地球科学进展 ›› 2022, Vol. 37 ›› Issue (7): 742 -755. doi: 10.11867/j.issn.1001-8166.2022.036

研究论文 上一篇    下一篇

合川地区须二段低各向异性储层现今地应力方向评价方法
曹峰 1( ), 何建华 1 , 2( ), 王园园 3, 邓虎成 1 , 2, 徐庆龙 4   
  1. 1.成都理工大学能源学院,四川 成都 610059
    2.油气藏地质及开发工程国家重点实验室(成都理工 大学),四川 成都 610059
    3.中海石油(中国)有限公司海南分公司,海南 海口 570100
    4.大庆油田有限责任公司勘探开发研究院,黑龙江 大庆 163000
  • 收稿日期:2022-02-12 修回日期:2022-05-31 出版日期:2022-07-10
  • 通讯作者: 何建华 E-mail:773992278@qq.com;hejianhuadizhi@163.com
  • 基金资助:
    四川大学深地科学与工程教育部重点实验室开放基金项目“深层复杂构造带页岩钻井地应力剖面扰动的力学机理及关键评价技术研究”(DESEYU 202102);四川省科技厅项目“基于多源数据驱动的深层页岩储层钻井地应力剖面智能构建技术研究”(22MZGC0159)

Methods to Evaluate Present-Day In⁃situ Stress Direction for Low Anisotropic Reservoirs in the Second Member of the Xujiahe Formation in Hechuan Area

Feng CAO 1( ), Jianhua HE 1 , 2( ), Yuanyuan WANG 3, Hucheng DENG 1 , 2, Qinglong XU 4   

  1. 1.College of Energy, Chengdu University of Technology, Chengdu 610059, China
    2.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
    3.Hainan Branch of CNOOC Ltd. , Haikou 570100, China
    4.Exploration and Development Research Institute, Daqing Oilfield Company Ltd. , Daqing Heilongjiang 163000, China
  • Received:2022-02-12 Revised:2022-05-31 Online:2022-07-10 Published:2022-07-21
  • Contact: Jianhua HE E-mail:773992278@qq.com;hejianhuadizhi@163.com
  • About author:CAO Feng (1999-), male, Langfang City, Hebei Province, Master student. Research area include the fine description of the in-situ stress field. E-mail: 773992278@qq.com
  • Supported by:
    the Open Fund Project of Key Laboratory of Deep Earth Science and Engineering, Ministry of Education, Sichuan University “Research on mechanical mechanism and key evaluation techniques of ground stress profile disturbance in shale drilling in deep complex tectonic zone”(DESEYU 202102);The Sichuan Provincial Science and Technology Department Project “Research on intelligent construction technology of ground stress profile for deep shale reservoir drilling based on multi-source data drive”(22MZGC0159)

合川地区须二段致密砂岩气资源十分丰富,但该区复杂地质条件对目前油气资源勘探开发造成了巨大影响,尤其是现今地应力方向认识不清制约了后期水平井部署和压裂改造的持续推进。基于波速各向异性、差应变及古地磁等实验测试分析,并结合特殊测井与微地震监测资料,开展了各类地应力方向测试与解释方法在致密砂岩储层中应用的适用性评价研究,查明了合川地区现今地应力方向的分布特征。结果表明合川地区须二段最大水平主应力方向主要分布在N103.1°E-N134.3°E,平均最大水平主应力的方位角为N117.4°E,即合川地区须家河组砂岩现今最大水平主应力方向为NWW-SEE。平面上,地应力方向变化不明显,其较小的地应力偏转主要受沉积结构影响,而合川地区须二段致密砂岩均质性相对较强,各向异性偏弱,波速各向异性测试方法在该区无法适用。通过微地震监测和井壁成像测井评价地应力方向,认为差应变联合古地磁的实验测试结果与上述评价结果具有较高的一致性,故该测试方法更加适用于该区均质且各向异性较弱的砂岩地层。并结合地应力方向和裂缝优势走向等,建议水平井的部署方位为N40°E-N55°E。

The Hechuan area is rich in dense sandstone gas resources in the second member of the Xujiahe formation, and the complex geological conditions in this area have a great impact on the current exploration and development of oil and gas resources. One of the issues resulting from this complexity is an unclear understanding of how present-day in-situ stress direction restricts the later horizontal well deployment and the promotion of fracture transformation. Based on an analysis of wave velocity anisotropy, differential strain, and paleomagnetism, combined with