流源区(ace)和非源区(bdf)代表性水文站年平均径流量变化趋势
Fig. 2 Trends of annual average runoff of representative hydrological stations in the sourceaceand non-source regionsbdfof main and tributaries from 1956 to 2020
表2 干支流代表性水文站 19562020年径流量演变趋势
Table 2 Runoff evolution trend of representative hydrological stations of main and tributaries from 1956 to 2020
表3 干支流代表性水文站 19562020年径流量变化特征
Table 3 Characteristics of runoff variation of representative hydrological stations of main and tributaries from 1956 to 2020
图3 干支流源区代表性水文站19562020年不同年代距平百分率
Fig. 3 Percentage of chronological anomalies of representative hydrological stations in the source regions of main and tributaries from 1956 to 2020
图4 干支流非源区代表性水文站19562020年不同年代距平百分率
Fig. 4 Percentage of chronological anomalies of representative hydrological stations in non-source regions of main and tributaries from 1956 to 2020
表4 干支流源区代表性水文站 19562020年径流量突变前后对比
Table 4 Comparison of runoff before and after abrupt change of representative hydrological stations in the source regions of main and tributaries from 1956 to 2020
表5 干支流非源区代表性水文站 19562020年径流量突变前后对比
Table 5 Comparison of runoff before and after abrupt change of representative hydrological stations in non-source regions of main and tributaries from 1956 to 2020
图5 19562020年干支流源区代表性水文站月径流量分配图
Fig. 5 Monthly runoff distribution of representative hydrological stations in the source regions of main and tributaries from 1956 to 2020
图6 1956—2020年干支流非源区代表性水文站月径流量分配图
Fig. 6 Monthly runoff distribution of representative hydrological stations in non-source regions of main and tributaries from 1956 to 2020
图7 1956—2020年研究区代表性气象站降水量变化趋势
Fig. 7 Trends of precipitation changes at representative meteorological stations in the study area from 1956 to 2020
图8 1956—2020年研究区干支流降水径流变化关系
Fig. 8 Relationship between precipitation and runoff change in main and tributaries of the study area from 1956 to 2020
图9 1956—2020年研究区代表性气象站气温变化趋势
Fig. 9 Trends of temperature changes at representative meteorological stations in the study area from 1956 to 2020
图10 研究区黄河干流及其主要支流春季径流量的年际变化
Fig. 10 Interannual variation of spring runoff of the main stream of the Yellow River and its main tributaries in the study area
图11 研究区黄河干流及其主要支流冬季径流量的年际变化
Fig. 11 Interannual variation of winter runoff of the main stream of the Yellow River and its main tributaries in the study area
1 LIU Changming, TIAN Wei, LIU Xiaomang, et al. Analysis and understanding on runoff variation of the Yellow River in recent 100 years [J]. Yellow River, 2019, 41(10): 11-15.
刘昌明, 田巍, 刘小莽, 等. 黄河近百年径流量变化分析与认识[J]. 人民黄河, 2019, 41(10): 11-15.
2 LIU Changming, LIU Xiaomang, TIAN Wei, et al. Ecological protection and high-quality development of the Yellow River basin urgently need to solve the water shortage problem [J]. Yellow River, 2020, 42(9): 6-9.
刘昌明, 刘小莽, 田巍, 等. 黄河流域生态保护和高质量发展亟待解决缺水问题[J]. 人民黄河, 2020, 42(9): 6-9.
3 XIA Jun. Opportunities and challenges of comprehensive management and high quality development of the Yellow River basin [J]. Yellow River, 2019, 41(10): 157.
夏军. 黄河流域综合治理与高质量发展的机遇与挑战[J]. 人民黄河, 2019, 41(10): 157.
4 LU Dadao, SUN Dongqi. Development and management tasks of the Yellow River basin: a preliminary understanding and suggestion [J]. Acta Geographica Sinica, 2019, 74(12): 2 431- 2 436.
陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2 431-2 436.
5 IPCC.Intergovernmental Panel on Climate Change, Climate change 2014: impacts, adaptation, and vulnerability[M]. Cambridge, U. K.:Cambridge University Press, 2014.
6 DING Yihui, WANG Huijun. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China [J]. Chinese Science Bulletin, 2016, 61(10): 1 029-1 041.
丁一汇, 王会军. 近百年中国气候变化科学问题的新认识[J]. 科学通报, 2016, 61(10): 1 029-1 041.
7 YAN Zhongwei, DING Yihui, ZHAI Panmao, et al. Re-assessing climatic warming in China since the last century [J]. Acta Meteorologica Sinica, 2020, 78 (3): 370-378.
严中伟, 丁一汇, 翟盘茂, 等. 近百年中国气候变暖趋势之再评估[J]. 气象学报, 2020, 78(3): 370-378.