special logging and microseismic monitoring data, the applicability of various types of in situ stress direction testing frameworks in dense sandstone reservoirs was evaluated, and the distribution of present-day in situ stress directions in the Hechuan area were determined. The results show that the maximum principal stress orientation of the second member of the Xujiahe Formation in the Hechuan area is mainly distributed between N103.1°E-N134.3°E, and the azimuth angle of the average maximum principal stress is N117.4°E; that is, the present-day maximum principal stress orientation of the sandstone in this area is NWW-SEE. The change in the direction of the in situ stress in the plane is not significant, and its weaker in situ stress deflection is mainly influenced by the sedimentary structure. In the Hechuan area, the dense sandstone in the second member of the Xujiahe Formation is relatively homogeneous, and the anisotropy is weak; therefore, the wave velocity anisotropy test cannot be applied in this area. The experimental test results of differential strain combined with paleomagnetism are highly congruent with the results above. Therefore, the test more applicable to sandstone formations in this area, specifically the ones with a homogeneous and weak anisotropy, is microseismic monitoring and well wall image logging to evaluate the in-situ stress direction. Combined with the direction of the in situ stress and fracture development, the recommended orientation for horizontal well deployment is N40°E-N55°E.

中图分类号: 

图1 波速各向异性样品及标志线标注照片
(a) YX-2019-476-01,合川001-27-x1,2 414.2 m,须二2亚段,中砂岩;(b) YX-2019-484-01,合川001-27-x1,2 425.3 m,须二2亚段,细砂岩
Fig. 1 Wave velocity anisotropy samples and marker line labeling photos
(a) YX-2019-476-01,Well Hechuan 001-27-x1,2 414.2 m,the second subsection of Xu-II,medium sandstone;(b) YX-2019-484-01,Well Hechuan 001-27-x1,2 425.3 m,the second subsection of Xu-II,fine sandstone
图2 差应变实验测试前(a)和测试后(b)样品照片
YX-2019-476-07,合川001-27-x1,2 414.2 m,须二2亚段,中砂岩
Fig. 2 Photos of samples beforeaand afterbthe differential strain test
YX-2019-476-07,Well Hechuan 001-27-x1,2 414.2 m,the second subsection of Xu-II,medium sandstone
图3 所有样品古地磁数据岩心定向结果分布图
Fig. 3 Distribution of core orientation results from paleomagnetic data for all samples
图4 古地磁实验数据图
(a)合川001-27-x1井须二段,2 404.8 m;(b)合川001-69井须二段,2 143.5 m
Fig. 4 Paleomagnetic experiment graph
(a) The second member of Xujiahe Formation of the Well Hechuan 001-27-x1,2 404.8 m;(b) The second member of Xujiahe Formation of the Well Hechuan 001-69,2 143.5 m
图5 波速各向异性实验曲线结果图
(a)合川001-27-x1井须二2段,2 402.8 m;(b)合川001-69井须二3段,2 108.8 m;(c)合川7井须二3段,2 177.3 m;(d)合川001-27-x1井须二2段,2 419.0 m
Fig. 5 The result of wave velocity anisotropy experimental curve
(a) The second member of Xujiahe Formation of the Well Hechuan 001-27-x1,2 402.8 m;(b) The third member of Xujiahe Formation of the Well Hechuan 001-69,2 108.8 m;(c) The third member of Xujiahe Formation of the Well Hechuan 7,2 177.3 m;(d) The second member of Xujiahe Formation of the Well Hechuan 001-27-x1,2 419.0 m