8 QIN Dahe, DING Yihui, SU Jilan, et al. Assessment of climate and environment changes in China (Ⅰ): climate and environment changes in China and their projection [J]. Advances in Climate Change Research, 2005, 1(1): 4-9.
秦大河, 丁一汇, 苏纪兰, 等. 中国气候与环境演变评估(I): 中国气候与环境变化及未来趋势[J]. 气候变化研究进展, 2005, 1(1): 4-9.
9 WANG Huan, LI Dongliang, JIANG Yuanchun. Characteristics and reasons of the runoff variation in source regions of the Yellow River during 1956-2012 [J]. Journal of Glaciology and Geocryology, 2014, 36 (2): 403-412.
王欢, 李栋梁, 蒋元春. 1956—2012年黄河源区流量演变的新特征及其成因[J]. 冰川冻土, 2014, 36(2): 403-412.
10 WANG Daoxi, TIAN Shimin, JIANG Siqi, et al. Research progress of the evolution of runoff in the source area of the Yellow River [J]. Yellow River, 2020, 42(9): 90-95.
王道席, 田世民, 蒋思奇, 等. 黄河源区径流演变研究进展[J]. 人民黄河, 2020, 42(9): 90-95.
11 ZHANG Yongyong, ZHANG Shifeng, ZHAI Xiaoyan, et al. Runoff variation and its response to climate change in the Three Rivers Source Region [J]. Journal of Geographical Sciences, 2012, 22(5): 781-794.
12 ZHANG Jianyun, WANG Guoqing, JIN Junliang, et al. Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956-2018 [J]. Advances in Water Science, 2020, 31(2): 153-161.
张建云, 王国庆, 金君良, 等. 1956—2018年中国江河径流演变及其变化特征[J]. 水科学进展, 2020, 31(2): 153-161.
13 JIN Junliang, WANG Guoqing, LIU Cuishan, et al. Responses of hydrology and water resources to the climate change in the Yellow River source region [J]. Journal of Arid Land Resources and Environment, 2013, 27(5):137-143.
金君良, 王国庆, 刘翠善, 等.黄河源区水文水资源对气候变化的响应[J].干旱区资源与环境,2013, 27(5):137-143.
14 LI Lin, SHEN Hongyan, DAI Sheng, et al. Response to climate change and prediction of runoff in the source region of Yellow River [J]. Acta Geographica Sinica, 2011, 66(9): 1 261-1 269.
李林, 申红艳, 戴升,等. 黄河源区径流对气候变化的响应及未来趋势预测[J]. 地理学报, 2011, 66(9): 1 261-1 269.
15 YE Peilong, ZHANG Qiang, WANG Ying, et al. Climate change in the upper Yellow River Basin and its impact on ecological vegetation and runoff from 1980 to 2018 [J]. Transactions of Atmospheric Sciences, 2020, 43(6):967-979.
叶培龙, 张强, 王莺, 等. 1980-2018年黄河上游气候变化及其对生态植被和径流量的影响[J]. 大气科学学报,2020, 43(6):967-979.
16 WANG Yadi, QUAN Quan, XUE Taotao, et al. Hydrological impact of climate change on the source region of the Yellow River [J]. Journal of Water Resources Research, 2018, 40(2): 135-143.
王亚迪, 权全, 薛涛涛, 等. 气候变化对黄河源区的水文影响分析[J]. 水资源研究, 2018, 40(2): 135-143.
17 LAN Yongchao, LIU Gensheng, Chengfang LA, et al. Study on the characteristics and trend of runoff change in the source region of the Yellow River and its regional difference [J]. Mountain Research, 2017, 35(3): 257-265.
蓝永超, 刘根生, 喇承芳, 等. 近 55 年来黄河河源区径流的变化及区域差异[J]. 山地学报, 2017, 35(3): 257-265.
18 ZHOU Shuai, WANG Yimin, GUO Aijun, et al. Assessment on impacts of climate change and human activities on runoff in source region of the Yellow River [J]. Journal of Xi’an University of Technology, 2018, 34(2): 205-210.
周帅, 王义民, 郭爱军, 等. 气候变化和人类活动对黄河源区径流影响的评估[J]. 西安理工大学学报, 2018, 34(2): 205-210.
19 BAO Guangyu, NIE Hong, DAI Sheng, et al. Research on effects of different precipitation magnitudes on runoff changes in the headwater region of the Upper Yellow River [J]. Arid Zone Research, 2021, 38(3): 704-713.
保广裕, 乜虹, 戴升, 等. 黄河上游河源区不同量级降水对径流变化的影响[J]. 干旱区研究, 2021, 38(3): 704-713.
20 WANG Yueyang, LI Qingzhou, WANG Jinxing, et al. The variation characteristics of recorded runoff and its annual distribution in north China during the recent 60 years in the context of environment change [J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2020, 41(2): 36-42.