表1 合川地区须家河组砂岩 40组地应力方向的结果数据表
Table 1 The results of maximum principal stress orientation in group 40 of the sandstone of the Xujiahe Formation in the Hechuan Area
井号 层位 深度/m 岩心古地磁 定向方向 最大水平主应力 与标志线夹角 标志线相对最大水平 主应力方向的测试方法 最大水平 主应力方向
合川001-27-x1 须二2 2 437.02 N316.4°E N355.0°E 差应变分析 N131.4°E
须二2 2 437.00 N112.6°E N355.0°E 差应变分析 N107.6°E
须二2 2 434.64 N175.0°E N129.0°E 差应变分析 N124.0°E
须二2 2 434.62 N171.2°E N129.0°E 差应变分析 N120.2°E
须二2 2 434.60 N163.6°E N129.0°E 差应变分析 N112.6°E
须二2 2 432.32 N301.7°E N186.0°E 差应变分析 N127.7°E
须二2 2 432.30 N287.4°E N186.0°E 差应变分析 N113.2°E
须二2 2 425.34 N293.3°E N180.0°E 波速各向异性 N113.3°E
须二2 2 425.32 N283.3°E N180.0°E 波速各向异性 N103.3°E
须二2 2 425.30 N295.3°E N180.0°E 波速各向异性 N115.3°E
须二2 2 423.04 N13.1°E N90.0°E 波速各向异性 N103.1°E
须二2 2 423.02 N15.3°E N90.0°E 波速各向异性 N105.3°E
须二2 2 423.00 N24.1°E N90.0°E 波速各向异性 N114.1°E
须二2 2 419.04 N304.1°E N170.2°E 差应变分析 N114.3°E
须二2 2 419.02 N309.2°E N170.2°E 差应变分析 N119.4°E
须二2 2 419.00 N307.7°E N170.2°E 差应变分析 N117.9°E
须二2 2 414.20 N320.9°E N150.3°E 差应变分析 N111.2°E
须二2 2 412.32 N142.1°E N160.0°E 波速各向异性 N122.1°E
须二2 2 412.30 N140.8°E N160.0°E 波速各向异性 N120.8°E
须二2 2 404.84 N298.2°E N357.0°E 差应变分析 N115.2°E
须二2 2 404.82 N308.6°E N357.0°E 差应变分析 N125.6°E
须二2 2 404.80 N311.5°E N357.0°E 差应变分析 N128.5°E
须二3 2 402.84 N139.3°E N150.0°E 波速各向异性 N109.3°E
须二3 2 402.82 N134.8°E N150.0°E 波速各向异性 N104.8°E
须二3 2 402.80 N140.0°E N150.0°E 波速各向异性 N110.0°E
合川001-69 须二2 2 155.52 N330.5°E N159.0°E 差应变分析 N129.5°E
须二2 2 155.50 N315.1°E N159.0°E 差应变分析 N114.1°E
须二2 2 144.42 N355.5°E N312.7°E 差应变分析 N128.2°E
须二2 2 144.40 N332.1°E N312.7°E 差应变分析 N104.8°E
须二2 2 143.54 N314.3°E N180.0°E 差应变分析 N134.3°E
须二2 2 143.50 N313.0°E N180.0°E 差应变分析 N133.0°E
须二2 2 130.12 N86.1°E N204.9°E 差应变分析 N111.0°E
须二2 2 130.10 N98.3°E N204.9°E 差应变分析 N123.2°E
须二3 2 108.84 N325.6°E N160.0°E 波速各向异性 N125.6°E
须二3 2 108.82 N309.9°E N160.0°E 波速各向异性 N109.9°E
须二3 2 108.80 N325.2°E N160.0°E 波速各向异性 N125.2°E
合川149 须二3 2 297.50 N310.6°E N170.0°E 波速各向异性 N120.6°E
合川5 须二3 2 230.90 N143.3°E N156.4°E 差应变分析 N119.7°E
合川109 须二2 2 214.60 N249.4°E N220.0°E 差应变分析 N109.4°E
合川1 须二3 2 115.00 N230.3°E N245.0°E 差应变分析 N115.3°E
图6 合川地区须二段微地震监测事件图(俯视图)
(a)合川146井,须二段;(b)合川148井,须二段
Fig. 6 Map of microseismic monitoring events in the second member of Xujiahe Formation in Hechuan Areatop view
(a)Well Hechuan 146,the second member of Xujiahe Formation;(b)Well Hechuan 148,the second member of Xujiahe Formation
图7 合川地区成像测井图像上的诱导缝现象
(a)合川127井1 987~1 992 m段;(b) 合川129井2 380~2 386 m段;(c) 潼南101井2 279~2 283 m段
Fig. 7 Characteristics of drilling-induced fractures interpreted from borehole imaging logs in Hechuan Area
(a) Well Hechuan 127,1 987~1 992 m;(b) Well Hechuan 129,2 380~2 386 m;(c) Well Tongnan 101,2 279~2 283 m
图8 合川地区成像测井图像上的井壁崩落现象
(a) 合川001-69井2 143~2 150 m段;(b) 潼南101井2 194~2 199 m段;(c)合川103井2 014~2 024 m段
Fig. 8 Characteristics of borehole breakouts interpreted from borehole imaging logs in Hechuan Area
(a) Well Hechuan 001-69,2 143~2 150 m;(b) Well Tongnan 101,2 194~2 199 m;(c) Well Hechuan 103,2 014~2 024 m
表2 合川 001-69和合川 001-27-x1井电成像解释地应力方向结果数据表
Table 2 Result of the maximums principle stress orientation derived from borehole breakout in the Wells 001-69 and 001-27-x1
图9 潼南—合川地区成像测井解释地应力方向和实验测试地应力方向频率分布直方图对比
Fig. 9 Comparison of histograms of frequency distribution of in-situ stress direction interpreted by imaging logging and experimental test in Tongnan-Hechuan Area
图10 潼南—合川地区须二段地应力方向分布图
Fig. 10 Distribution of ground stress direction in the Tongnan-Hechuan Area in the second member of Xujiahe Formation
图11 合川5井须二段天然裂缝的成像特征及岩心照片
Fig. 11 Imaging characteristics and core photos of the natural fractures in the second member of Xujiahe Formation of the Well Hechuan 5
图12 结合天然裂缝优势方向和地应力方向的测试结果对水平井建议方位图
(a)合川地区天然裂缝属性预测图;(b)水平井建议方位图
Fig. 12 Combine the test results of natural fracture dominance direction and maximum principle stress orientation for determining drilling direction for horizontal wells
(a) Predicted natural fracture properties in the Hechuan Area;(b) Horizontal well proposal orientation map
1 DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7): 737-750.
丁文龙, 王兴华, 胡秋嘉, 等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
2 YAO Xibin, GUO Xinjiang. The geologic condition of gas accumulation and the key technology of exploration and exploitation of the deep tight sand gas reservoir of Xujiahe Formation in the west of Sichuan Basin[J]. Sino-Global Energy, 2012, 17(2): 43-50.
姚席斌, 郭新江. 川西气田深层须家河组致密砂岩气藏成藏地质条件和勘探开发核心技术[J]. 中外能源, 2012, 17(2): 43-50.
3 XU Lixian. Research on sedimentary characteristics and prediction of favorable exploration zone in second member of Xujiahe Formation in Hechuan Area[J]. Sino-Global Energy, 2021, 26(7): 33-39.
徐立显. 合川地区须二段储层沉积特征研究及有利勘探区预测[J]. 中外能源, 2021, 26(7): 33-39.
4 NIE Zhou. Study on the reservoir characteristics of the second member of Xujiahe Formation in the central Sichuan Area[D]. Chengdu: Chengdu University of Technolog y, 2018.
聂舟. 川中地区须家河组二段储层特征研究[D]. 成都: 成都理工大学, 2018.
5 CAI Meifeng. Review of principles and methods for rock stress measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(3): 275-283.
蔡美峰. 地应力测量原理和方法的评述[J]. 岩石力学与工程学报, 1993, 12(3): 275-283.
6 Dongliang Jie. Review of in situ stress measurement methods[J]. Science & Technology Information, 2013, 11(6): 150-153.
解东亮. 地应力测量方法综述[J]. 科技资讯, 2013, 11(6): 150-153.
7 WANG Chenghu. Brief review and outlook of main estimate and measurement methods for in situ stresses in rock mass[J]. Geological Review, 2014, 60(5): 971-996.
王成虎. 地应力主要测试和估算方法回顾与展望[J]. 地质论评, 2014, 60(5): 971-996.
8 JIN Yan, CHEN Mian, GUO Kaijun, et al. Study on determination method of in situ stress for complex silt formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2 287-2 291.
金衍, 陈勉, 郭凯俊, 等. 复杂泥页岩地层地应力的确定方法研究[J]. 岩石力学与工程学报, 2006, 25(11): 2 287-2 291.
9 MIN Jian, MA Huiyun, PENG Junliang,et al. Study on determination of in-situ stress direction using wave velocity anisotropy method combined with paleomagnetism method[J]. Drilling & Production Technology,2020,43():17-19, I0001, I0002.
闵建,马辉运,彭钧亮,等.波速各向异性结合古地磁测试地应力方向研究[J].钻采工艺,2020,43():17-19, I0001, I0002.