王乐扬, 李清洲, 王金星, 等. 变化环境下近60年来中国北方江河实测径流量及其年内分配变化特征[J]. 华北水利水电大学学报(自然科学版), 2020, 41(2): 36-42.
21 SU Xianbao, LI Xungui, ZHANG Jianxiang, et al. Temporal and spatial differences in the impact of climate changes and human activities on runoff in the upper reaches of the Yellow River [J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(3): 285-293.
苏贤保, 李勋贵, 张建香, 等. 气候变化和人类活动对黄河上游径流影响的时空差异[J]. 兰州大学学报(自然科学版), 2021, 57(3):285-293.
22 WANG Jinhua, KANG Lingling, YU Hui, et al. Analysis on the effects of climate change on natural runoff volume in the upper reaches of the Yellow River [J]. Arid Land Geography, 2005, 28(3): 288-291.
王金花, 康玲玲, 余辉,等. 气候变化对黄河上游天然径流量影响分析[J]. 干旱区地理, 2005, 28(3):288-291.
23 WANG Jing, HU Xinglin. Runoff space-time distribution rule and evolution tendency of Yellow River upstream and main tributaries [J]. Journal of China Hydrology, 2011, 31(3): 90-97.
王静, 胡兴林. 黄河上游主要支流径流时空分布规律及演变趋势分析[J]. 水文, 2011, 31(3):90-97.
24 SUN Yangyang, MU Xingmin, GAO Peng, et al. Temporal changes in runoff in the upper and middle reaches of Yellow River [J]. Research of Soil and Water Conservation, 2017, 24(3): 59-64,69.
孙洋洋, 穆兴民, 高鹏, 等. 黄河上中游区径流量格局长期变化过程[J]. 水土保持研究, 2017, 24(3): 59-64,69.
25 DING Yongjian, ZHANG Shiqiang, WU Jinkui, et al. Recent progress on studies on cryospheric hydrological processes changes in China [J]. Advances in Water Science, 2020, 31(5): 690-702.
丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702.
26 YANG Jianping, DING Yongjian, LIU Shiyin, et al. Glacier change and its effect on surface runoff in the source regions of the Yangtze and Yellow rivers [J]. Journal of Natural Resources, 2003, 18(5): 595-602,645.
杨建平, 丁永建, 刘时银, 等. 长江黄河源区冰川变化及其对河川径流的影响[J]. 自然资源学报, 2003, 18(5): 595-602,645.
27 ZHANG Tiaofeng, ZHU Xide, WANG Yongjian, et al. The impact of climate variability and human activity on runoff changes in the Huangshui River Basin [J]. Resources Science, 2014, 36(11): 2 256-2 262.
张调风, 朱西德, 王永剑, 等. 气候变化和人类活动对湟水河流域径流量影响的定量评估[J]. 资源科学, 2014, 36(11): 2 256-2 262.
28 DONG Jun, HU Jinbao, WEI Guoxiao. Analysis of runoff variation and characteristics in Datong River Basin [J]. Journal of Water Resources and Water Engineering, 2018, 29(6): 75-80,87.
董军, 胡进宝, 魏国孝. 大通河流域径流变化及特征分析[J]. 水资源与水工程学报, 2018, 29(6): 75-80,87.
29 NIU Zuirong, WANG Qiyou, SUN Dongyuan, et al. Runoff variation characteristics of Taohe River basin based on calculation of current runoff [J]. Arid Land Geography, 2021, 44(1): 149-157.
牛最荣, 王启优, 孙栋元,等. 基于径流还现的洮河流域径流变化特征研究[J]. 干旱区地理, 2021, 44(1): 149-157.
30 LIU Shiyin, YAO Xiaojun, GUO Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory [J]. Acta Geographica Sinica, 2015, 70(1): 3-16.
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
31 CHEN Rensheng, ZHANG Shiqiang, YANG Yong, et al. The impacts of cryospheric changes on cold region runoff in western China [M]. Beijing: Science Press, 2019.
陈仁升, 张世强, 阳勇, 等. 冰冻圈变化对中国西部寒区径流的影响[M]. 北京:科学出版社, 2019.
32 SANG Yanfang, WANG Zhonggen, LIU Changming. Comparison of the MK test and EMD method for trend identification in hydrological time series [J]. Journal of Hydrology, 2014, 510: 293-298.
33 LIU Feng, CHEN Shenliang, DONG Ping, et al. Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years [J]. Journal of Geographical Sciences, 2012, 22(6): 1 013-1 033.
34 LIU Guangsheng, WANG Genxu, ZHANG Wei. Research on climate and runoff variation characteristics in the Three-River Headwater region [J]. Resources and Environment in the Yangtze Basin, 2012, 21(3): 302-309.
刘光生, 王根绪, 张伟. 三江源区气候及水文变化特征研究[J]. 长江流域资源与环境, 2012, 21(3): 302-309.
35 MA Lian, LU Sujin, SI Jianhua, et al. Rend and mutation identification of precipitation sequence in the source region of the Yellow River [J]. Journal of Sichuan Agricultural University, 2019, 37(6): 842-851.
马莲, 卢素锦, 司剑华, 等. 黄河源区1961—2017降水序列趋势及突变识别[J]. 四川农业大学学报, 2019, 37(6): 842-851.
36 LAN Yongchao, ZHU Yuntong, LIU Gensheng, et al. Study of the seasonal characteristics and regional differences of climate change in source regions of the Yellow River [J]. Journal of Glaciology and Geocryology, 2016, 38(3): 741-749.
蓝永超, 朱云通, 刘根生, 等. 黄河源区气候变化的季节特征与区域差异研究[J]. 冰川冻土, 2016, 38(3): 741-749.
37 LIU Rong, WEN Jun, WANG Xin. Spatial-temporal variation and abrupt analysis of evapotranspiration over the Yellow River source region[J]. Climatic and Environmental Research, 2016, 21(5): 503-511.
刘蓉, 文军, 王欣. 黄河源区蒸散发量时空变化趋势及突变分析[J]. 气候与环境研究, 2016, 21(5): 503-511.
38 LIU Shiyin, LU Anxin, DING Yongjian, et al. Glacier fluctuations and the inferred climate changes in the A'Nyêmaqên Mountains in the source area of the Yellow River [J]. Journal of Glaciology and Geocryology, 2002, 24(6): 701-707.
刘时银, 鲁安新, 丁永建, 等. 黄河上游阿尼玛卿山区冰川波动与气候变化[J]. 冰川冻土, 2002, 24(6): 701-707.
39 JIANG Zongli, LIU Shiyin, GUO Wanqin, et al. Recent surface elevation changes of three representative glaciers in Anyêmaqên Mountains, source region of Yellow River [J]. Journal of Glaciology and Geocryology, 2018, 40(2): 231-237.
蒋宗立, 刘时银, 郭万钦, 等. 黄河源区阿尼玛卿山典型冰川表面高程近期变化[J]. 冰川冻土, 2018, 40(2): 231-237.
40 SUN Meiping, LIU Shiyin, YAO Xiaojun, et al. Glacier changes in the Qilian Mountains in the past half century: based on the revised First and Second Chinese Glacier Inventory [J]. Acta Geographica Sinica, 2015, 70(9): 1 402-1 414.
孙美平, 刘时银, 姚晓军, 等. 近50年来祁连山冰川变化:基于中国第一、二次冰川编目数据[J]. 地理学报, 2015, 70(9): 1 402-1 414.
41 LIU Xiaojiao, CHEN Rensheng, LIU Junfeng, et al. Variation of snow cover and its influence on spring runoff in the source region of Yellow River [J]. Plateau Meteorology, 2020, 39(2): 226-233.
刘晓娇, 陈仁升, 刘俊峰, 等. 黄河源区积雪变化特征及其对春季径流的影响[J]. 高原气象, 2020, 39(2): 226-233.
42 WANG Xiqiang, CHEN Rensheng, LIU Guohua, et al. Response of low flows under climate warming in high-altitude permafrost regions in western China [J]. Hydrological Processes, 2019, 33(1):66-75.
43 NIU Li, YE Baisheng, LI Jing, et al. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in western China [J]. Science China Earth Science, 2011, 41(1): 85-92.
牛丽, 叶柏生, 李静, 等. 中国西北地区典型流域冻土退化对水文过程的影响[J]. 中国科学: 地球科学, 2011, 41(1): 85-92.
44 WANG Taihua, YANG Dawen, QIN Yue, et al. Historical and future changes of frozen ground in the upper Yellow River Basin [J]. Global and Planetary Change, 2018, 162 (3): 199-211.
45 MA Qiang, JIN Huijun, BENSE V F, et al. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China [J]. Advances in Climate Change Research, 2019, 10(4): 225-239.
[1] 陈良侃, 陈少辉. “一带一路”沿线国家农作物虚拟水贸易时空格局及驱动因素分析[J]. 地球科学进展, 2021, 36(4): 399-412.
[2] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[3] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[4] Wei Yongping, 郑航, John Langford, 程国栋. 论变化环境下流域管理的知识创新[J]. 地球科学进展, 2012, 27(1): 52-59.
[5] 李 林,张国胜,汪青春,时兴合. 黄河上游流域蒸散量及其影响因子研究[J]. 地球科学进展, 2000, 15(3): 256-259.
阅读次数
全文


摘要