10 HOU Bing, PAN Yongjun, CHEN Mian, et al. Paleomagnetic experimental research on how to determine geographic orientation of in situ stress by shale reservoir cores[J]. Drilling & Production Technology, 2017, 40(5): 1-4.
侯冰, 潘泳君, 陈勉, 等. 页岩储层岩心地应力方向古地磁实验研究[J]. 钻采工艺, 2017, 40(5): 1-4.
11 HAN Y N, FENG Y C, LI X R, et al. Evaluation of in situ stress orientation: a laboratory approach combining paleomagnetic test and acoustic anisotropy test[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107870.
12 HAN Jun, LIU Hongtao. Application of differential strain analysis method on the study of insitu stress direction[J]. Journal of Jianghan Petroleum Institute, 2005,27(2):349-350,357.
韩军, 刘洪涛. 差应变分析法在地应力方向研究中的应用[J]. 石油天然气学报(江汉石油学院学报), 2005,27(2):349-350,357.
13 SHEN Haichao, CHENG Yuanfang, WANG Jingyin, et al. Principal direction differential strain method for in situ stress measurement and application[J]. Xinjiang Petroleum Geology, 2008, 29(2): 250-252.
沈海超, 程远方, 王京印, 等. 主方向差应变地应力测量方法[J]. 新疆石油地质, 2008, 29(2): 250-252.
14 YAN Ping. The earth stress calculation using well logging data and its applied research in piedmont structure[D]. Beijing:China University of Petroleum (Beijing),2007.
闫萍.利用测井资料计算地应力及其在山前构造带的应用研究[D].北京:中国石油大学(北京),2007.
15 ZHAO Qing, KANG Yikui. A calculating method of underground stress of reservoir with logging data and its application in Anpeng oil-bearing block[J]. Petroleum Geology and Engineering,2007,21(3):36-38.
赵庆,康义逵.测井资料计算储层地应力方法及在安棚含油区块的应用[J].石油地质与工程,2007,21(3):36-38.
16 ZHAO Yongqiang. A method of analyzing crustal stress orientation using imaging logging[J]. Petroleum Drilling Techniques, 2009, 37(6): 39-43.
赵永强. 成像测井综合分析地应力方向的方法[J]. 石油钻探技术, 2009, 37(6): 39-43.
17 LIU Kuangxiao, LAN Kai, XIONG Youming, et al. In-situ stress calculation with logging data for marine carbonate reservoirs in Puguang Area[J]. Oil Drilling & Production Technology, 2011, 33(2): 65-68.
刘匡晓, 兰凯, 熊友明, 等. 普光地区海相碳酸盐岩储层地应力的测井计算[J]. 石油钻采工艺, 2011, 33(2): 65-68.
18 CHENG Daojie, SUN Baodian, CHENG Zhigang, et al. Present situation and prospect of crustal stress evaluation with log data[J]. Well Logging Technology, 2014, 38(4): 379-383.
程道解, 孙宝佃, 成志刚, 等. 基于测井资料的地应力评价现状及前景展望[J]. 测井技术, 2014, 38(4): 379-383.
19 MA Jianhai, SUN Jianmeng. Calculation of formation stress using logging data[J]. Well Logging Technology,2002, 26(4): 347-352.
马建海,孙建孟.用测井资料计算地层应力[J].测井技术,2002, 26(4): 347-352.
20 YUE Leping, WANG Jianqi, DI Shixiang, et al. The paleomagnetic principle and method appliing to orientation of core and cracks in oil and gas field[J]. Progress in Geophysics, 1997, 12(3): 71-76.
岳乐平, 王建其, 邸世祥, 等. 油气田钻井岩芯及岩芯裂缝方位确定的古地磁原理与方法[J]. 地球物理学进展, 1997, 12(3): 71-76.
21 HOU Shouxin, TIAN Guorong. Palaeomagnetic of cores and its applications for in-situ stress measurements[J]. Journal of Geomechanics,1999,5(1): 90-96.
侯守信,田国荣.古地磁岩芯定向及其在地应力测量上的应用[J] .地质力学学报, 1999, 5(1): 90-96.
22 LI Xuesen, WU Hanning, HUANG Baochun, et al. New paleomagnetic results from the Lower Carboniferous limestone near Jiangyou, South China bolck[J]. Progress in Geophysics, 2002, 17(3): 406-413.
李学森, 吴汉宁, 黄宝春, 等. 四川江油—北川地区下石炭统灰岩的古地磁研究[J]. 地球物理学进展, 2002, 17(3): 406-413.
23 XUE Rubin. Identifying terrestrial stress direction by imaging logs in Erdos Basin[J]. Petroleum Instruments, 2006,20(3):52-53,57.
薛茹斌. 用成像测井资料确定鄂尔多斯盆地地应力方向[J]. 石油仪器,2006,20(3):52-53,57.
24 SHEN L W, SCHMITT D R, HAUG K. Quantitative constraints to the complete state of stress from the combined borehole and focal mechanism inversions: fox Creek, Alberta[J]. Tectonophysics, 2019, 764: 110-123.
25 LI Pengwu, CUI Junwen, WANG Lianjie, et al. The determination of in situ stress from wellbore breakouts in the main borehole of the Chinese Continental Scientific Drilling[J]. Acta Petrologica Sinica, 2005, 21(2): 421-426.
李朋武, 崔军文, 王连捷, 等. 中国大陆科学钻探主孔钻孔崩落与现场应力状态的确定[J]. 岩石学报, 2005, 21(2): 421-426.
26 HUANG Bo. Study of the formation stress analysis method for imaging logging[D]. Beijing: China University of Geosciences (Beijing), 2008.
黄波. 成像测井地应力分析方法研究[D]. 北京: 中国地质大学(北京), 2008.
27 SCHMITT D R, CURRIE C A, ZHANG L. Crustal stress determination from boreholes and rock cores: fundamental principles[J]. Tectonophysics, 2012, 580: 1-26.
28 LEE H, CHANG C D, ONG S H, et al. Effect of anisotropic borehole wall failures when estimating in situ stresses: a case study in the Nankai accretionary wedge[J]. Marine and Petroleum Geology, 2013, 48: 411-422.
29 ZENG L B, LYU W Y, LI J, et al. Variation in the orientation of the maximum horizontal stress in thick channel-fill sandstones with low-permeability: a case of the Bonan Oilfield in the Bohai Bay Basin, Eastern China[J]. Marine and Petroleum Geology, 2019, 107: 32-40.
30 LI Jianhong, WANG Yanbin. Fracture characteristics of the 8th member of Shihezi formation in Linxing Area and its influence on fracturing effect[J]. Journal of Mining Science and Technology, 2021, 6(4): 379-388.
李建红, 王延斌. 临兴地区盒八段砂岩裂缝发育特征及其对压裂效果的影响[J]. 矿业科学学报, 2021, 6(4): 379-388.
31 LIU Xiangjun, DING Yi, LUO Pingya, et al. Influence of natural fracture on hydraulic fracture propagation[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 148-153.
刘向君, 丁乙, 罗平亚, 等. 天然裂缝对水力裂缝延伸的影响研究[J]. 特种油气藏, 2018, 25(2): 148-153.
[1] 许小勇, 张颖, 鲁银涛, 马宏霞, 闫春, 刘忻蕾, 徐宁, 邵大力, 孙辉, 丁梁波. 孟加拉扇更新统加积型深水水道规模和演化[J]. 地球科学进展, 2022, 37(3): 268-276.
[2] 康逊, 胡瑞璞, 胡文瑄, 谭静强. 准噶尔盆地下三叠统百口泉组烃类热氧化的氧化性物质研究[J]. 地球科学进展, 2021, 36(10): 1004-1014.
[3] 杨丽华, 刘池洋, 代双和, 周义军, 毕明波, 刘永涛. 鄂尔多斯盆地古峰庄地区断裂特征及油气地质意义[J]. 地球科学进展, 2021, 36(10): 1039-1051.
[4] 鲍园, 唐佳阳, 琚宜文, 安超. 鄂尔多斯盆地东南缘黄陵矿区中生代煤系烃源层构造—热演化过程与生物气生成[J]. 地球科学进展, 2021, 36(10): 993-1003.
[5] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[6] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[7] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[8] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[9] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[10] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[11] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例[J]. 地球科学进展, 0, (): 15-.
[12] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[13] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[14] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[15] 张亦弛, 马新仿, 张士诚, 韩珊, 秦思捷, 张弛. 利用工业CT对致密砂岩裂缝三维定量评价——以塔里木盆地库车凹陷巴什基奇克组砂岩为例[J]. 地球科学进展, 2018, 33(2): 213-224.
阅读次数
全文


摘要